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Abstract

Score-based generative models (SGMs) are a powerful class of generative models
that exhibit remarkable empirical performance. Score-based generative modelling
(SGM) consists of a “noising” stage, whereby a diffusion is used to gradually add
Gaussian noise to data, and a generative model, which entails a “denoising” process
defined by approximating the time-reversal of the diffusion. Existing SGMs assume
that data is supported on a Euclidean space, i.e. a manifold with flat geometry. In
many domains such as robotics, geoscience or protein modelling, data is often
naturally described by distributions living on Riemannian manifolds and current
SGM techniques are not appropriate. We introduce here Riemannian Score-based
Generative Models (RSGMs), a class of generative models extending SGMs to
Riemannian manifolds. We demonstrate our approach on a variety of manifolds,
and in particular with earth and climate science spherical data.

1 Introduction

Score-based Generative Models (SGMs) also called diffusion models (Song and Ermon, 2019; Song
et al., 2021; Ho et al., 2020; Dhariwal and Nichol, 2021) formulate generative modelling as a
denoising process. Noise is incrementally added to data using a diffusion process until it becomes
approximately Gaussian. The generative model is then obtained by simulating an approximation of
the corresponding time-reversal process, which progressively denoises a Gaussian sample to obtain
a data sample. This process is also a diffusion whose drift depends on the logarithmic gradients of
the noised data densities, i.e. the Stein scores, estimated using a neural network via score matching
(Hyvärinen, 2005; Vincent, 2011).

SGMs have been primarily applied to data living on Euclidean spaces, i.e. manifolds with flat
geometry. However, in a large number of scientific domains the distributions of interest are supported
on Riemannian manifolds. These include, to name a few, protein modelling (Shapovalov and
Dunbrack Jr, 2011), cell development (Klimovskaia et al., 2020), image recognition (Lui, 2012),
geological sciences (Karpatne et al., 2018; Peel et al., 2001), graph-structured and hierarchical data
(Roy et al., 2007; Steyvers and Tenenbaum, 2005), robotics (Feiten et al., 2013; Senanayake and
Ramos, 2018) and high-energy physics (Brehmer and Cranmer, 2020).

We introduce in this work Riemannian Score-based Generative Models (RSGMs), an extension of
SGMs to Riemannian manifolds which incorporate the geometry of the data by defining the forward
diffusion process directly on the Riemannian manifold, inducing a manifold-valued reverse process.
This requires constructing a noising process on the manifold that converges to an easy-to-sample
reference distribution. We establish that, as in the Euclidean case, the corresponding time-reversal
process is also a diffusion whose drift includes the Stein score which is intractable but can similarly be
estimated via score matching. Methodological extensions are required as in most cases the transition
kernel of the noising process cannot be sampled exactly. For example on compact manifolds it is
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typically only available as an infinite sum through the Sturm–Liouville decomposition (Chavel, 1984).
To this end, we develop non-standard techniques for score estimation and rely on the use of Geodesic
Random Walks for sampling (Jørgensen, 1975). We provide theoretical convergence bounds for
RSGMs on compact manifolds and demonstrate our approach on a range of manifolds and tasks,
including modelling a number of natural disaster occurrence datasets collected by Mathieu and Nickel
(2020). We show that RGSMs achieve better performance than recent baselines (Mathieu and Nickel,
2020; Rozen et al., 2021) and scale better to high-dimensional manifolds.

2 Euclidean Score-based Generative Modelling

We recall here briefly the key concepts behind SGMs on the Euclidean space Rd and refer the readers
to Song et al. (2021) for a more detailed introduction. We consider a forward noising process (Xt)t≥0

defined by the following Stochastic Differential Equation (SDE)

dXt = −Xtdt+
√

2dBt, X0 ∼ p0, (1)

where (Bt)t≥0 is a d-dimensional Brownian motion and p0 is the data distribution. The available data
gives us an empirical approximation of p0. The process (Xt)t≥0 is simply an Ornstein–Ulhenbeck
(OU) process which converges with geometric rate to N(0, Id). Under mild conditions on p0, the time-
reversed process (Yt)t≥0 = (XT−t)t∈[0,T ] also satisfies an SDE (Cattiaux et al., 2021; Haussmann
and Pardoux, 1986) given by

dYt = {Yt + 2∇ log pT−t(Yt)}dt+
√

2dBt, Y0 ∼ pT , (2)

where pt denotes the density of Xt. By construction, the law of YT−t is equal to the law of Xt for
t ∈ [0, T ] and in particular YT ∼ p0. Hence, if one could sample from (Yt)t∈[0,T ] then its final
distribution would be the data distribution p0. Unfortunately we cannot sample exactly from (2) as pT
and the scores (∇ log pt(x))t∈[0,T ] are intractable. Hence SGMs rely on a few approximations. First,
pT is replaced by the reference distribution N(0, Id) as we know that pT converges geometrically
towards it. Second, the following denoising score matching identity is exploited to estimate the scores

∇xt log pt(xt) =
∫
Rd ∇xt log pt|0(xt|x0) p0|t(x0|xt)dx0,

where pt|0(xt|x0) is the transition density of the OU process (1) which is available in closed-form. It
follows directly that ∇ log pt is the minimizer of `t(s) = E[‖s(Xt)−∇xt log pt|0(Xt|X0)‖2] over
functions s where the expectation is over the joint distribution of X0,Xt. This result can be leveraged
by considering a neural network sθ : [0, T ] × Rd → Rd trained by minimizing the loss function
`(θ) =

∫ T
0
λt`t(sθ(t, ·))dt for some weighting function λt > 0. Finally, an Euler–Maruyama

discretization of (2) is performed using a discretization step γ such that T = γN for N ∈ N

Yn+1 = Yn + γ{Yn + 2sθ(T − nγ, Yn)}+
√

2γZn+1, Y0 ∼ N(0, Id), Zn
i.i.d.∼ N(0, Id).

The above showcases the basics of SGMs but we highlight that many improvements have been
proposed; see (e.g. Song and Ermon, 2020; Jolicoeur-Martineau et al., 2021; Dhariwal and Nichol,
2021). In particular, selecting an adaptive stepsize (γn)n∈N (Bao et al., 2022; Watson et al., 2021)
and using a predictor-corrector scheme (Song et al., 2021) instead of a simple Euler–Maruyama
discretization drastically improves performance.

3 Riemannian Score-based Generative Modelling

We now move to the Riemannian manifold setting, and more specifically assume thatM is a complete,
orientable connected and boundaryless Riemannian manifold, endowed with a Riemannian metric
g 4. Four components are required to extend SGMs to this setting: i) a forward noising process on
M which converges to an easy-to-sample reference distribution, ii) a time-reversal formula onM
which defines a backward generative process, iii) a method for approximating samples of SDEs on
manifolds, iv) a method to efficiently approximate the drift of the time-reversal process. Notation are
gathered in App. B.

4Metrics g are sections of T∗M⊗ T∗M, the rank 2 tensor bundle of the dual tangent space, i.e. smooth
varying bilinear maps on TM, verifying symmetry and positive semi-definiteness.
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3.1 Noising processes on manifolds

The first necessary component is a suitable generic noising process on manifolds that will converge
to a convenient stationary distribution. A simple choice is to use Langevin dynamics described by

dXt = − 1
2 ∇Xt

U(Xt)dt+ dBMt , (3)

which admits the invariant density (w.r.t. the volume form) given by dpref/dVolM(x) ∝ e−U(x) (Dur-
mus, 2016, Section 2.4), where∇ is the Riemannian gradient5.

Two simple choices for U(x) present themselves. Firstly, setting U(x) = dM(x, µ)2/(2γ2), where
dM is the geodesic distance and µ ∈M is an arbitrary mean location, induces the drift∇Xt

U(Xt) =
− exp−1

Xt
(µ)/γ2 6. This is the potential of the ‘Riemannian normal’ (Pennec, 2006) distribution, from

which it is in general neither trivial to sample nor to compute the normalisation constant (Hauberg,
2018; Mathieu et al., 2019). An alternative is to target the ’exponential wrapped’ Gaussian. This is the
pushforward of a Gaussian distribution in the tangent space at the mean location along the exponential
map. The potential is given by U(x) = dM(x, µ)2/(2γ2) + log |∂ exp−1

µ (x)|7. In contrast to the
Riemannian normal, sampling and evaluating the density of this distribution is easy.

One recovers the standard Ornstein–Uhlenbeck noising process (Song et al., 2021) for both of these
target distributions whenM = Rd and µ = 0 since then the drift b(t,Xt) = 1

2 exp−1
Xt

(0) = − 1
2 Xt.

On compact manifolds, the invariant measure VolM has finite volume, thus a natural choice is to
target the uniform distribution which is given by VolM/|M|. In this case, ∇XtU(Xt) = 0 and the
noising process is simply a Brownian motion onM.

3.2 Time-reversal on Riemannian manifolds

In order to use these noising processes we prove the time-reversal formula for manifolds, a general-
isation of the results in the Euclidean case, e.g. see Cattiaux et al. (2021, Theorem 4.9). Consider
an SDE of the form dXt = b(Xt)dt+ dBMt where BMt is a Brownian motion onM. We refer to
App. C.3 for an introduction to Brownian motions on manifolds. This result shows that if (Xt)t∈[0,T ]

is a diffusion process then (XT−t)t∈[0,T ] is also a diffusion process w.r.t. the backward filtration
whose coefficients can be computed, and are shown in Eq. (4). The proof relies on an extension of
Cattiaux et al. (2021, Theorem 4.9) to the Riemannian manifold case and is postponed to App. H.
Theorem 1 (Time-reversed diffusion). Let T ≥ 0 and (BMt )t≥0 be a Brownian motion on M
such that BM0 has distribution the volume form pref

8. Let (Xt)t∈[0,T ] be associated with the SDE
dXt = b(Xt)dt + dBMt . Let (Yt)t∈[0,T ] = (XT−t)t∈[0,T ] and assume that KL(P|Q) < +∞,
where Q is the distribution of (BMt )t∈[0,T ] and P the distribution of (Xt)t∈[0,T ]. In addition, assume
that Pt = L(Xt), the distribution of Xt, admits a smooth positive density pt w.r.t. pref for any
t ∈ [0, T ]. Then, (Yt)t∈[0,T ] is associated with the SDE

dYt = {−b(Yt) +∇ log pT−t(Yt)}dt+ dBMt . (4)

3.3 Approximate sampling of diffusions

Obtaining samples from SDEs on a manifold is non-trivial in general. IfM is isometrically embedded
into Rp (with p ≥ d) one can define (BMt )t≥0 as a Rp-valued process, see App. C.3. However, this
approach is extrinsic, as it requires the knowledge of the projection operator to place points back
on the manifold at each step which can accumulate errors. Here we consider an intrisic approach
based on Geodesic Random Walks (GRWs), see Jørgensen (1975) for a review of their properties.
GRWs can approximate any well-behaved diffusion onM. Hence, we introduce GRWs in a general
framework and consider a discrete-time process (Xγ

n)n∈N which approximates the diffusion (Xt)t≥0

defined by
dXt = b(t,Xt)dt+ σ(t,Xt)dBMt . (5)

This generalisation is key to sampling the backward diffusion process defined in Theorem 1.
5The (Riemannian) gradient∇ is defined s.t. for any f :M→ R, x ∈M, v ∈ TxM, 〈∇f, v〉g = df(v).
6expx : TxM→M denotes the exponential mapping on the manifold, see e.g. Lee (2013, Chapter 20).
7| · | denotes the absolute value of the determinant, and ∂f the Jacobian of f .
8Note that in the case of a non-compact manifold pref is only a measure and not a probability measure.
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(a) A single step of a
Geodesic Random Walk.

(b) Many steps yield an ap-
proximate Brownian mo-
tion trajectory.

(c) The density of a single step of Gaussian Random
Walk [Left] and the Brownian motion density [Right]
agree well for small time steps.

Figure 1: Geodesic Random Walks can be used to approximate Brownian motion and more generally SDEs on
manifolds. (a) At each step, tangential noise is sampled (red), which is added the drift term (not pictured). This
tangent vector is then pushed through the exponential map to produce a geodesics step on the manifold (blue).
(b) Iterating this procedure yield approximate sample paths from the process.

Algorithm 1 GRW (Geodesic Random Walk)
Require: T,N,Xγ

0 , b, σ,P
1: γ = T/N . Step-size
2: for k ∈ {0, . . . , N − 1} do
3: Zk+1 ∼ N(0, Id) . Sample a Gaussian in the tangent space of Xγ

k
4: Wk+1 = γb(kγ,Xγ

k ) +
√
γσ(kγ,Xγ

k )Zk+1 . Compute the Euler–Maruyama step on tangent space
5: Xγ

k+1 = expXγ
k

[Wk+1] . Move along the geodesic defined by Wk+1 and Xγ
k onM

6: end for
7: return {Xγ

k }
N
k=0

Definition 2 (Geodesic Random Walk). Let Xγ
0 be aM-valued random variable. For any γ > 0, we

define (Xγ
n)n∈N such that for any n ∈ N, Xγ

n+1 = expXγn [γ{b(Xγ
n) +

√
γVn+1}], where (Vn)n∈N

is a sequence of TM-valued random variables such that for any n ∈ N, E[Vn+1|Fn] = 0 and
E[Vn+1V

>
n+1|Fn] = σσ>(Xγ

n), where Fn is the filtration generated by {Xγ
k }nk=0. We say that the

M-valued process (Xγ
n)n∈N is a Geodesic Random Walk.

Algorithm 1 approximately simulates the diffusion (Xt)t∈[0,T ] defined in Eq. (5) using GRWs; see
Kuwada (2012); Cheng et al. (2022) for quantitative error bounds in the time-homogeneous case
and App. I.2 for a novel extentsion for the time-inhomogeneous case. Fig. 1 provides a graphical
illustration of this procedure.

3.4 Score approximation on Riemannian manifolds

Score matching and loss functions. The reverse process from Eq. (4) involves the Stein score
∇ log pt which is unfortunately intractable. To derive an approximation, we first remark that for any
s, t ∈ (0, T ] with t > s and xt ∈ M, pt(xt) =

∫
M pt|s(xt|xs)dPs(xs), where Ps = L(Xs), the

distribution of Xs. Thus, we have that for any s, t ∈ [0, T ] with t > s and xt ∈M
∇xt log pt(xt) =

∫
M∇xt log pt|s(xt|xs)Ps|t(xt,dxs).

Hence, for any s, t ∈ [0, T ] with t > s we have that ∇ log pt = arg min{`t|s(st) : st ∈ L2(Pt)},
where `t|s(st) =

∫
M2 ‖∇x log pt|s(xt|xs)− st(xt)‖2dPs,t(xs, xt), which is referred as the Denois-

ing Score Matching (DSM) loss. It can also be written in an implicit fashion.
Proposition 3. Let t, s ∈ (0, T ] with t > s. Then, for any st ∈ C∞(M), `t|s(st) = 2`imt (st) +∫
M2 ‖∇xt log pt|s(xt|xs)‖2dPs,t(xs, xt), where `imt (st) =

∫
M{ 1

2‖st(xt)‖2 +div(st)(xt)}dPt(xt).

The proof is postponed to App. J. For any t ∈ (0, T ] the minimizers of the loss `imt on X (M) (where
X (M) is the set of vector fields onM) are the same as the ones for `t|s. The loss `imt is referred to
as the implicit score matching (ISM) loss (Hyvärinen, 2005). These losses are direct analogous to the
versions typically used in Euclidean space.

In the case where we have access to {∇ log pt|s : T ≤ t > s ≥ 0}, the forward noising process
transition kernels, or an approximation of this family, then we can use the DSM loss to learn
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Algorithm 2 RSGM (Riemannian Score-Based Generative Model)

Require: ε, T,N, {Xm
0 }Mm=1, loss, s, θ0, Niter, pref,P

1: /// TRAINING ///
2: for n ∈ {0, . . . , Niter − 1} do
3: X0 ∼ (1/M)

∑M
m=1 δXm0 . Random mini-batch from dataset

4: t ∼ U([ε, T ]) . Uniform sampling between ε and T
5: Xt = GRW(t,N,X0, b, Id,P) . Approximate forward diffusion with Algorithm 1
6: `(θn) = `t(T,N,X0,Xt, loss, sθn) . Compute score matching loss from Table 2
7: θn+1 = optimizer_update(θn, `(θn)) . ADAM optimizer step
8: end for
9: θ? = θNepoch

10: /// SAMPLING ///
11: Y0 ∼ pref . Sample from uniform distribution
12: b?θ(t, x) = sθ?(T − t, x) for any t ∈ [0, T ], x ∈M . Reverse process drift
13: {Yk}Nk=0 = GRW(T,N, Y0, bθ? , Id,P) . Approximate reverse diffusion with Algorithm 1
14: return θ?, {Yk}Nk=0

Table 1: Differences between SGM on Euclidean spaces and RSGM on Riemannian manifolds.

Ingredient \ Space Euclidean ‘Generic’ Manifold Compact Manifold
Forward process dXt = − 1

2
Xtdt+ dBMt − 1

2
∇XtU(Xt)dt+ dBMt dBMt

Easy-to-sample distribution Gaussian Wrapped Gaussian Uniform
Time reversal Cattiaux et al. (2021) Theorem 1
Sampling forward process Direct Geodesic Random Walk (Algorithm 1)
Sampling backward process Euler–Maruyama Geodesic Random Walk (Algorithm 1)

{st ∈ X (M) : t ∈ [0, t]}. If this is not the case then we turn to `imt . Note that `imt requires the
computation of a divergence term which requires d Jacobian-vector calls. In high dimension, a
stochastic estimator is necessary (Hutchinson, 1989). Following Song and Ermon (2020); Nichol and
Dhariwal (2021) the loss can be weighted with a term λt > 0.

Parametric family of vector fields. We approximate (∇ log pt)t∈[0,T ] by a family of functions
{sθ}θ∈Θ where Θ is a set of parameters and sθ : [0, T ] → X (M). In a Euclidean space, vector
fields are simply functions sθ : Rd → Rd. In manifolds, although for any x ∈M, TxM∼= Rd, there
does not necessarily exist a set of d smooth vector fields {Ei}di=1 such that span

(
{Ei(x)}di=1

)
=

TxM (Chapter 8, page 179, Lee, 2006) 9. Fortunately, one can rely on a larger set of smooth vector
fields {Ei(x)}ni=1 with n > d that does span the tangent bundle. Then it suffices to construct a neural
network sθ : [0, T ]×M→ Rn to parametrize the score network as sθ(t, x) =

∑n
i=1 siθ(t, x)Ei(x).

See App. E for a discussion on the different choices of generating sets {Ei(x)}ni=1.

Combining this parameterization with the score matching losses, the time-reversal formula of The-
orem 1 and the sampling of forward and backward processes described in Sec. 3.3, we define our
RGSM algorithm in Algorithm 2. This algorithm can also benefit from a predictor-corrector scheme
as in (Song et al., 2021), see App. G.

4 RSGMs on compact manifolds

Assuming compactness of the manifold M, we can leverage a number of special properties to
implement a specific case of our algorithm. In particular we benefit from the fact that on compact
manifolds we have a proper uniform distribution over the manifold, and have access to a variety of
approximations of the heat kernel. As highlighted in Sec. 3.1, in the compact setting we use Brownian
motion as the noising SDE, which targets the uniform distribution as the stationary distribution.
Table 1 highlights the main differences between RSGMs on compact manifolds, generic manifolds
and Euclidean score-based models.

9Manifolds for which there exists such a global frame {Ei(x)}di=1 are referred as parallelizable. S2 is a
well-known example of non-parallelizable manifold as per the Hairy ball theorem.
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Heat kernel on compact Riemannian manifolds. For any x0 ∈ M and t ≥ s ≥ 0, the heat
kernel pt|s(·|xs) is defined as the density of BMt w.r.t. the uniform measure on the manifold.

Contrary to the Gaussian transition density of the OU process (or the Brownian motion) in the
Euclidean setting, it is typically only available as an infinite series. In order to circumvent this issue
we consider two techniques: i) a truncation approach, ii) a Taylor expansion around t = 0 called a
Varadhan asymptotics. First, we recall that in the case of compact manifolds the heat kernel is given
by the Sturm–Liouville decomposition (Chavel, 1984) given for any t > 0 and x0, xt ∈M by

pt|0(xt|x0) =
∑
j∈N e−λjtφj(x0)φj(xt), (6)

where the convergence occurs in L2(pref ⊗ pref), (λj)j∈N and (φj)j∈N are the eigenvalues, respec-
tively the eigenvectors, of −∆M, the Laplace-Beltrami operator in the manifold, in L2(pref) (see
Saloff-Coste, 1994, Section 2). When the eigenvalues and eigenvectors are known, we rely on an
approximation of the logarithmic gradient of pt|0 by truncating the sum in Eq. (S8) with J ∈ N terms
to obtain for any t > 0 and x0, xt ∈M

∇xt log pt|0(xt|x0) ≈ SJ,t(x0, xt) , ∇xt log
∑J
j=0 e−λjtφj(x0)φj(xt). (7)

Under regularity conditions on M it can be shown that for any x, y ∈ M and t ≥ 0,
limJ→+∞ SJ,t(x0, xt) = ∇xt log pt|0(xt|x0) (see Jones et al., 2008, Lemma 1). In the case of
the d-dimensional torus or sphere the eigenvalues and eigenvectors are computable (see Saloff-Coste,
1994, Section 2) and we can apply this method to approximate pt|0 for any t > 0, see App. F

When the eigenvalues and eigenvectors are unknown or not tractable, we can still derive an approx-
imation of the heat kernel for small times t. Using Varadhan’s asymptotics—see Bismut (1984,
Theorem 3.8) or Chen et al. (2021, Theorem 2.1)—for any x, y ∈ M with y /∈ Cut(x) (where
Cut(x) is the cut-locus of x inM (see Lee, 2018, Chapter 10)) we have that

limt→0 t∇xt log pt|0(xt|x0) = exp−1
xt (x0). (8)

Using the previously defined score-matching losses and the approximations to the heat kernel above,
we highlight three methods to compute∇ log pt in Table 2.

Table 2: Computational complexity of score matching losses w.r.t. score network forward and backward passes.
ε is a random variable on TXtM such that E[ε] = 0 and E[εε>] = Id.

Loss Approximation Loss function
Requirements

Complexity
pt|0 exp−1

Xt

`t|0 (DSM)
None 1

2
E
[
‖s(Xt)−∇ log pt|0(Xt|X0)‖2

]
3 7 O(1)

Truncation (7) 1
2
E
[
‖s(Xt)− SJ,t(X0,Xt)‖2

] asymptotic
expansion 7 O(1)

Varhadan (8) 1
2
E
[
‖s(Xt)− exp−1

Xt
(X0)/t‖2

]
7 3 O(1)

`t|s (DSM) Varhadan (8) 1
2
E
[
‖s(Xt)− exp−1

Xt
(Xs)/(t− s)‖2

]
7 3 O(1)

`imt (ISM)
Deterministic E

[
1
2
‖s(Xt)‖2 + div(s)(Xt)

]
7 7 O(d)

Stochastic E
[
1
2
‖s(Xt)‖2 + ε>∂s(Xt)ε

]
7 7 O(1)

Convergence results in the compact setting We now provide a theoretical analysis of RSGM
under the assumption thatM is compact. The following result ensures that RSGM generates samples
whose distribution is close to the data distribution p0. Let us denote {Yk}n∈{0,...,N} the sequence
generated by Algorithm 2. This result relies on the following assumption, which is satisfied for a
large class of manifoldsM such as the d-dimensional sphere and torus, compact matrix groups and
products of these manifolds.
A1. There exist C,α > 0 such that for any t ∈ (0, 1] and x ∈ M, pt|0(x|x) ≤ Ct−α/2, where
pt|0(·|x0) is the density of the heat kernel, i.e. the density of BMt with initial condition x0

10.
10The diagonal upper-bound is implied by Sobolev inequalities which control of the growth of some functions

by the growth of their gradient. A1 is satisfied in our experiments, see Saloff-Coste (1994); Gross (1992).
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Theorem 4. Assume A1, that p0 is smooth and positive and that there exists M ≥ 0 such that for
any t ∈ [0, T ] and x ∈ M, ‖sθ?(t, x)−∇ log pt(x)‖ ≤ M, with sθ? ∈ C([0, T ] ,X (M)). Then if
T > 1/2, there exists C ≥ 0 independent on T such that

W1(L(YN ), p0) = C(e−λ1T +
√
T/2M + eT γ1/2),

where W1 is the Wasserstein distance of order one on the probability measures onM.

The proof is postponed to App. I. In particular, for any ε > 0, choosing T > 0 large enough, M small
enough (which can be achieved using the universal property of neural networks) and γ small enough,
we get that W1(L(YN ), p0) ≤ ε. This result might seem weaker than the result obtained for Moser
flows in (Rozen et al., 2021, Theorem 3), but we emphasize that our bound takes into account the
time-discretization contrary to Rozen et al. (2021) which considers the continuous-time flow. If we
consider the time-reversed continuous-time SDE then we recover a bound in total variation distance,
see App. I. Note that the upper bound M encompasses both the bias introduced by the use of a neural
network and the bias introduced by the use of an approximation of the score.

5 Related work

In this section we discuss previous work on parametrizing family of distributions for manifold-valued
data. Here, the manifold structure is considered to be prescribed, in contrast with methods that jointly
learn the manifold structure and density (e.g. Brehmer and Cranmer, 2020; Caterini et al., 2021).

Parametric family of distributions. The various parametric families of manifold-valued distribu-
tions that have been proposed can be categorized into three main approaches (Navarro et al., 2017):
wrapping, projecting and conditioning. Wrapped distributions consider a parametric distribution on
Rn that is pushed-forward along a surjective map ψ : Rn →M. Projected distributions are defined
by marginalizing out some distribution along the normal bundle ofM. Conditioning distributions
encompass the von Mises-Fisher and Kent distributions (Fisher, 1953; Kent, 1982). Considering
mixtures of these distributions is key to increase flexibility (Peel et al., 2001; Mardia et al., 2008).

Push-forward of Euclidean normalizing flows. More recently, approaches leveraging the flexibility
of normalizing flows (Papamakarios et al., 2019) have been proposed. Following the wrapping method
described above, these methods parametrize a normalizing flow in Rn before being pushed along an
invertible map ψ : Rn →M. However, to globally represent the manifold, the map ψ needs to be a
homeomorphism, which can only happen ifM is topologically equivalent to Rn, hence limiting the
scope of that approach. One natural choice for this map is the exponential map expx : TxM∼= Rd.
This approach has been taken, for instance, by Falorsi et al. (2019) and Bose et al. (2020), respectively
parametrizing distributions on Lie groups and hyperbolic space.

Neural ODE on manifolds. To avoid artifacts or numerical instabilities due to the manifold em-
bedding, another line of work uses tools from Riemannian geometry to define flows directly on the
manifold of interest (Falorsi and Forré, 2020; Mathieu and Nickel, 2020; Falorsi, 2021). Since these
methods do not require a specific embedding mapping, they are referred as Riemannian. They extend
continuous normalizing flows (CNFs) (Grathwohl et al., 2019) to the manifold setting, by implicity
parametrizing flows as solutions of Ordinary Differential Equations (ODEs). As such, the parametric
flow is a continuous function of time. This approach has recently been extended by Rozen et al.
(2021) introducing Moser flows, whose main appeal being that it circumvents the need to solve an
ODE in the training process. We refer to App. K for an in-depth discussion on the links between our
work and Moser flows.

Optimal transport on manifolds. Another line of work has developed flows on manifolds using
tools from optimal transport. Sei (2013) introduced a flow that is given by fθ : x 7→ expx(∇ψcθ) with
ψcθ a c-convex function and c = d2

M the squared geodesic distance. This approach is motivated by
the fact that the optimal transport map takes such an expression (Ambrosio, 2003). These methods
operate directly on the manifold, similarly to CNFs, yet in contrast they are discrete in time. The
benefits of this approach depend on the specific choice of parametric family of c-convex functions
(Rezende and Racanière, 2021; Cohen et al., 2021), trading-off expressivity with scalability.
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Table 3: Summary of computational complexity (w.r.t. neural network forward and backward passes) for different
methods. d is the manifold dimension, k the number of Monte Carlo batches in Moser flow’s regularizer,N is the
number of steps in the (adaptive) ODE solver, whereas N∗ is the number of steps in the SDE Euler-Maruyama
solver–which can usually be lower than N . Moser flow and RSGM training complexity varies if the Hutchinson
stochastic estimator is used. See Table 2 for score matching losses complexity.

Method Training Likelihood evaluation Sampling

RCNF Solving ODE O(dN) Solving augmented ODE O(dN) Solving ODE O(N)

Moser flow Computing div O(dk) or O(k) Solving augmented ODE O(dN) Solving ODE O(N)

RSGM Score matching O(d) or O(1) Solving augmented ODE O(dN) Solving SDE O(N∗)

6 Experiments

In this section we benchmark the empirical performance of RSGMs along with other manifold-valued
methods introduced in Sec. 5. We also compare to a ‘Stereographic‘ score-based model, introduced
in App. N. First, we assess their modelling capacity on earth and climate science spherical data. Then,
we test the methods scalability with respect to manifold dimensions with a synthetic experiment on
the torus Td. Eventually, we evaluate the models’ regularity and time complexity with a synthetic
SO3(R) target. Experimental details are provided in App. O.

6.1 Earth and climate science datasets on the sphere

We start by evaluating RSGMs on a collection of simple datasets, each containing an empirical
distribution of occurrences of earth and climate science events on the surface of the earth. These
events are: volcanic eruptions (NGDC/WDS), earthquakes (NGDC/WDS), floods (Brakenridge,
2017) and wild fires (EOSDIS, 2020). We compare to previous baseline methods: Riemannian
Continuous Normalizing Flows (Mathieu and Nickel, 2020), Moser Flows (Rozen et al., 2021) and a
mixture of Kent distributions (Peel et al., 2001). Additionally, we consider a standard SGM on the
2D plane followed by the inverse stereographic projection which induces a density on the sphere
(Gemici et al., 2016). We evaluate the log-likelihood of each model, extending to the manifold
setting the likelihood computation techniques of SGMs, see App. D. We observe from Table 4,
that all benchmarked methods have comparable performance when evaluated on these simple tasks
with RSGM performing marginally better on most datasets. However, we empirically notice that
Moser flows are slow to train and additionally that both Moser flows and stereographic SGMs are
computationally expensive to evaluate.

6.2 Synthetic data on tori

We now move to another manifold, that is the torus Td = S1 × · · · × S1, so as to assess the scalability
of the different methods with respect to the dimension d. We consider a wrapped Gaussian target
distribution on Td with a random mean and unit variance. Moser flows’ (Rozen et al., 2021) loss
involves a regularization term which involves an integral over the manifold, approximated by a
Monte Carlo (MC) estimator with uniform proposal. This term regularizes Moser flows towards
probability measures, i.e. with unit volume. We thus expect Moser flows to fail in high-dimension as
the number of samples K required for the MC estimator to be accurate will grows as O(ed), and the
Table 4: Negative log-likelihood scores for each method on the earth and climate science datasets. Bold indicates
best results (up to statistical significance). Means and confidence intervals are computed over 5 different runs.
Novel methods are shown with blue shading.

Method Volcano Earthquake Flood Fire

Mixture of Kent −0.80±0.47 0.33±0.05 0.73±0.07 −1.18±0.06

Riemannian CNF −6.05±0.61 0.14±0.23 1.11±0.19 −0.80±0.54

Moser Flow −4.21±0.17 −0.16±0.06 0.57±0.10 −1.28±0.05

Stereographic Score-Based −3.80±0.27 −0.19±0.05 0.59±0.07 −1.28±0.12

Riemannian Score-Based −4.92±0.25 −0.19±0.07 0.45±0.17 −1.33±0.06

Dataset size 827 6120 4875 12809
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(a) Volcano (b) Earthquake (c) Flood (d) Fire

Figure 2: Trained score-based generative models on earth sciences data. The learned density is colored green-blue.
Blue and red dots represent training and testing datapoints, respectively.

memory required to compute this estimator grows either in O(Kd) for exact divergences or O(K)
for approximated divergences (see Table 3).

In Fig. 3, we observe that RSGMs are able to fit well the target distribution even in high dimension,
with a linear or constant computational cost—depending on the divergence estimator. In contrast,
Moser flows scale poorly with the dimension, to the extent that we are unable to train them for d ≥ 10.
This is due to the combination of the complexity which grows linearly with both the dimension d and
the number of MC samples K, which itself ought to grow exponentially with d—as discussed in the
previous paragraph. This is illustrated by the gap between the ‘Moser’ and ‘ODE’ likelihoods which
increases with the manifold dimension (see left Fig. 3).

6.3 Synthetic data on the Special Orthogonal group

In order to demonstrate the broad range of applicability of our model we now turn to the task of density
estimation on the special orthogonal group SOd(R) = {Q ∈ Md(R) : QQ> = Id, det(Q) = 1}.
We consider the synthetic dataset consisting of samples in SO3(R) from a mixture of wrapped normal
distributions with M components.

We compare RSGMs against Moser flows and a wrapped-exponential baseline inspired by Falorsi
et al. (2019)—where we parametrize a standard Euclidean SGM on so(3) that is then pushed-forward
on SO3(R). RSGMs are trained using the `t|0 (DSM) loss with the Varadhan approximation (see
Table 2). From Table 5 we observe that, RSGMs perform consistently, whether the target distribution
has few or many mixture components M , as opposed to Exp-wrapped SGMs and Moser flows which
only perform well in some range of M . Similarly to Sec. 6.2, we find Moser flows to be much slower
to train due to the large number of Monte Carlo samples needed in the reguralizer (K = 104). We
also note from Table 5 that the number of score network evaluations (NFE) is significantly lower for
RSGMs, and is particularly detrimental for Moser flows (� 103).
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Figure 3: Comparison of Moser flows and RSGMs training speed and performance on the synthetic high-
dimension torus task. Moser flows trained with λmin = 1. We report two likelihoods, the ‘Moser’ closed form
density—not guaranteed to be normalized—and the ‘ODE’ likelihood given by solving an augmented ODE (as
in CNFs) with the vector field induced by the Moser flow density—which is guaranteed to have unit volume.
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(a) Histograms of SO3(R) samples from a target mix-
ture distribution with M = 4 components, represented
via their Euler angles.
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(b) RSGMs are much more robust to hyperparameters
than Exp-wrapped SGMs. The diffusion coefficient is
given by σ(t,Xt) =

√
β(t), β(t) = β0 + (βf − β0)t.

Figure 4: Trained score-based generative models on synthetic SO3(R) data.

Table 5: Test log-likelihood and associated number of function evaluations (NFE) in 103 on the synthetic mixture
distribution with M components on SO3(R). Bold indicates best results (up to statistical significance). Means
and standard deviations are computed over 5 different runs. Novel methods are shown with blue shading.

Method M = 16 M = 32 M = 64

log-likelihood NFE log-likelihood NFE log-likelihood NFE

Moser Flow 0.85±0.03 2.3±0.5 0.17±0.03 2.3±0.9 −0.49±0.02 7.3±1.4

Exp-wrapped SGM 0.87±0.04 0.5±0.1 0.16±0.03 0.5±0.0 −0.58±0.04 0.5±0.0

RSGM 0.89±0.03 0.1±0.0 0.20±0.03 0.1±0.0 −0.49±0.02 0.1±0.0

6.4 Synthetic data on hyperbolic space

Finally we demonstrate RSGM on a non-compact manifold: the two dimensional hyperbolic space
H2, which is defined as the simply connected space of constant negative curvature. We use Langevin
dynamics as the noising process (Eq. (3)) and target a wrapped Gaussian as the invariant distribution.
We again consider a synthetic dataset of samples from a mixture of exp-wrapped normal distribution.
From Fig. 5, we can qualitatively see that both score-based models are able to fit the target distribution.

(a) Target distribution. (b) Exp-wrapped SGM. (c) RSGM.

Figure 5: Samples from different probability distributions on H2 coloured w.r.t their density.

7 Discussion and limitations

In this paper we introduced Riemannian Score-Based Generative Models (RSGMs), a class of deep
generative models that represent target densities supported on manifolds, as the time-reversal of
Langevin dynamics. The main benefits of our method stems from its scalability to high dimensions, its
applicability to a broad class of manifolds due to the diversity of available loss functions, its robustness
and crucially its capacity to model complex datasets. We also provided theoretical guarantees on the
convergence of RSGMs. In future work, we would like explore more generic classes of manifolds,
such a ones with a boundary, along with alternative noising processes. Another promising extension
concerns stochastic control on manifolds and more precisely, deriving efficient algorithms to solve
Schrödinger bridges in the same spirit as De Bortoli et al. (2021) on Euclidean state spaces.
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Supplementary to:
Riemannian Score-Based Generative Modelling

A Organization of the supplementary

In this supplementary we first introduce notation in App. B. We gather the proof of Theorem 1 as well
as additional derivations on score-based generative models and Riemannian manifolds. In App. C,
we recall basics on stochastic Riemannian geometry following Hsu (2002). In App. D, we introduce
an extension to the Riemannian setting of the likelihood computation techniques in diffusion models.
Details about parametric vector fields are given in App. E. In App. F, we recall some basic facts
about eigenvalues and eigenfunctions of the Laplace–Beltrami operator on the d-dimensional sphere
and torus. We present an extension of Algorithm 2 using predictor-corrector schemes in App. G. In
App. H, we prove the extension of the time-reversal formula to manifold in Theorem 1. We prove the
convergence of RSGM, i.e. Theorem 4, in App. I. The proof of Proposition 3 drawing links between
the denoising score matching loss and the implicit score matching loss is presented App. J. We
provide a thorough comparison between our approach and the one of Rozen et al. (2021) in App. K.
We show how our method can be adapted to perform density estimation in App. L. Extensions to
conditional SGM and Schrödinger Bridges are discussed in App. M. In Sec. 3.1, we briefly discuss
the non compact setting. Details on the stereographic SGM are given in App. N. Experimental details
are given in App. O.

B Notation

We refer to App. C for more details about the basic concepts of Riemannian geometry and stochastic
processes. In this section, we merely introduce the notation used in our work. We postpone an
introduction to stochastic processes on manifolds to App. C.2.

In this work we always consider a smooth, connected and complete manifoldM. We focus on the
case of Riemannian manifolds, namely manifolds equipped with a metric g. Metrics g are smooth
scalar product on the manifold allowing us to define the notion of distance on a manifold. We refer to
App. C for a precise definition and a discussion on metrics. Given a smooth map f ∈ C∞(M,R),
the gradient∇f is defined for any f :M→ R, x ∈M, v ∈ TxM, 〈∇f, v〉g = df(v). The distane
dM(x, y) is defined as the infimum of the length of all the curves onM joining x and y. Geodesics
are path defined onM by a second order equation (and a starting point and speed). This second
order equation corresponds to the first order minimization of an energy functional whose minimizers
also minimize the length. In App. C, we introduce the notion of geodesics using parallel transport.
The exponential mapping expx : UM→M with U ⊂ TxM is such that expx(v) = γ(1) with γ(1)
the geodesics with initial condition (x, v) at time t = 1. Finally the volume form is a differentiable
form of same degree as the dimension ofM. SinceM is an orientable Riemannian manifold there is
a natural volume form defined using the metric g, namely ω(x) = |g(x)|1/2 dx1 ∧ . . . dxd. In this
paper, we abuse notation and denote by the volume form this natural volume form.

C Preliminaries on stochastic Riemannian geometry

In this section, we recall some basic facts on Riemannian geometry and stochastic Riemannian
geometry. We follow Hsu (2002); Lee (2018, 2006) and refer to Lee (2010, 2013) for a general
introduction to topological and smooth manifolds. Throughout this sectionM is a d-dimensional
smooth manifold, TM its tangent bundle and T?M it cotangent bundle. We denote C∞(M) the set
of real-valued smooth functions onM and X (M) the set of vector fields onM.

C.1 Tensor field, metric, connection and transport

Tensor field and Riemannian metric For a vector space V let Tk,`(V ) = V ⊗k ⊗ (V ?)⊗` with
k, ` ∈ N. For any k, ` ∈ N we define the space of (k, `)-tensors as Tk,`M = tp∈MTk,`(TpM).
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Note that Γ(M,T0,0M) = C∞(M), X (M) = Γ(M,T1,0M) and that the space of 1-form on
M is given by Γ(M,T0,1M), where Γ(M, V (M)) is a section of a vector bundle V (M) (see
Lee, 2013, Chapter 10). For any k ∈ N, we denote T|k|M = tkj=0Tj,k−jM. M is said to
be a Riemannian manifold if there exists g ∈ Γ(M,T0,2M) such that for any x ∈ M, g(x)
is positive definite. g is called the Riemannian metric of M. Every smooth manifold can be
equipped with a Riemannian metric (see Lee, 2018, Proposition 2.4). In local coordinates we define
G = {gi,j}1≤i,j≤d = {g(Xi, Xj)}1≤i,j≤d, where {Xi}di=1 is a basis of the tangent space. In what
follows we consider that M is equipped with a metric g and for any X,Y ∈ X (M) we denote
〈X,Y 〉M = g(X,Y ).

Connection A connection ∇ is a mapping which allows one to differentiate vector fields w.r.t
other vector fields. ∇ is a linear map ∇ : X (M) × X (M) → X (M). In addition, we assume
that i) for any f ∈ C∞(M), X,Y ∈ X (M), ∇fX(Y ) = f∇XY , ii) for any f ∈ C∞(M),
X,Y ∈ X (M),∇X(fY ) = f∇XY +X(f)Y . Given a system of local coordinates, the Christoffel
symbols {Γki,j}1≤i,j,k≤d are given for any i, j ∈ {1, . . . , d} by ∇XiXj =

∑d
k=1 Γki,jXk. We

also define the Levi–Civita connection ∇ by considering the additional two conditions: i) ∇ is
torsion-free, i.e. for any X,Y ∈ X (M) we have ∇XY −∇YX = [X,Y ], where [X,Y ] is the Lie
bracket between X and Y , ii) ∇ is compatible with the metric g, i.e. for any X,Y, Z ∈ X (M),
X(〈Y,Z〉M) = 〈∇XY,Z〉M + 〈Y,∇XZ〉M. We recall that the Levi–Civita connection is uniquely
defined since for any X,Y, Z ∈ X (M) we have

2〈∇XY, Z〉M = X(〈Y,Z〉M) + Y (〈Z,X〉M)− Z(〈X,Y 〉M)

+ 〈[X,Y ], Z〉M − 〈[Z,X], Y 〉M − 〈[Y,Z], X〉M.
In this case, the Christoffel symbols are given for any i, j, k ∈ {1, . . . , d} by

Γki,j = 1
2

∑d
m=1 g

km(∂jgm,i + ∂igm,j − ∂mgi,j),

where {gi,j}1≤i,j≤d = G−1. Note that ifM is Euclidean then for any i, j, k ∈ {1, . . . , d}, Γki,j = 0.
We also extend the connection so that for any X ∈ X (M) and f ∈ C∞(M) we have∇Xf = X(f).
In particular, we have that ∇Xf ∈ C∞(M). In addition, we extend the connection such that for
any α ∈ Γ(M,T0,1M), X,Y ∈ X (M) we have∇Xα(Y ) = α(∇XY )−X(α(Y )). In particular,
we have that ∇Xα ∈ Γ(M,T1,0M). Note that for any X ∈ X (M) and α, β ∈ T|1|M we
have ∇X(α ⊗ β) = ∇Xα ⊗ β + α ⊗ ∇Xβ. Similarly, we can define recursively ∇Xα for any
α ∈ Γ(M,Tk,`M) with k, ` ∈ N. Such an extension is called a covariant derivative.

Parallel transport, geodesics and exponential mapping Given a connection, we can define the
notion of parallel transport, which transports vector fields along a curve. Let γ : [0, 1] → M be
a smooth curve. We define the covariant derivative along the curve γ by Dγ̇ : X (γ) → X (γ)
similarly to the connection, where X (γ) = Γ(γ([0, 1]),TM). In particular if γ̇ and X ∈ X (γ)
can be extended to X (M) then we define Dγ̇(X) = ∇γ̇X ∈ X (M). In what follows, we denote
D = ∇ for simplicity. We say that X ∈ X (γ) is parallel to γ if for any t ∈ [0, 1], ∇γ̇X(t) = 0. In
local coordinates, let X ∈ X (γ) be given for any t ∈ [0, 1] by X =

∑d
i=1 ai(t)Ei(t) (assuming that

γ([0, 1]) is entirely contained in a local chart), then we have that for any t ∈ [0, 1] and k ∈ {1, . . . , d}

ȧk(t) +
∑d
i,j=1 Γki,j(x(t))ẋi(t)aj(t) = 0. (S1)

A curve γ onM is said to be a geodesics if γ̇ is parallel to γ. Using Eq. (S1) we get that

ẍk(t) +
∑d
i,j=1 Γki,j(x(t))ẋi(t)ẋj(t) = 0.

For more details on geodesics and parallel transport, we refer to Lee (2018, Chapter 4). In addition,
we have that parallel transport provides a linear isomorphism between tangent spaces. Indeed, let
v ∈ TxM and γ : [0, 1] →M with γ(0) = x a smooth curve. Then, there exists a unique vector
field Xv ∈ X (γ) such that Xv(x) = v and Xv is parallel to γ. For any t ∈ [0, 1], we denote
Γt0 : TxM→ Tγ(t)M the linear isomorphism such that Γt0(v) = Xv(γ(t)).

For any x ∈ M and v ∈ TxM we denote γx,v : [0, εx,v] the geodesics (defined on the maximal
interval [0, εx,v]) onM such that γ(0) = x and γ̇(0) = v. We denote Ux = {v ∈ TxM : εx,v ≥ 1}.
Note that 0 ∈ Ux. For any x ∈ M, we define the exponential mapping expx : Ux → M such
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that for any v ∈ Ux, expx(v) = γx,v(1). If for any x ∈ M, Ux = TxM, the manifold is called
geodesically complete. As any connected compact manifold is geodesically complete, there exists a
geodesic between any two points x, y ∈ M (see Lee, 2018, Lemma 6.18). For any x, y ∈ M, we
denote Geox,y the sets of geodesics γ such that γ(0) = x and γ(y) = 1. For any x, y ∈M we denote
Γyx(γ) : TxM→ TyM the linear isomorphism such that for any v ∈ TxM, Γyx(v) = Xv(γ(1)),
where γ ∈ Geox,y. Note that for any x ∈ M there exists Vx ⊂ M such that x ∈ Vx and for any
y ∈ Vx we have that |Geox,y| = 1. In this case, we denote Γyx = Γyx(γ) with γ ∈ Geox,y .

Orthogonal projection We will make repeated use of orthonormal projections on manifolds.
Recall that since M is a closed Riemannian manifold we can use the Nash embedding theorem
(Gunther, 1991). In the rest of this paragraph, we assume thatM is a Riemannian submanifold of
Rp for some p ∈ N such that its metric is induced by the Euclidean metric. In order to define the
projection we introduce

unpp(M) = {x ∈ Rd : there exists a unique ξx such that ‖x− ξx‖ = d(x,M)}.
Let E(M) = int(unpp(M)). By Leobacher and Steinicke (2021, Theorem 1), we haveM⊂ E(M).
We define p̃ : E(M)→M such that for any x ∈ E(M), p̃(x) = ξx. Using Leobacher and Steinicke
(2021, Theorem 2), we have p̃ ∈ C∞(Rp,M) and for any x ∈M, P̃ (x) = dp̃(x) is the orthogonal
projection on TxM. Since Rp is normal andM and E(M)c are closed, there exists F open such
that M ⊂ F ⊂ E(M). Let p ∈ C∞(Rp,Rp) such that for any x ∈ F, p(x) = p̃(x) (given by
Whitney extension theorem for instance). Finally, we define P : Rp → Rp such that for any
x ∈ Rp, P (x) = dp(x). Note that for any x ∈M, P (x) is the orthogonal projection TxM and that
P ∈ C∞(Rp,Rp).

C.2 Stochastic Differential Equations on manifolds

Stratanovitch integral For reasons that will become clear in the next paragraph, it is easier to
define Stochastic Differential Equations (SDEs) on manifolds w.r.t the Stratanovitch integral (Kloeden
and Platen, 2011, Part II, Chapter 3). We consider a filtered probability space (Ω, (Ft)t≥0,P). Let
(Xt)t≥0 and (Yt)t≥0 be two real continuous semimartingales. We define the quadratic covariation
([X,Y]t)t≥0 such that for any t ≥ 0

[X,Y]t = XtYt −X0Y0 −
∫ t

0
XsdYs −

∫ t
0

YsdXs.

We refer to Revuz and Yor (1999, Chapter IV) for more details on semimartingales and quadratic
variations. We denote [X] = [X,X]. In particular, we have that ([X,Y]t)t≥0 is an adapted
continuous process with finite-variation and therefore [[X,Y]] = 0. Let (Xt)t≥0 and (Yt)t≥0 be
two real continuous semimartingales, then we define the Stratanovitch integral as follows for any
t ≥ 0 ∫ t

0
Xs ◦ dYs =

∫ t
0

XsdYs + 1
2 [X,Y]t.

In particular, denoting (Z1
t )t≥0 and (Z2

t )t≥0 the processes such that for any t ≥ 0, Z1
t =

∫ t
0

Xs◦dYs

and Z2
t =

∫ t
0

XsdYs, we have that [Z1] = [Z2]. We refer to Kurtz et al. (1995) for more details
on Stratanovitch integrals. Note that if for any t ≥ 0, Xt =

∫ t
0
f(Xs) ◦ dYs with C1(R,R), then

[X,Y]t =
∫ t

0
f(Xs)f

′(Xs)dYs. Assuming that f ∈ C3(R,R) we have that (Revuz and Yor, 1999,
Chapter IV, Exercise 3.15)

f(Xt) = f(X0) +
∫ t

0
f ′(Xs) ◦ dXs.

The proof relies on the fact that for any t ≥ 0, d[X, f ′(X)]t = f ′′(Xt)d[X]t. This result should
be compared with Itô’s lemma. In particular, Stratanovitch calculus satisfies the ordinary chain
rule making it a useful tool in differential geometry which makes a heavy use of diffeomorphism.
Finally, we have the following correspondence between Stratanovitch and Itô SDEs. Assume that
(Xt)t∈[0,T ] is a strong solution to dXt = b(t,Xt)dt + σ(t,Xt) ◦ dBt, with b ∈ C∞(Rd,Rd) and
σ ∈ C∞(Rd,Rd×d). Then, we have that

dXt = {b(t,Xt) + b̄(Xt)}dt+ σ(t,Xt)dBt, b̄ = (−1/2)[div(σσ>)− σdiv(σ>)]. (S2)

where for any A ∈ C∞(Rd,Rd×d) we have that div(A) ∈ C∞(Rd,Rd) and for any i ∈ {1, . . . , d}
and x ∈ Rd, div(A)i(x) =

∑d
j=1 ∂jAi,j(x). In particular, note that if for x0 ∈ Rd, σ(x0) is an

orthogonal projection, then σ(x0)b̄(x0) = 0.
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SDEs on manifolds We define semimartingales and SDEs on manifold through the lens of their
actions on functions. A continuous M-valued stochastic process (Xt)t≥0 is called a M-valued
semimartingale if for any f ∈ C∞(M) we have that (f(Xt))t≥0 is a real valued semimartingale. Let
` ∈ N, V 1:` = {Vi}`i=1 ∈ X (M)` and Z1:` = {Zi}`i=1 a collection of ` real-valued semimartingales.
A M-valued semimartingale (Xt)t≥0 is said to be the solution of SDE(V 1:`, Z1:`,X0) up to a
stopping τ with X0 aM-valued random variable if for all f ∈ C∞(M) and t ∈ [0, τ ] we have

f(Xt) = f(X0) +
∑`
i=1

∫ t
0
Vi(f)(Xs) ◦ dZis.

Since the previous SDE is defined w.r.t the Stratanovitch integral we have that if (Xt)t≥0 is a
solution of SDE(V 1:`, Z1:`,X0) and Φ : M → N is a diffeomorphism then (Φ(Xt))t≥0 is a
solution of SDE(Φ?V

1:`, Z1:`,Φ(X0)), where Φ? is the pushforward operation (see Hsu, 2002,
Proposition 1.2.4). Because the vector fields {Vi}`i=1 are smooth we have that for any ` ∈ N,
V 1:` = {Vi}`i=1 ∈ X (M)` and Z1:` = {Zi}`i=1 a collection of ` real-valued semimartingales, there
exists a unique solution to SDE(V 1:`, Z1:`,X0) (see Hsu, 2002, Theorem 1.2.9).

C.3 Brownian motion on manifolds

In this section, we introduce the notion of Brownian motion on manifolds. We derive some of its
basic convergence properties and provide alternative definitions (stochastic development, isometric
embedding, random walk limit). These alternative definitions are the basis for our alternative
methodologies to sample from the time-reversal. To simplify our discussion, we assume thatM is a
connected compact orientable Riemannian manifold equipped with the Levi–Civita connection∇.
We denote pmref the Haussdorff measure of the manifold (which coincides with the measure associated
with the Riemannian volume form (see Federer, 2014, Theorem 2.10.10) and pref = pmref/pref(M) the
associated probability measure.

Gradient, divergence and Laplace operators Let f ∈ C∞(M). We define ∇f ∈ X (M) such
that for any X ∈ X (M) we have 〈X,∇f〉M = X(f). Let {Xi}di=1 ∈ X (M)d such that for any
x ∈ M, {Xi(x)}di=1 is an orthonormal basis of TxM. Then, we define div : X (M)→ C∞(M)

(linear) such that for any X ∈ X (M), div(X) =
∑d
i=1〈∇XiX,Xi〉M. The following Stokes

formula (also called divergence theorem, see Lee (2018, p.51)) holds for any f ∈ C∞(M) and
X ∈ X (M),

∫
M

div(X)(x)f(x)dpref(x) = −
∫
M
X(f)(x)dpref(x). Let X =

∑d
i=1 aiXi in

local coordinates. Using the Stokes formula and the definition of the gradient we get that in local
coordinates

∇f =
∑d
i,j=1 g

i,j∂ifXj , div(X) = det(G)−1/2
∑d
i=1 ∂i(det(G)1/2ai).

The Laplace–Beltrami operator is given by ∆M : C∞(M) → C∞(M) and for any
f ∈ C∞(M) by ∆M(f) = div(grad(f)). In local coordinates we obtain ∆M(f) =

det(G)−1/2
∑d
i=1 ∂i(det(G)1/2

∑d
j=1 g

i,j∂jf). Using the Nash isometric embedding theorem
(Gunther, 1991) we will see that ∆M can always be written as a sum of squared operators. However,
this result requires an extrinsic point of view as it relies on the existence of projection operators. In
contrast, if we consider the orthonormal bundle OM, see (Hsu, 2002, Chapter 2), we can define
the Laplace–Bochner operator ∆OM : C∞(OM)→ C∞(OM) as ∆OM =

∑d
i=1H

2
i , where we

recall that for any i ∈ {1, . . . , d}, Hi is the horizontal lift of ei. In this case, ∆OM is a sum of
squared operators and we have that for any f ∈ C∞(M), ∆OM(f ◦ π) = ∆M(f) (see Hsu, 2002,
Proposition 3.1.2). Being able to express the various Laplace operators as a sum of squared operators
is key to express the associated diffusion process as the solution of an SDE.

Alternatives definitions of Brownian motion We are now ready to define a Brownian motion
on the manifoldM. Using the Laplace–Beltrami operator, we can introduce the Brownian motion
through the lens of diffusion processes.

Definition S5 (Brownian motion). Let (BMt )t≥0 be aM-valued semimartingale. (BMt )t≥0 is a
Brownian motion onM if for any f ∈ C∞(M), (Mf

t )t≥0 is a local martingale where for any t ≥ 0

Mf
t = f(BMt )− f(BM0 )− 1

2

∫ t
0

∆Mf(BMs )ds.
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Note that this definition is in accordance with the definition of the Brownian motion as a diffusion
process in the Euclidean space Rd, since in this case ∆M = ∆. A key property of frame bundles
and orthonormal bundles is that any semimartingale onM can be associated to a process on FM (or
OM) and a process on Rd. The proof of the following result can be found in Hsu (2002, Propositions
3.2.1 and 3.2.2).
Proposition S6 (Intrinsic view of Brownian motion). Let (BMt )t≥0 be aM-valued semimartingales.
Then (BMt )t≥0 is a Brownian motion onM if and only on the following conditions hold:

a) The horizontal lift (Ut)t≥0 is a ∆OM/2 diffusion process, i.e. for any f ∈ C∞(OM), we
have that (Mf

t )t≥0 is a local martingale where for any t ≥ 0

Mf
t = f(Ut)− f(U0)− 1

2

∫ t
0

∆OMf(Us)ds.

b) The stochastic antidevelopment of (BMt )t≥0 is a Rd-valued Brownian motion (Bt)t≥0.

In particular the previous proposition provides us with an intrisic way to sample the Brownian motion
on M with initial condition BM0 . First sample (Ut)t≥0 solution of SDE(H1:d,B1:d,U0) with
H1:d = {Hi}di=1 and π(U0) = BM0 and B1:d the Euclidean d-dimensional Brownian motion. Then,
we recover theM-valued Brownian motion (BMt )t≥0 upon letting (BMt )t≥0 = (π(Ut))t≥0.

We now consider an extrinsic approach to the sampling of Brownian motions on M. Using the
Nash embedding theorem (Gunther, 1991), there exists p ∈ N such that without loss of generality
we can assume that M ⊂ Rp. For any x ∈ M, we denote P(x) : Rp → TxM the projection
operator. In addition for any x ∈ M, we denote {Pi(x)}pi=1 = {P(x)ei}pi=1, where {ei}pi=1 is the
canonical basis of Rp. For any i ∈ {1, . . . , p}, we smoothly extend Pi to Rp. In this case, we have
the following proposition (Hsu, 2002, Theorem 3.1.4):
Proposition S7 (Extrinsic view of Brownian motion). For any f ∈ C∞(M) we have that ∆M(f) =∑p
i=1 Pi(Pi(f)). Hence, we have that (BMt )t≥0 solution of SDE({Pi}pi=1,B

1:p,BM0 ) with BM0 a
M-valued random variable and B1:p a Rp-valued Brownian motion.

The second part of this proposition, stems from the fact that any solution of SDE({Vi}`i=1,B
1:`,X0),

where X0 is aM-valued random variable and B1:` a R`-valued Brownian motion is a diffusion
process with generator A such that for any f ∈ C∞(M), A(f) =

∑`
i=1 Vi(Vi(f)). The extrinsic

approach is particularly convenient since the SDE appearing in Proposition S7 can be seen as an SDE
on the Euclidean space Rp.

We finish this paragraph, by investigating the behaviour of the Brownian motion in local coordinates.
For simplicity, we assume here that we have access to a system of global coordinates. In the case where
the coordinates are strictly local then we refer to Ikeda and Watanabe (1989, Chapter 5, Theorem 1)
for a construction of a global solution by patching local solutions. We denote {Xk, Xi,j}1≤i,j,k≤d
such that for any u ∈ FM, {Xk(u), Xi,j(u)}1≤i,j,k≤d is a basis of TuFM, Using properties of the
horizontal lift, see (Hsu, 2002, Chapter 2), we get that (Ut)t≥0 = ({Xk

t ,E
i,j
t }1≤i,j,k≤d) obtained in

Proposition S6 is given in the global coordinates for any i, j, k ∈ {1, . . . , d} by

dXk
t =

∑d
j=1 Ek,j

t ◦ dBk
t , dEi,j

t = −∑d
n=1{

∑d
`,m=1 E`,n

t Em,j
t Γi`,m(Xt)} ◦ dBn

t .

By definition of the Stratanovitch integral we have that for any k ∈ {1, . . . , d}
dXk

t =
∑d
j=1{E

k,j
t dBk

t + 1
2d[Ek,j

t ,Bj
t ]t}.

Let (Mt)t≥0 = ({Mk
t }dk=1)t≥0 such that for any t ≥ 0 and k ∈ {1, . . . , d} Mk

t =∑d
j=1

∫ t
0

Ek,j
t dBk

t . We obtain that dMt = G(Xt)
−1/2dBt for some d-dimensional Brownian

motion (Bt)t≥0, using Lévy’s characterization of Brownian motion. In addition, we have that for any
k, j ∈ {1, . . . , d}

[Ek,j ,Bj ]t = −∑d
`,m=1

∫ t
0

E`,j
t Em,j

t Γk`,m(Xt)dt

Hence, using this result and the fact that
∑d
j=1 E`,j

t Em,j
t = g`,m(Xt), we get that for any k ∈

{1, . . . , d}
dXk

t = − 1
2

∑d
`,m=1 g

`,m(Xt)Γ
k
`,m(Xt)dt+ (G(Xt)

−1/2dBt)
k.

Note that this result could also have been obtained using the expression of the Laplace–Beltrami in
local coordinates.
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Brownian motion and random walks In the previous paragraph we consider three SDEs to obtain
a Brownian motion onM (stochastic development, isometric embedding and local coordinates).
In this section, we summarize results from Jørgensen (1975) establishing the limiting behaviour of
Geodesic Random Walks (GRWs) when the stepsize of the random walk goes to 0. This will be of
particular interest when considering the time-reversal process. We start by defining the geodesic
random walk onM, following Jørgensen (1975, Section 2).

Let {νx}x∈M such that for any x ∈ M, νx : B(TxM) → [0, 1] with νx(TxM) = 1, i.e. for any
x ∈M, νx is a probability measure on TxM. Assume that for any x ∈M,

∫
M ‖v‖3dνx(v) < +∞.

In addition assume that there exists µ(1) ∈ X (M) and µ(2) ∈ X 2(M), where X 2(M) is the section
Γ(M,tx∈ML(TxM)), such that for any x ∈M,

∫
M vdνx(v) = µ(1)(x) and

∫
M v ⊗ vdνx(v) =

µ(2)(x). In addition, we assume that for any x ∈M, Σ(x) = µ(2)(x)− µ(1)(x)⊗ µ(1)(x) is strictly
positive definite and that there exists L ≥ such that for any x, y ∈ M, ‖νx − νy‖TV ≤ LdM(x, y).
Where we have that for any ν1 ∈ P(TxM) and ν2 ∈ P(TyM),

‖νx − νy‖TV = sup{ν1[f ]− Γyx(γ)#ν2[f ] : γ ∈ Geox,y, f ∈ C(TxM)}.
Note that if dM(x, y) ≤ ε then for some ε > 0 we have that |Geox,y| = 1.

Definition S8 (Geodesic random walk). Let X0 be aM-valued random variable. For any γ > 0, we
define (Xγ

t )t≥0 such that Xγ
0 = X0 and for any n ∈ N and t ∈ [0, γ], Xnγ+t = expXnγ

[tγ{µn +

(1/
√
γ)(Vn − µn)}], where (Vn)n∈N is a sequence of random variables in such that for any n ∈ N,

Vn has distribution νXnγ conditionally to Xnγ .

For any γ > 0, the process (Xγ
n)n∈N = (Xγ

nγ)n∈N is called a geodesic random walk. In particular,
for any γ > 0 we denote (Rγ

n)n∈N the sequence of Markov kernels such that for any n ∈ N, x ∈M
and A ∈ B(M) we have that δxR(A) = P(Xγ

n ∈ A), with Xγ
0 = x. The following theorem

establishes that the limiting dynamics of a geodesic random walk is associated with a diffusion
process onM whose coefficients only depends on the properties of ν (see Jørgensen, 1975, Theorem
2.1).

Theorem S9 (Convergence of geodesic random walks). For any t ≥ 0, f ∈ C(M) and x ∈ M
we have that limγ→0 ‖Rdt/γeγ [f ]− Pt[f ]‖∞ = 0, where (Pt)t≥0 is the semi-group associated with
the infinitesimal generator A : C∞(M) → C∞(M) given for any f ∈ C∞(M) by A(f) =
〈µ(1),∇f〉M + 1

2 〈Σ,∇2f〉M.

In particular if µ(1) = 0 and µ(2) = Id then the random walk converges towards a Brownian motion
onM in the sense of the convergence of semi-groups. For any x ∈ M in local coordinates we
have that Φ#νx has zero mean and covariance matrix G(x), where Φ is a local chart around x and
G(x) = (gi,j(x))1≤i,j≤d the coordinates of the metric in that chart.

Convergence of Brownian motion We finish this section with a few considerations regarding the
convergence of the Brownian motion onM. Since we have assumed thatM is compact we have that
there exist (Φk)k∈N an orthonormal basis of −∆M in L2(pref), (λk)k∈N such that for any i, j ∈ N,
i ≤ j, λi ≤ λj and λ0 = 0, Φ0 = 1 and for any k ∈ N, ∆MΦk = −λkΦk. For any t ≥ 0 and
x, y ∈M, pt|0(y|x) =

∑
k∈N e−λktΦk(x)Φk(y) where for any f ∈ C∞ we have

E[f(BM,x
t )] =

∫
M pt|0(x, y)f(y)dpref(y),

where (BM,x
t )t≥0 is the Brownian motion onM with BM,x

0 = x and pref is the probability measure
associated with the Haussdorff measure onM. We also have the following result (see Urakawa, 2006,
Proposition 2.6).

Proposition S10 (Convergence of Brownian motion). For any t > 0, Pt admits a density pt|0 w.r.t
pref and prefPt = pref, i.e. pref is an invariant measure for (Pt)t≥0. In addition, if there existsC,α ≥ 0

such that for any t ∈ (0, 1], pt|0(x|x) ≤ Ct−α/2 then for any p0 ∈ P(M) and for any t ≥ 1/2 we
have

‖p0Pt − pref‖TV ≤ C1/2eλ1/2e−λ1t,

where λ1 is the first non-negative eigenvalue of −∆M in L2(pref) and we recall that (Pt)t≥0 is the
semi-group of the Brownian motion.
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A review on lower bounds on the first positive eigenvalue of the Laplace–Beltrami operator can be
found in (He, 2013). These lower bounds usually depend on the Ricci curvature of the manifold or
its diameter. We conclude this section by noting that in the non-compact case (Li, 1986) establishes
similar estimates in the case of a manifold with non-negative Ricci curvature and maximal volume
growth.

D Likelihood computation

D.1 ODE likelihood computation

Similarly to Song et al. (2021), once the score is learned we can use it in conjunction with an Ordinary
Differential Equation (ODE) solver to compute the likelihood of the model. Let (Φt)t∈[0,T ] be a
family of vector fields. We define (Xt)t∈[0,T ] such that X0 has distribution p0 (the data distribution)
and satisfying dXt = Φt(Xt)dt. Assuming that p0 admits a density w.r.t. pref then for any t ∈ [0, T ],
the distribution of Xt admits a density w.r.t. pref and we denote pt this density. We recall that
d log pt(Xt) = −div(Φt)(Xt)dt, see Mathieu and Nickel (2020, Proposition 2) for instance.

Recall that we consider a Brownian motion on the manifold as a forward process (BMt )t∈[0,T ] with
{pt}t∈[0,T ] the associated family of densities. Thus we have that for any t ∈ [0, T ] and x ∈M

∂tpt(x) = 1
2∆Mpt(x) = div

(
1
2pt∇ log pt

)
(x).

Hence, we can define (Xt)t∈[0,T ] satisfying dXt = − 1
2∇ log pt(Xt)dt such that X0 has distribution

p0. Defining (X̂t)t∈[0,T ] = (XT−t)t∈[0,T ], it follows that X̂0 has distribution L(XT ) and satisfies

dX̂t = 1
2∇ log pT−t(X̂t)dt. (S3)

Finally, we introduce (Yt)t∈[0,T ] satisfying (S3) but such that Y0 ∼ pref. Note that if T ≥ 0 is large
then the two processes (Yt)t∈[0,T ] and (X̂t)t∈[0,T ] are close since L(XT ) is close to pref.

Therefore, using the score network and a manifold ODE solver (as in Mathieu and Nickel, 2020), we
are able to approximately solve the following ODE

d log qt(X̂
θ
t ) = − 1

2div(sθ(T − t, ·))(X̂θ
t )dt,

with qt the density of Yθ
t w.r.t. pref and log q0(Y0) = 0 with dYθ

t = 1
2div(sθ(T − t,Yθ

t ))dt

and Yθ
0 ∼ pref. The likelihood approximation of the model is then given by E[log qT (X̂θ

T )] =∫
M log qT (x)dpdata(x), where (X̂θ

t )t∈[0,T ] = (Xθ
T−t)t∈[0,T ] with dXθ

t = − 1
2div(sθ(t,X

θ
t ))dt and

X0 ∼ pdata. In App. D.2, we highlight that this is not the likelihood of the SDE model.

D.2 Difference between ODE and SDE likelihood computations

In this section, we show that the likelihood computation from Song et al. (2021) does not coincide with
the likelihood computation obtained with the SDE model. We present our findings in the Riemannian
setting but our results can be adapted to the Euclidean setting with arbitrary forward dynamics.
Recall that we consider a Brownian motion on the manifold as a forward process (BMt )t∈[0,T ] with
(pt)t∈[0,T ] the associated family of densities. We have that for any t ∈ [0, T ] and x ∈M

∂tpt(x) = 1
2∆Mpt|0(x) = div( 1

2pt∇ log pt)(x). (S4)

ODE model. In the case of the ODE model, we define (Xt)t∈[0,T ] such that X0 ∼ p0 and satisfies
dXt = − 1

2∇ log pt(Xt)dt. The family of densities (qt)t∈[0,T ] associated with (Xt)t∈[0,T ] also
satisfies (S4). Now consider (X̂t)t∈[0,T ] = (XT−t)t∈[0,T ], this satisfies X̂0 ∼ pT with

dX̂t = 1
2∇ log pT−t(X̂t)dt. (S5)

Finally, we consider (YODE
t )t∈[0,T ] which also satisfies Eq. (S5) and such that YODE

0 ∼ pref.
Denoting (qODE

t )t∈[0,T ] the densities of (YODE
t )t∈[0,T ] w.r.t. pref we have for any t ∈ [0, T ] and

x ∈M
∂tq

ODE
t (x) = −div( 1

2q
ODE
t ∇ log pT−t)(x). (S6)
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SDE model. When sampling we consider a process (YSDE
t )t∈[0,T ] such that YSDE

0 has distribution
pref and whose family of densities (qSDE

t )t∈[0,T ] satisfies for any t ∈ [0, T ] and x ∈M

∂tq
SDE
t (x) = −div(∇ log pT−tq

SDE
t (x))+ 1

2∆Mq
SDE
t (x) = −div(qSDE

t {∇ log pT−t− 1
2∇ log qSDE

t })(x).
(S7)

Hence, Eq. (S6) and Eq. (S7) do not agree, except if qSDE
t = qODE

t = pT−t which is the case if and
only if YSDE

0 and YODE
0 have the same distribution as XT . Note that it is possible to evaluate the

likelihood of the SDE model using that

∂t log qSDE
t (YSDE

t ) =
{
∇ log pT−t(Y

SDE
t )− 1

2∇ log qSDE
t (YSDE

t )
}

dt.

We can use the score approximation sθ(t, x) to approximate ∇ log pt(x) for any t ∈ [0, T ] and
x ∈ M. In order to approximate ∇ log qSDE

t , one can consider another neural network tθ(t, x)
approximating ∇ log qSDE

t (x) for any t ∈ [0, T ] and x ∈ M. This approximation can be obtained
using the implicit score loss presented in Sec. 3.4.

E Parametric family of vector fields

We approximate (∇ log pt)t∈[0,T ] by a family of functions {sθ}θ∈Θ where Θ is a set of parameters
and for any θ ∈ Θ, sθ : [0, T ] → X (M). In this work, we consider several parameterisations of
vector fields:

• Projected vector field. We define sθ(t, x) = projTxM(s̃θ(t, x)) = P (x)s̃θ(t, x) for any t ∈ [0, T ]
and x ∈ M, with s̃θ : Rp × [0, T ] → Rp an ambient vector field and P (x) the orthogonal
projection over TxM at x ∈M . According to Rozen et al. (2021, Lemma 2), then div(sθ)(x, t) =
divE(sθ)(x, t) for any x ∈M, where divE denotes the standard Euclidean divergence.
• Divergence-free vector fields: For any Lie group G, any basis of the Lie algebra g = TeG yields
a global frame. Indeed, let v ∈ g and define the flow Φ : R ×M → M given for any t ∈ R
and x ∈ M by Φvt (x) = x expe(tv). Then defining {Ei}di=1 = {∂tΦvi0 }di=1, where {vi}di=1 is
a basis of g, we get that {Ei}di=1 is a left-invariant global frame. As a result, we have that for
any i ∈ {1, . . . , d}, div(Ei) = 0 (for the classical left invariant metric). This result simplifies the
computation of div(sθ) where sθ(t, x) =

∑d
i=1 s

i
θ(t, x)Ei(x) for any t ∈ [0, T ] and x ∈ M since

we have that div(sθ)(t, x) =
∑d
i=1Ei(s

i
θ)(t, x) +

∑d
i=1 s

i
θ(t, x)div(Ei)(x) =

∑d
i=1 ds

i
θ(Ei)(t, x)

(see Falorsi and Forré, 2020). Note that this approach can be extended to any homogeneous space
(G,H).

• Coordinates vector fields. We define sθ(t, x) =
∑d
i=1 siθ(t, x)Ei(x) for any t ∈ [0, T ] and x ∈

M, with {Ei}di=1 = {∂iϕ(ϕ−1(x))}di=1 the vector fields induced by a choice of local coordinates,
where ϕ is a local parameterization ϕ : U→M and z ∈ U ⊂ Rd. Then the divergence can be com-
puted in these local coordinates div(sθ)(t, ϕ(z)) = |detG|−1/2

∑d
i=1 ∂i{|detG|1/2siθ(t, ϕ(·))}(z).

In the case of the sphere, one recovers the standard divergence in spherical coordinates using this
formula. Note that {Ei}di=1 does not span the tangent bundle except if the manifold is parallelizable.
The sphere is a well-known example of non-parallelizable manifold, as per the hairy ball theorem.

F Eigensystems of the Laplace–Beltrami operator and heat kernels

In this section, we recall the eigenfunctions and eigenvalues of the Laplace–Beltrami operator in
two specific cases: the d-dimensional torus and the d-dimensional sphere. We also highlight that
the heat kernel on compact manifold can be written as an infinite series using the Sturm–Liouville
decomposition.

The case of the torus Let {bi}di=1 be a basis of Rd. We consider the associated lattice on Rd, i.e.
Γ = {∑d

i=1 αibi : {αi}di=1 ∈ Zd}. Finally, the associated d-dimensional torus is defined as TΓ =
Rd/Γ. Denote B = (b1, . . . , bd) ∈ Rd×d. Let {b̄i}di=1 ∈ (Rd)d such that (B−1)> = (b̄1, . . . , b̄d).
We define Γ? = {∑d

i=1 αib̄i : {αi}di=1 ∈ Zd}, the dual lattice. Note that for any x ∈ Γ and y ∈ Γ?

we have that 〈x, y〉 ∈ Z and that if {bi}di=1 is an orthonormal basis then Γ = Γ?. The torus Rd/Γ is
a (flat) compact Riemannian manifold. The set of eigenvalues of the Laplace–Beltrami operator is
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Figure S1: Slice of heat kernel pt|0(xt|x0) on S2 for different approximations.

given by {−4π2‖y‖2 : y ∈ Γ?}. The eigenfunctions of the Laplace–Beltrami operator are given by
{x 7→ sin(2π〈x, y〉) : y ∈ Γ?} and {x 7→ cos(2π〈x, y〉) : y ∈ Γ?}.

The case of the sphere Next, we investigate the case of the d-dimensional sphere (see Saloff-Coste,
1994). The set of eigenvalues of the Laplace–Beltrami operator is given by {−k(k+d−1) : k ∈ N}.
Note that λk = k(k + d − 1) has multiplicity dk = (k + d − 2)!/{(d − 1)!k}(2k + d − 1).
The eigenfunctions of the Laplace–Beltrami operator are known as the spherical harmonics and
can be defined in terms of Legendre polynomials. When investigating the heat kernel on the d-
dimensional sphere, we are interested in the product (x, y) 7→∑

φ∈Φn
φ(x)φ(y), where Φn is the set

of eigenfunctions associated with the eigenvalue λn for n ∈ N. This function can be described using
the Gegenbauer polynomials (see Atkinson and Han, 2012, Theorem 2.9). More precisely, we have
that for any n ∈ N and x, y ∈ Sd

Gn(x, y) =
∑
φ∈Φn

φ(x)φ(y)

= n!Γ((d− 1)/2)
∑bn/2c
k=0 (−1)k(1− 〈x, y〉2)〈x, y〉n−2k/(4kk!(n− 2k)!Γ(k + (d− 1)/2)),

where here Γ : R+ → R is given for any v > 0 by Γ(v) =
∫ +∞

0
tv−1e−tdt. In the special case

where d = 1, then the heat kernel coincide with the wrapped Gaussian density and can be easily
evaluated.

Heat kernel on compact Riemannian manifolds. We recall that in the case of compact manifolds
the heat kernel is given by the Sturm–Liouville decomposition Chavel (1984) given for any t > 0 and
x, y ∈M by

pt|0(y|x) =
∑
j∈N e−λjtφj(x)φj(y), (S8)

where the convergence occurs in L2(pref⊗pref), (λj)j∈N and (φj)j∈N are the eigenvalues, respectively
the eigenvectors, of −∆M in L2(pref) (see Saloff-Coste, 1994, Section 2). When the eigenvalues
and eigenvectors are known, we approximate the logarithmic gradient of pt|0 by truncating the sum
in (S8) with J ∈ N terms. Another possibility to approximate ∇ log pt|0 is to rely on the so-called
Varadhan approximation, see Sec. 3.4, which is valid for small t > 0 . Fig. S1 illustrates these
different approximations of the heat kernel and Table 1 compares the different loss functions.

Table 1: Riemannian score matching losses.

Loss Approximation Loss function Unbiased Consistent Variance

`t|0 (DSM)
Truncation (7) 1

2
E
[
‖s(Xt)− SJ,t(X0,Xt)‖2

]
7 3(J →∞) 0

Varhadan (8) 1
2
E
[
‖s(Xt)− logXt

(X0)/t‖2
]

7 3(t→ 0) 0

`t|s (DSM) Varhadan (8) 1
2
E
[
‖s(Xt)− logXt

(Xs)/(t− s)‖2
]

7 3(t→ s) 0

`imt (ISM)
Deterministic E

[
1
2
‖s(Xt)‖2 + div(s)(Xt)

]
3 3 0

Stochastic E
[
1
2
‖s(Xt)‖2 + ε>∂s(Xt)ε

]
3 3 2‖∂s‖F
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G Predictor-corrector schemes

In this section, we present a predictor-corrector scheme, adapting the techniques of Allgower and
Georg (2012); Song et al. (2021) to the manifold setting. Changes between Algorithm 1, Algorithm 2
and Algorithm 3, Algorithm 4 are highlighted in red. Let t ∈ [0, T ], γ > 0 and k = bt/γc. We
remark that Algorithm 3 (Line 11) corresponds to the recursion associated with (Xt,γ

j )j∈N such that
for any j ∈ N

Xt,γ
j+1 = expXt,γj

[γ2∇ log pT−kγ(Xt,γ
j ) +

√
γZj+1],

where {Z̄j}j∈N is a family of i.i.d Gaussian random variables with zero mean and identity covariances
matrix in Rp and for any j ∈ N, Zj = P(Xt,γ

j )Z̄j . Note that here k ∈ {0, N − 1} is fixed. Letting
γ → 0, we obtain that under mild assumptions, see (Kuwada, 2012, Theorem 3.1), (Xt,γ

j )j∈N
converges to (Xt

s)s≥0 such that

dXt
s = 1

2∇ log pT−t(X
t
s)ds+ dBMt .

We have that pT−t is the invariant measure of (Xt
s)s≥0. Hence, the role of the corrector step is to

project the distribution back onto pT−t for all times t ∈ [0, T ], see Fig. S2.

pdata

L(Xγ
0 ) = pT

L(Xγ
1/2)

L(Xγ
1 )

L(Xγ
3/2)

L(Xγ
2 )

Figure S2: Illustration of the effect of the corrector step on RSGM. The black line corresponds to the dynamics
of the noising process (pt)t∈[0,T ]. The green dashed lines correspond to the predictor step (going backward in
time) and the red dashed lines correspond to the corrector step (projecting back onto the initial dynamics). Note
that L(Xγ

1 ) ≈ pT−γ and L(Xγ
2 ) ≈ pT−2γ .

H Time-reversal formula: extension to compact Riemannian manifolds

In this section, we provide the proof of Theorem 1. The proof follows the arguments of Cattiaux
et al. (2021, Theorem 4.9). We could have also applied the abstract results of Cattiaux et al. (2021,
Theorem 5.7) to obtain our results. Note that the time-reversal on manifold could also be obtained by
readily extending arguments from Haussmann and Pardoux (1986), however the entropic conditions
found by Cattiaux et al. (2021) are more natural when it comes to the study of the Schrödinger
Bridge problem. For the interested reader we provide an informal derivation of the time-reversal
formula obtained by Haussmann and Pardoux (1986) in App. H.1. The proof of Theorem 1 is given
in App. H.2. Finally, we emphasize that García-Zelada and Huguet (2021) have developed a Girsanov
theory for stochastic processes defined on compact manifolds with boundary in order to study the
Brenier-Schrödinger problem.
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Algorithm 3 GRW-c (Geodesic Random Walk with corrector)
Require: T,N,Xγ

0 , b, σ,P
1: γ = T/N . Step-size
2: for k ∈ {0, . . . , N − 1} do
3: /// PREDICTOR STEP
4: Z̄k+1/2 ∼ N(0, Ip) . Standard Gaussian in ambient space Rp

5: Zk+1/2 = P(Xγ
k )Z̄k+1/2 . Projection in the tangent space TxM

6: Wk+1/2 = γb(kγ,Xγ
k ) +

√
γσ(kγ,Xγ

k )Zk+1/2 . Euler–Maruyama step on tangent space
7: Xγ

k+1/2 = expXγ
k

[Wk+1/2] . Geodesic projection ontoM
8: /// CORRECTOR STEP
9: Z̄k+1 ∼ N(0, Ip) . Standard Gaussian in ambient space Rp

10: Zk+1 = P(Xγ
k+1/2)Z̄k+1 . Projection in the tangent space TxM

11: Wk+1 = γ
2
b(kγ,Xγ

k+1/2) +
√
γσ(kγ,Xγ

k+1/2)Zk+1 . Euler–Maruyama step on tangent space
12: Xγ

k+1 = expXγ
k+1/2

[Wk+1] . Geodesic projection ontoM
13: end for
14: return {Xγ

k }
N
k=0

Algorithm 4 RSGM-c (Riemannian Score-Based Generative Model with corrector)

Require: ε, T,N, {Xm
0 }Mm=1, loss, s, θ0, Niter, pref,P

1: /// TRAINING ///
2: for n ∈ {0, . . . , Niter − 1} do
3: X0 ∼ (1/M)

∑M
m=1 δXm0 . Random mini-batch from dataset

4: t ∼ U([ε, T ]) . Uniform sampling between ε and T
5: Xt = GRW(t,N,X0, 0, Id,P) . Approximate forward diffusion with Algorithm 1
6: `(θn) = `t(T,N,X0,Xt, loss, sθn) . Compute score matching loss from Table 2
7: θn+1 = optimizer_update(θn, `(θn)) . ADAM optimizer step
8: end for
9: θ? = θNepoch

10: /// SAMPLING ///
11: Y0 ∼ pref . Sample from uniform distribution
12: b?θ(t, x) = sθ?(T − t, x) for any t ∈ [0, T ], x ∈M . Reverse process drift
13: {Yk}Nk=0 = GRW-c(T,N, Y0, bθ? , Id,P) . Approximate reverse diffusion with Algorithm 3
14: return θ?, {Yk}Nk=0

H.1 Informal derivation

In this section, we provide a non-rigorous derivation of Theorem 1 following the approach of
Haussmann and Pardoux (1986). Let (Xt)t∈[0,T ] be a continuous process such that for any f ∈
C2(M) we have that (MX,f

t )t∈[0,T ] is a X-martingale where for any t ∈ [0, T ]

MX,f
t = f(Xt)−

∫ t
0
{〈b(Xs),∇f(Xs)〉+ 1

2∆Mf(Xs)}ds. (S9)

Let (Yt)t∈[0,T ] = (XT−t)t∈[0,T ]. Our goal is to show that for any f ∈ C2(M), (MY,f
t )t∈[0,T ] is a

Y-martingale where for any t ∈ [0, T ]

MY,f
t = f(Yt)−

∫ t
0
{〈−b(Ys) +∇ log pT−s(Ys),∇f(Ys)〉+ 1

2∆Mf(Ys)}ds.
Note that here we implicitly assume that for any t ∈ [0, T ], Xt admits a smooth positive density
w.r.t. pref denoted pt. In other words, we want to show that for any g ∈ C2(M) and s, t ∈ [0, T ] with
t ≥ s we have

E[g(Ys)(f(Yt)− f(Ys))] (S10)

= E[g(Ys)
∫ t
s
{〈−b(Yu) +∇ log pT−u(Yu),∇f(Yu)〉+ 1

2∆Mf(Yu)}du].

We introduce the infinitesimal generator A : C2(M) → C(M) given for any f ∈ C2(M) and
x ∈M by

A(f)(x) = 〈b(x),∇f(x)〉+ 1
2∆Mf(x).

Similarly, we introduce the infinitesimal generator Ã : [0, T ] × C2(M) → C(M) given for any
f ∈ C2(M), t ∈ [0, T ] and x ∈M by

Ã(t, f)(x) = 〈−b(x) +∇ log pT−t(x),∇f(x)〉+ 1
2∆Mf(x).
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With these notations, (S11) can be written as follows: we want to show that for any g ∈ C2(M) and
s, t ∈ [0, T ] with t ≥ s we have

E[g(Ys)(f(Yt)− f(Ys))] = E[g(Ys)
∫ t
s
Ã(u,Yu)du]. (S11)

The rest of this section follows the first part of the proof of Haussmann and Pardoux (1986, Theorem
2.1). Let t, s ∈ [0, T ] with t ≥ s. We have

E[g(Ys)(f(Yt)− f(Ys))] = E[g(XT−s)(f(XT−t)− f(XT−t))]

= E[E[g(XT−s)|XT−t]f(XT−t)]− E[g(XT−s)f(XT−s)]

= E[v(T − t,XT−t)f(XT−t)]− E[v(T − s,XT−s)f(XT−s)],
(S12)

with v : [0, T − s] × M → R given for any u ∈ [0, T − s] and x ∈ M by v(u, x) =
E[g(XT−s)|Xu = x]. We have that v satisfies the backward Kolmogorov equation, i.e. we have for
any u ∈ [0, T − s] and x ∈M

∂uv(u, x) = −Av(u, x). (S13)

Note that it is not trivial to show that v is regular enough to satisfy the backward Kolmogorov equation.
In this informal derivation, we assume that v is regular enough and will provide a different rigorous
proof of the time-reversal formula in App. H.2. However, note that it is possible to show that v indeed
satisfies the backward Kolmogorov equation by adapting arguments from Haussmann and Pardoux
(1986) to the manifold framework.

Let h : [0, T − s] ×M → R given for any u ∈ [0, T − s] and x ∈ M by h(u, x) = v(u, x)f(x).
Using (S13), we have for any u ∈ [0, T − s] and x ∈M
∂uh(u, x) +Ah(u, x) = f(x)∂uv(u, x) + f(x)Av(u, x) + v(u, x)Af(x) + 〈∇f(x),∇v(u, x)〉

= v(u, x)Af(x) + 〈∇f(x),∇v(u, x)〉. (S14)

In addition, using the divergence theorem (see Lee, 2018, p.51), we have for any u ∈ [0, T − s]
E[〈∇f(Xu),∇v(u,Xu)〉] =

∫
M〈∇f(xu),∇v(u, xu)pu(xu)〉dpref(xu)

= −
∫
M v(u, xu)div(pu∇f)(xu)dpref(xu)

= −
∫
M v(u, xu)∆Mf(xu)pu(xu)dpref(xu)

−
∫
M v(u, xu)〈∇f(xu),∇ log pu(xu)〉pu(xu)dpref(xu)

= −E[v(u,Xu)∆Mf(Xu)]− E[v(u,Xu)〈∇f(Xu),∇ log pu(Xu)〉].
Therefore, using this result and (S14) we get that for any u ∈ [0, T − s]
E[∂uh(u,Xu) +Ah(u,Xu)] = E[v(u,Xu){〈b(Xu)−∇ log pu(Xu),∇f(Xu)〉 − 1

2∆Mf(Xu)}]
= −E[v(u,Xu)Ã(T − u, f)(Xu)].

Combining this result and (S9) and that for any u ∈ [0, T − s] and x ∈ M, v(u, x) =
E[g(XT−s)|Xu = x] we get

E[v(T − t,XT−t)f(XT−t)]− E[v(T − s,XT−s)f(XT−s)]

= E[h(T − t,XT−t)− h(T − s,XT−s)]

=
∫ T−s
T−t E[v(u,Xu)Ã(T − u,Xu)]du

= E[g(XT−s)
∫ T−s
T−t Ã(T − u,Xu)du].

Using this result, (S12) and the change of variable u 7→ T − u we obtain

E[g(Ys)(f(Yt)− f(Ys))] = E[g(XT−s)
∫ T−s
T−t Ã(T − u,Xu)du] = E[g(Ys)

∫ t
s
Ã(u,Yu)du].

Hence, (S11) holds and we have proved Theorem 1. Again, we emphasize that in order to make the
proof completely rigourous one needs to derive regularity properties of v.
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H.2 Proof of Theorem 1

In this section, we follow another approach to prove the time-reversal formula. We are going to use
the integration by part formula of Cattiaux et al. (2021, Theorem 3.17) in a similar spirit as Cattiaux
et al. (2021, Theorem 4.9) in the Euclidean setting. In order to adapt arguments from Cattiaux
et al. (2021) to our Riemannian setting, we use the Nash embedding theorem in order to embed our
processes in a Euclidean space and leverage tools from Girsanov theory. The rest of the section is
organized as follows. First in App. H.2.1, we recall basic properties of infinitesimal generators and
recall the integration by part formula of Cattiaux et al. (2021, Theorem 3.17). Then in App. H.2.2, we
extend some Girsanov theory to compact Riemannian manifolds using the Nash embedding theorem.
We conclude the proof in App. H.2.3.

H.2.1 Diffusion processes and integration by part formula

In this section, we state a simplified version of Cattiaux et al. (2021, Theorem 3.17) for Markov
continuous path (probability) measure on Polish spaces. Let (X,X ) be a Polish space. We say that P
is a path measure if P ∈ P(C([0, T ] ,X)). Let (Xt)t∈[0,T ] with distribution P. We denote (Ft)t∈[0,T ]

the filtration such that for any t ∈ [0, T ], Ft = σ(Xs, s ∈ [0, t]). Let (Mt)t∈[0,T ] be a Polish-valued
stochastic process. We say that (Mt)t∈[0,T ] is a P-local martingale if it is a local martingale w.r.t.
the filtration (Ft)t∈[0,T ]. A function u : [0, T ]× X→ R is said to be in the domain of the extended
generator of P if there exists a process (ĀPu(t,X[0,t]))t∈[0,T ] such that:

(a) (ĀPu(t,X[0,t]))t∈[0,T ] is adapted w.r.t. (Ft)t∈[0,T ].

(b)
∫ T

0
|ĀPu(t,X[0,t])|dt < +∞, P-a.s.

(c) The process (Mt)t∈[0,T ] is a P-local martingale, where for any t ∈ [0, T ]

Mt = u(t,Xt)− u(0,X0)−
∫ t

0
ĀPu(s,X[0,s])ds.

The domain of the extended generator is denoted dom(ĀP). We say that (u, v) with u, v : [0, T ]×
X → R is in the domain of the carré du champ if u, v, uv ∈ dom(ĀP). In this case, we define the
carré du champ ῩP as

ῩP(u, v) = ĀP(uv)− ĀP(u)v − ĀP(v)u.

Note that if X = M is a Riemannian manifold, C2(M) ⊂ dom(ĀP) and for any u ∈ C2(M)
ĀP(u) = 〈∇u,X〉+ 1

2∆Mu with X ∈ Γ(TM) then we have that C2(M)× C2(M) ⊂ dom(ῩP)

and for any u, v ∈ C2(M), ῩP(u, v) = 〈∇u,∇v〉. Assume that there exists UP ⊂ dom(ĀP)∩Cb(X)
such that UP is an algebra. We denote UP,2 such that

UP,2 = {u ∈ UP : ĀPu ∈ L2(P), ῩP(u, u) ∈ L1(P)}.
Finally we denote R(P) the time-reverse path measure, i.e. for any A ∈ B(C([0, T ] ,X)) we have
R(P)(A) = P(R(A)), where R(A) = {t 7→ ωT−t : ω ∈ A}. In what follows, we assume P is
Markov. It is well-known, see (Léonard et al., 2014, Theorem 1.2) for instance, that in this case
R(P) is also Markov. In addition, since P is Markov, for any u ∈ dom(ĀP) and t ∈ [0, T ] there
exists AP such that ĀPu(t,X[0,t]) = APu(t,Xt) with APu : [0, T ]× X→ R. Similarly, we define
ΥP(u, v) : [0, T ]× X→ R from ῩP(u, v).

We are now ready to state the integration by part formula, (Cattiaux et al., 2021, Theorem 3.17).

Theorem S11. Let u, v ∈ UP,2. The following hold:

(a) If u ∈ dom(AR(P)) and AR(P)u ∈ L1(P) then for almost any t ∈ [0, T ]

E[{APu(t,Xt) +AR(P)u(T − t,Xt)}v(Xt) + ΥP(u, u)(t,Xt)] = 0.

(b) If the following hold:

i) ΥP(u, v) ∈ C([0, T ]× X,R).
ii) U2,P determines the weak convergence of Borel measures.
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iii) µ defines a finite measure on [0, T ]× X where for any ω ∈ Ū2,P we have

µ[ω] = E[
∫ T

0
ΥP(u, ωt)(t,Xt)dt],

where Ū2,P = {ω ∈ C([0, T ]× X,R) : ω(t, ·) ∈ U2,P for any t ∈ [0, T ]}.
Then u ∈ dom(AR(P)) and AR(P)u ∈ L1(P).

Note that this theorem is a simplified version of Cattiaux et al. (2021, Theorem 3.17) where we restrict
ourselves to the case of Markov path measures. In what follows, we wish to apply Theorem S11 to
diffusion processes on manifolds. To do so, we will verify that under a finite entropy assumption,
the conditions u ∈ dom(AR(P)) and AR(P)u ∈ L1(P) are fullfilled for a class of regular functions u.
These integrability results are obtained using Girsanov theory.

H.2.2 Girsanov theory on compact Riemannian manifolds

In this section, we will consider two types of martingale problems: one on Euclidean spaces and one
on the compact Riemannian manifoldM. Let P ∈ P(C([0, T ] ,Rp)). We say that P satisfies the
(Euclidean) martingale problem with infinitesimal generator A : [0, T ]× C2(Rp)× Rp → R if for
any u ∈ C2

c(Rp), (Mt)t∈[0,T ] is a P-martingale where for any t ∈ [0, T ] we have

Mt = M0 +
∫ t

0
A(t, u)(Xs)ds,

where (Xt)t∈[0,T ] has distribution P and
∫ T

0
|A(t, u)(Xs)dt| < +∞, P-a.s. Let P ∈

P(C([0, T ] ,M)). We say that P satisfies the (Riemannian) martingale problem with infinitesi-
mal generator Ã : [0, T ]×C2(M)×M→ R if for any u ∈ C2(M), (Mt)t∈[0,T ] is a P-martingale
where for any t ∈ [0, T ] we have

Mt = M0 +
∫ t

0
Ã(t, u)(Xs)ds,

where (Xt)t∈[0,T ] has distribution P and
∫ T

0
|Ã(t, u)(Xs)dt| < +∞, P-a.s. We now prove the

following theorem.
Proposition S12. Let Q be the path measure of a Brownian motion on M. Let P be a Markov
path measure on C([0, T ] ,M) such that KL (P|Q) < +∞. Then there exists β such that for any
t ∈ [0, T ] and x ∈ M, β(t, x) ∈ TxM and we have that P satisfies the martingale problem with
infinitesimal generator A where for any t ∈ [0, T ], u ∈ C2(M) and x ∈M we have

A(t, u)(x) = 〈β(t, x),∇u(x)〉+ 1
2∆Mu(x).

In addition, we have that

KL (P|Q) = KL (P0|Q0) + 1
2

∫ T
0
E[‖β(t,Xt)‖2]dt,

where (Xt)t∈[0,T ] has distribution P.

Proof. First, we extend (BMt )t∈[0,T ] to Rp using the Nash embedding theorem (see Gunther, 1991).
(BMt )t∈[0,T ] can be seen as a process on Rp (for some p ∈ N) which satisfies in a weak sense

dBMt =
∑p
i=1 Pi(B

M
t ) ◦ dBi

t = P (BMt ) ◦ dBt,

where (Bt)t∈[0,T ] is a p-dimensional Brownian motion and P ∈ C∞(Rp,Rp×p) is such that for
any x ∈ M, P(x) is the projection onto TxM and for any i ∈ {1, . . . , p}, Pi ∈ C∞(Rp,Rp) with
Pi = Pei where {ej}pj=1 is the canonical basis of Rp. We refer to App. C.1 for more details on the
projection operator and its extension to Rp. Using the link between Stratanovitch and Itô integral,
there exists b̄ ∈ C∞(Rp,Rp) such that (BMt )t∈[0,T ] can be seen as a process on Rp which satisfies
in a weak sense

dBMt = b̄(BMt )dt+ P(BMt )dBt,

where b̄ is given in (S2) and satisfies Pb̄(x) = 0 for any x ∈M, see the remark following (S2). For
any u, v ∈ C2

c(M), we consider ū, v̄ extensions to C2
c(Rp) and we have for any s, t ∈ [0, T ]

E[v̄(BMs )
∫ t
s

1
2∆Mu(BMu )du]

= E[v̄(BMs )
∫ t
s
{〈∇ū(BMw ), b̄(BMw )〉+ 1

2 〈P(BMw ),∇2ū(BMw )〉}dw].
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In particular, we get that for any x ∈M, ∆Mu(x) = 2〈∇ū(x), b̄(x)〉+ 〈P(x),∇2ū(x)〉. Note that
(BMt )t∈[0,T ] (seen as a process on Rp) satisfies the condition (U) in Léonard (2012b), i.e. uniqueness
of the trajectories given an initial condition. Therefore applying (Léonard, 2012b, Theorem 2.1),
(Cattiaux et al., 2021, Claim 4.5), there exists β̄ : [0, T ]× Rp → Rp such that

KL (P|Q) = KL (P0|Q0) + 1
2

∫ T
0
E[‖P(Xt)β̄(t,Xt)‖2]dt. (S15)

In addition, P (seen as a process on Rp) satisfies a martingale problem with infinitesimal generator
Ā : [0, T ]× C2

c(Rp)× Rp → R such that for any t ∈ [0, T ], ū ∈ C2
c(Rp) and x ∈ Rp

Ā(t, ū)(x) = 〈b̄(x) + P(x)β̄(t, x),∇ū(x)〉+ 1
2 〈P(x),∇2ū(x)〉.

Let β : [0, T ] ×M such that for any t ∈ [0, T ] and x ∈ M we have β(t, x) = P(x)β̄(t, x). In
particular, we have that for any x ∈M, β(t, x) ∈ TxM. Let u ∈ C2

c(M) and consider an extension
ū to C2

c(Rp). For any t ∈ [0, T ] and x ∈M we have

Ā(t, ū)(x) = 〈b̄(x) + P(x)β̄(t, x),∇ū(x)〉+ 1
2 〈P(x),∇2ū(x)〉

= 〈β(t, x),∇ū(x)〉+ 1
2∆Mu(x)

= 〈β(t, x),∇u(x)〉+ 1
2∆Mu(x).

In particular, we have that P (seen as a process onM) satisfies a martingale problem with infinitesimal
generator A : [0, T ]× C2

c(M)×M→ R such that for any t ∈ [0, T ], u ∈ C2(Rp) and x ∈M
A(t, ū)(x) = 〈β(t, x),∇u(x)〉+ 1

2∆Mu(x).

In addition, rewriting (S16) we have

KL (P|Q) = KL (P0|Q0) + 1
2

∫ T
0
E[‖β(t,Xt)‖2]dt, (S16)

which concludes the proof.

We also derive the following useful lemma, which will be used in the proof of convergence of RSGM.
Corollary S13. Assume A1. Let P1,P2 be a Markov path measure on C([0, T ] ,M) with P1

0 = P2
0. In

addition, assume that there exist b1, b2 ∈ C∞([0, T ] ,X (M)) such that (X1
t )t∈[0,T ] and (X2

t )t∈[0,T ]

are associated to P1 and P2 respectively and satisfy weakly dXi
t = b1(t,Xi

t)dt+ dBt for i ∈ {1, 2}.
Then, we have that

KL(P1|P2) = 1
2

∫ T
0
E[‖b1(t,X1

t )− b2(t,X1
t )‖2]dt.

Proof. Upon, using the Nash embedding theorem (see Gunther, 1991), we can assume thatM is a sub-
manifold of Rp with p ∈ N such that the Riemannian metric onM is induced by the Euclidean metric
on Rp. SinceM is compact, there exists R > 0 such thatM ⊂ B̄(0, R). Let ϕ ∈ C∞(Rp, [0, 1])
such that for any x ∈ B̄(0, R), ϕ(x) = 1 and for any x ∈ Rp with ‖x‖ ≥ R+ 1, ϕ(x) = 0. Consider
b̄1, b̄2 ∈ C2

c([0, T ]×Rp,Rp) such that for any t ∈ [0, T ] and x ∈M, b̄i(x) = bi(x) with i ∈ {1, 2}.
Consider (X̄i

t)t∈[0,T ] such that for any i ∈ {1, 2}

dX̄i
t = ϕ(X̄i

t){P(X̄i
t)b̄

i(t, X̄i
t) + b̄(X̄t)}dt+ ϕ(X̄i

t)P(X̄i
t)dBt,

where b̄ ∈ C∞(Rp,Rp) is defined in the proof of Proposition S12. Let X̄i
0 ∼ P1

0 for any i ∈ {1, 2}
then for any i ∈ {1, 2}, (X̄i

t)t∈[0,T ] (seen as a process on M) is such that L((X̄i
t)t∈[0,T ]) = Pi.

Indeed, denote {Āit}t∈[0,T ] the generator of (X̄i
t)t∈[0,T ] for any i ∈ {1, 2}. Let f ∈ C∞(M,R) and

f̄ ∈ C∞(Rp,R) an extension to Rp. We have that for any i ∈ {1, 2}, x ∈M and t ∈ [0, T ]

Āit(f̄)(x) = 〈b̄i(t, x) + b̄(x),∇f̄(x)〉+ 1
2 〈P(x),∇2f̄(x)〉

= 〈bi(t, x),∇f(x)〉+ 1
2∆Mf(x).

Hence, for any i ∈ {1, 2}, (X̄i
t)t∈[0,T ] (seen as a process on M) and (Xi

t)t∈[0,T ] have the same
infinitesimal generators. Hence, L((X̄i

t)t∈[0,T ]) = Pi for any i ∈ {1, 2}. For any i ∈ {1, 2}, denote
P̄i = L((X̄i

t)t∈[0,T ]) (seen as a process on Rp). Note that since for any x ∈ Rp with ‖x‖ ≥ R+ 1,
ϕ(x) = 0 we have that (Liptser and Shiryaev, 2001, Equation (7.137)) is satisfied. In addition, since
for any x ∈ Rp with ‖x‖ ≥ R + 1, ϕ(x) + ‖∇ϕ(x)‖ = 0, we have that (Liptser and Shiryaev,
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2001, Equation (4.110), Equation (4.111)) are satisfied. In addition, letting for any t ∈ [0, T ] and
x ∈ Rp, α(t, x) = b̄1(t, x) − b̄2(t, x) = P(x)(b̄1(t, x) − b̄2(t, x)), we have that for any t ∈ [0, T ],
P(x)α(t, x) = P(x)(b̄1(t, x) − b̄2(t, x)). Therefore, we can apply (Liptser and Shiryaev, 2001,
Section 7.6.4) and using that P(x)b̄(x) = 0 for any x ∈ M (see the proof of Proposition S12), we
have that

(dP̄1/dP̄2)((X̄1
t )t∈[0,T ]) = exp [

∫ T
0
〈b̄1(t, X̄1

t )− b̄2(t, X̄1
t ),P(X̄1

t )dX̄1
t 〉

− 1
2

∫ T
0
〈b̄1(t, X̄1

t )− b̄2(t, X̄1
t ),P(X̄1

t )(b̄
1(t, X̄1

t ) + b̄2(t, X̄1
t ))〉dt]

= exp [
∫ T

0
〈b̄1(t, X̄1

t )− b̄2(t, X̄1
t ),P(X̄1

t ){b̄1(t, X̄1
t ) + b̄(X̄1

t )}〉dt
+
∫ T

0
〈b̄1(t, X̄1

t )− b̄2(t, X̄1
t ),P(X̄1

t )dBt〉
− 1

2

∫ T
0
〈b̄1(t, X̄1

t )− b̄2(t, X̄1
t ),P(X̄1

t )(b̄
1(t, X̄1

t ) + b̄2(t, X̄1
t ))〉dt]

= exp[ 1
2

∫ T
0
‖b̄1(t, X̄1

t )− b̄2(t, X̄1
t )‖2dt+

∫ T
0
〈b̄1(t, X̄1

t )− b̄2(t, X̄1
t ),P(X̄1

t )dBt〉].

Therefore, we have that

KL(P̄1|P̄2) = 1
2

∫ T
0
E[‖b̄1(t, X̄1

t )− b̄2(t, X̄1
t )‖2]dt.

Hence, we get

KL(P̄1|P̄2) = 1
2

∫ T
0
E[‖b1(t,X1

t )− b2(t,X1
t )‖2]dt.

which concludes the proof.

Once Proposition S12 is established, we can obtain the following straightforward extension of
Cattiaux et al. (2021, Proposition 4.6).

Proposition S14. Assume A1. Let Q be a Brownian motion with Q0 = pref and P a path measure
on C([0, T ] ,M) such that KL (P|Q) < +∞. Then, there exist βP, βR(P) : [0, T ] ×M → such
that for any t ∈ [0, T ] and x ∈ M, βP(t, x), βR(P)(t, x) ∈ TxM. In addition, we have that P and
R(P) satisfy martingale problems with infinitesimal generator AP, respectively AR(P) where for any
t ∈ [0, T ], u ∈ C2(M) and x ∈M we have

AP(t, u)(x) = 〈βP(t, x),∇u(x)〉+ 1
2∆Mu(x),

AR(P)(t, u)(x) = 〈βR(P)(t, x),∇u(x)〉+ 1
2∆Mu(x).

Finally, we have that∫ T
0
E[‖βP(t,Xt)‖2]dt+

∫ T
0
E[
∥∥βR(P)(t,XT−t)

∥∥2
]dt < +∞,

where (Xt)t∈[0,T ] has distribution P.

Proof. The proof is straightforward upon combining Proposition S12 and the fact that KL (P|Q) =
KL (R(P)|R(Q)) = KL (R(P)|Q) < +∞, using that Q is stationary.

We conclude this section, with the following application of Theorem S11.

Proposition S15. For any u, v ∈ C∞c (M), we have that for almost any t ∈ [0, T ]

E[v(Xt)(〈βP(t,Xt)+βR(P)(T−t,Xt),∇u(Xt)〉+∆Mu(Xt))+〈∇u(Xt),∇v(Xt)〉] = 0. (S17)

Proof. Remark that C2
c(M) ⊂ dom(ΥP) and C2

c(M) ⊂ dom(ΥR(P)). In addition, we have that
for any u, v ∈ C2

c(M), ΥP(u, v) = ΥR(P)(u, v) = 〈u, v〉. Note that by Proposition S14 and
Theorem S11 we have that for any u, v ∈ C∞c (M), (S17) holds.
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H.2.3 Concluding the proof

Using Proposition S15 we can now conclude the proof of Theorem 1. First, remark that we can
identify βP = b. Let u, v ∈ C∞(M), we have that

E[v(Xt)〈b(Xt) + βR(P)(T − t,Xt),∇u(Xt)〉+ ∆Mu(Xt)v(Xt) + 〈∇u(Xt),∇v(Xt)〉] = 0.

Using that for any t ∈ [0, T ], Pt admits a smooth positive density w.r.t. pref denoted pt and the
divergence theorem, see (Lee, 2018, p.51), we have that for any t ∈ [0, T ],∫
M{〈βR(P)(T − t, x),∇u(x)〉+ 〈b(x),∇u(x)〉}v(x)pt(x)dpref(x)

= −
∫
M〈∇u(x)pt(x),∇v(x)〉dpref(x)−

∫
M∆Mu(x)v(x)pt(x)dpref(x)

=
∫
M〈∇ log pt(x),∇u(x)v(x)pt(x)dpref(x).

Therefore, we get that for any t ∈ [0, T ] and x ∈ M, 〈βR(P)(T − t, x),∇u(x)〉 = 〈−b(x) +
∇ log pt(x),∇u(x)〉, which concludes the proof.

I Convergence of RSGM

In this section, we study the convergence of RSGM and prove Theorem 4. We state our main
results in App. I.1 and give discretization bounds following the recent work of Cheng et al. (2022) in
sec:discr-bounds-grw.

I.1 Main results

In this section, we prove Theorem 4. We start by recalling the sequence considered in RSGM. Let
(Yk)k∈{0,...,N} be given by Y0 ∼ pref and for any k ∈ {0, . . . , N − 1}

Yk+1 = expYk [γsθ?(T − nγ, Yk) +
√

2Zk+1],

where {Zk})n∈N is a sequence of independent square integrable random variables with zero mean
and identity covariance matrix. For ease of reading, we restate Theorem 4.

Theorem S16. Assume A1, that p0 is smooth and positive and that there exists M ≥ 0 such that for
any t ∈ [0, T ] and x ∈ M, ‖sθ?(t, x)−∇ log pt(x)‖ ≤ M, with sθ? ∈ C([0, T ] ,X (M)). Then if
T > 1/2, there exists C ≥ 0 independent on T such that

W1(L(YN ), p0) = C(e−λ1T +
√
T/2M + eT γ1/2),

where W1 is the Wasserstein distance of order one on the probability measures onM.

Proof. For any k ∈ {1, . . . , N}, denote Rk such that for any x ∈ Rd, A ∈ B(Rd) and k ∈
{0, . . . , N − 1} we have

E[Rk+1(Yk,A)] = E[1A(Yk+1)].

Define for any k0, k1 ∈ {1, . . . , N} with k1 ≥ k0 Qk0,k1 =
∏k1
`=k0

Rk1+k0−`. Finally, for ease of
notation, we also define for any k ∈ {1, . . . , N}, Qk = Qk+1,N . Note that for any k ∈ {1, . . . , N},
Yk has distribution π∞Qk, where π∞ ∈ P(M) with density w.r.t. the Hausdorff measure pref . Let
P ∈ P(C) be the probability measure associated with (Bt)t∈[0,T ] with B0 ∼ π0, where π0 ∈ P(M)

admits a density w.r.t. the Hausdorff measure given by p0. We denote (Ŷt)t∈[0,T ] the process defined
by the diffusion dŶt = sθ?(T − t, Ŷt)dt + dBt and Ŷ0 ∼ π∞. We also denote P̂R ∈ P(C) the
probability measure associated with (Ŷt)t∈[0,T ]. First note that using that P0 = π0 we have for any
A ∈ B(M)

π0PT |0(PR)T |0(A) = PT (PR)T |0(A) = (PR)0(PR)T |0(A) = (PR)T (A) = π0(A).

Hence we have that
π0 = π0PT |0(PR)T |0. (S18)
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Let ϕ ∈ C(M) with is 1-Lipschitz, i.e. for any x, y ∈ M, |ϕ(x) − ϕ(y)| ≤ d(x, y). SinceM is
compact, we have that ϕ is bounded. Using this result, (S18), the data processing theorem (Kullback,
1997, Theorem 4.1) and Pinsker’s inequality (Bakry et al., 2014, Equation 5.2.2) we have

|E[ϕ(YN )]−
∫
M ϕ(x)p0(x)dµ(x)|

≤ |E[ϕ(B0)]− E[ϕ(YT )]|+ |E[ϕ(ŶT )]− E[ϕ(YT )]||E[ϕ(ŶT )]− E[ϕ(YN )]|
≤ ‖ϕ‖∞‖π0 − π∞(PR)T |0‖TV + |E[ϕ(ŶT )]− E[ϕ(YT )]|+ |E[ϕ(ŶT )]− E[ϕ(YN )]|
≤ ‖ϕ‖∞‖π0PT |0(PR)T |0 − π∞(PR)T |0‖TV + |E[ϕ(ŶT )]− E[ϕ(YT )]|+ |E[ϕ(ŶT )]− E[ϕ(YN )]|
≤ ‖ϕ‖∞‖π0PT |0 − π∞‖TV + |E[ϕ(ŶT )]− E[ϕ(YT )]|+ |E[ϕ(ŶT )]− E[ϕ(YN )]|
≤ ‖ϕ‖∞‖π0PT |0 − π∞‖TV +

√
2‖ϕ‖∞KL1/2(π∞PR|0|π∞P̂R|0) + |E[ϕ(ŶT )]− E[ϕ(YN )]|.

We now control each one of these terms. The first term can be easily controlled using the geometric
ergodicity of the Brownian motion on compact manifolds. The second term can be controlled
using the Girsanov theory on isometrically embedded manifolds. For the last term, we rely on the
convergence of the GRW to its associated diffusion as presented in App. I.2. We now control each
one of these terms.

(a) Using Proposition S10, we have that ‖π0PT |0−π∞‖TV ≤ C1/2eλ1/2e−λ1T where λ1 is the first
positive eigenvalue of −∆M in L2(π∞). Therefore, we get that

‖ϕ‖∞‖π0PT |0 − π∞‖TV ≤ C1/2eλ1/2‖ϕ‖∞e−λ1T .

(b) Recall that we have that PR|0 is associated with the process dYt = ∇ log pT−t(Yt)dt+ dBMt
and that P̂R|0 is associated with the process dŶt = sθ?(T − t, Ŷt)dt+ dBMt . Using Corollary S13
we have that

KL(π∞PR|0|π∞P̂R|0) = 1
2

∫ T
0
E[‖sθ?(T − t,Yt)−∇ log pT−t(Yt)‖2] ≤M2T.

(c) Let us define {Ȳk}Nk=0 such that for any k ∈ {0, . . . , N}, Ȳk
0 = Ŷ0 = Y0 and for any t ∈ [0, kγ]

we have that Ȳ0
t = Ŷt. For any t ∈ [kγ, T ], we have that Ȳk

t = Yt,k, where Ykγ,k = Ŷkγ and for
any j ∈ {k, . . . , N − 1} and t ∈ [0, γ]

Yjγ+t,k = expYjγ,k [tsθ?(T − jγ, Yjγ,k) +
√
tEkj Zj ],

where {Zj}N−1
j=0 are independent Gaussian random variables with identity covariance matrix and zero

mean and Ekj is a frame of TYjγ,kM such that for any j ∈ {k+ 1, . . . , N −1}, Ek+1
j = Γ

Yjγ,k+1

Yjγ,k
Ekj

and {E0
j }N−1
j=0 is such that for any j ∈ {0, . . . , N − 1}, E0

j is a frame of TYjγM. One [0, kγ], we
define (Ŷk

t )t∈[0,kγ] as follows. For any k ∈ {0, . . . , N − 1}, we set (Yk+1
t )t∈[0,kγ] = (Yk

t )t∈[0,kγ].
For any k ∈ {0, . . . , N − 1}, we set (Yt)kγ,(k+1)γ as in Proposition S21 (taking the notations of
Proposition S21, X0

1 = Ŷk
(k+1)γ and Xγ = Ŷk

kγ). Note that we have {ȲN
jγ,0}Nj=0 = {Y Nj }Nj=0 and

{Ȳt,N}t∈[0,T ] = {Ŷt}t∈[0,T ]. Therefore, we have that

|ϕ(ŶT )− ϕ(YN )| = |ϕ(Ȳ0
T )− ϕ(ȲN

T )|
≤∑N−1

k=0 |ϕ(Ȳk
T )− ϕ(Ȳk+1

T )| ≤ ‖∇ϕ‖∞
∑N−1
k=0 d(Ȳk

T , Ȳ
k+1
T ).

In addition, using Proposition S21 and Proposition S22, we have that there exists C ≥ 0 such that for
any k ∈ {0, . . . , N − 1}

E[d(Ȳk,T , Ȳk+1,T )] ≤ C exp[(N − k)γ]γ3/2.

Therefore, we get that there exists C ≥ 0 such that

|E[ϕ(ŶT )]− E[ϕ(YN )]| ≤ C exp[T ]γ1/2,
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Therefore, we get that there exists C ≥ 0 such that for any ϕ ∈ C(M) which is 1-Lipschitz, we have

E[ϕ(YN )]−
∫
M ϕ(x)p0(x)dpref(x) ≤ C(eλ1/2‖ϕ‖∞e−λ1T +

√
T/2‖ϕ‖∞M + eT γ1/2). (S19)

Let x0 ∈ M. Let Lip(M) the set of Lipschitz functions onM with Lipschitz constant equal to 1.
Let Lip(M)0 the set of Lipschitz functions onM with Lipschitz constant equal to 1 and such that
for any ϕ ∈ Lip(M)0, ϕ(x0) = 0. Note that in this case, we have that ‖ϕ‖∞ ≤ diam(M). Using
(S19), we have

W1(L(YN ), p0) = sup{E[ϕ(YN )]−
∫
M ϕ(x)p0(x)dpref(x) : ϕ ∈ Lip(M)}

= sup{E[ϕ(YN )]−
∫
M ϕ(x)p0(x)dpref(x) : ϕ ∈ Lip(M)0}

≤ C(eλ1/2diam(M)e−λ1T +
√
T/2diam(M)M + eT γ1/2),

which concludes the proof.

We now state a result regarding the continuous-time process (i.e. we now longer consider discretization
errors). We recall that we denote (Ŷt)t∈[0,T ] the process defined by the diffusion dŶt = sθ?(T −
t, Ŷt)dt+ dBt and Ŷ0 ∼ π∞.
Theorem S17. Assume A1, that p0 is smooth and positive and that there exists M ≥ 0 such that for
any t ∈ [0, T ] and x ∈ M, ‖sθ?(t, x)−∇ log pt(x)‖ ≤ M, with sθ? ∈ C([0, T ] ,X (M)). Then if
T > 1/2, there exists C ≥ 0 independent on T such that

‖L(ŶT )− p0‖TV = C(e−λ1T +
√
T/2M).

Proof. The proof is identical to the one of Theorem S16, except that we do not have to deal with the
discretization error. We use that for any µ, ν ∈ P(M)

‖µ− ν‖TV = sup{µ[f ]− ν[f ] : f ∈ C(M), ‖f‖∞ ≤ 1}.

The result of Theorem S17 should be compared with the one of (Rozen et al., 2021, Theorem 3).
With our result we control a L1 bound between the density of ŶT and the one of p0. In (Rozen et al.,
2021, Theorem 3) a L∞ bound between the densities is recovered. It can be shown that p̂T = L(ŶT ).
Let κ be the modulus of continuity of p̂T − p0, i.e. for any ε ≥ 0

κ(ε) = sup{|p̂T (x)− p0(x)− p̂T (y) + p0(y)| : x, y ∈M, d(x, y) ≤ ε}.
Let x0 ∈M such that

|p̂T (x0)− p0(x0)| = M = sup{|p̂T (x)− p0(x)| : x ∈M}.
For any x ∈ B̄(x0, κ(M/2)), we have |p̂T (x) − p0(x)| ≥ M/2. Hence, denoting Volκ =∫

B̄(x0,κ(M/2))
dpref(x) > 0, we have

(2/Volκ)
∫
M |p̂T (x)− p0(x)|dpref(x) ≥ ‖p̂T − p0‖∞ .

Hence, there exists C ≥ 0 such that for any T > 1/2

‖p̂T − p0‖∞ ≤ C(e−λ1T +
√
T/2M).

Therefore, we recover the same guarantees as Theorem S17 (note that M is not explicitly controlled
using network properties in our work, but we could use universal approximation properties as in
Rozen et al. (2021) in order to obtain a similar result).

I.2 Discretization bounds for GRW

In this section, we establish discretization bounds for GRW. Our results are a straightforward extension
of Cheng et al. (2022) to the case where the drift term in the GRW is time-inhomogeneous.

SinceM is compact, we have that for any x1, x2 ∈ M , there exists a minimizing geodesic such
that γ ∈ C∞([0, 1] ,M) and γ(0) = x1 and γ(1) = x2. When this choice is not unique we fix a

19



minimizing geodesic. We denote Γx2
x1

: Tx1M → Tx2M the associated parallel transport. Let
b ∈ C∞([0, T ] ,X (M)).

We start by introducing a family of GRWs defined on progressively finer grids. Let γ >
0, X0 ∈ M, E0 ∈ FX0M (the vector space of frames at X0) and consider the families
{E`k : k ∈ {0, . . . , 2`}, ` ∈ N}, {X`

k : k ∈ {0, . . . , 2`}, ` ∈ N} such that X0
0 = X0,

X0
1 = expX0

0
[γb(0, X0

0 ) +
√
γ(B1 − B0)E0

0 ] and E0
1 = Γ

X0
1

X0
0
E0

0 (note that E`2` is not used in the

proof but defined for completeness). In addition, we have that for any ` ∈ N with ` ≥ 1, X`
0 = X0,

E`0 = E0 and for any k ∈ {0, . . . , 2`−1 − 1}
X`

2k+1 = expX`2k [γ`b(2kγ`, X
`
2k) + E`2k(B(2k+1)γ` −B2kγ`)],

E`2k+1 = Γ
X`2k+1

X`2k
E`2k,

X`
2k+2 = expX`2k+1

[γ`b((2k + 1)γ`, X
`
2k+1) + E`2k+1(B(2k+2)γ` −B(2k+1)γ`)],

E`2k+2 = Γ
X`2k+2

X`−1
k+1

E`−1
k+1, (S20)

where γ` = γ/2`. For any ` ∈ N, we also define (X`
t)t∈[0,γ] such that for any ` ∈ N, k ∈ {0, . . . , 2`−

1}, we have for any t ∈ [kγ`, (k + 1)γ`) , X`
t = expX`k [(t − kγ`)b(kγ`, X`

k) + E`k(Bt − Bkγ`)].
Note that for any ` ∈ N and k ∈ {0, . . . , 2` − 1}, X`

kγ`
= Xk.

We are going to use the following useful lemma, see (Cheng et al., 2022, Lemma 62).
Lemma S18. Assume A1. Then, there exists C ≥ 0 such that for any x, y ∈ M, γ : [0, 1] →M
minimizing geodesic with γ(0) = x, γ(1) = y and u ∈ TxM, v ∈ TyM we have

d(expy[v], expx[u])2 ≤ (1 + Cκ2 exp[4κ])d(x, y)2 + C exp[4κ]‖Γxyv − u‖2 + 2〈γ′(0),Γxyv − u〉,
with κ = ‖u‖+ ‖v‖.

We are now ready to state the main result of this section.
Proposition S19. Assume A1. Then, there exists C ≥ 0 such that for any ` ∈ N

E[supt∈[0,γ] d(X`
t,X

`+1
t )2] ≤ Cγ32−2`.

Proof. Let ` ∈ N, k ∈ {0, . . . , 2` − 1} and t ∈ [kγ`, (k + 1)γ`]. We define U tk = d(X`
t,X

`+1
t )2,

Uk = sup{U tk : t ∈ [kγ`, (k + 1)γ`]} and U−1 = 0. We also introduce for any j ∈ {0, . . . , 2` − 1}
and for t ∈ [kγ`, (2k + 1)γ`+1), X̄`+1

t = X`+1
t and for t ∈ [(2k + 1)γ`+1, (k + 1)γ`)

X̄`+1
t = expX`+1

2j
[γ`+1b(2jγ`+1, X

`+1
2j )+(t−(2k+1)γ`+1)b((2j+1)γ`+1, X

`+1
2j )+(Bt−Bjγ`)E

`+1
2j ].

Using this result and that for any a, b ≥ 0, (a+ b)2 ≤ (1 + 2−`)a2 + (1 + 2`)b2, we have that for
any t ∈ [kγ`, (k + 1)γ`]

U tk+1 ≤ (1 + 2−`)d(X`
t, X̄

`+1
t )2 + (1 + 2`)d(X̄`+1

t ,X`+1
t )2. (S21)

Note that for t ∈ [kγ`, (2k + 1)γ`+1], the second term in (S21) is zero. We now bound each one of
these terms:

(a) First, we assume that t ∈ [(k + 1)γ`, (2k + 1)γ`+1]. Recall that

X̄`+1
t = expX`+1

2k
[γ`+1b(kγ`, X

`+1
2k ) + (t− (2k + 1)γ`+1)b((2k + 1)γ`+1, X

`+1
2k ) + (Bt −Bkγ`)E

`+1
2k ],

X`
t = expX`k [(t− kγ`)b(kγ`, X`

k) + (Bt −Bkγ`)E
`
k].

Hence, using Lemma S18, we have that

d(X̄`+1
t ,X`

t)
2 ≤ (1 + Cκ2

k exp[4κk])d(X`
k, X

`+1
2k )2 (S22)

+ C exp[4κk]‖ΓX
`
k

X`+1
2k

vk − uk‖2 + 2〈w′(0),Γ
X`k
X`+1

2k

vk − uk〉,
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with w : [0, 1]→M a minimizing geodesic between X`
k and X`+1

2k

κk = ‖uk‖+ ‖vk‖,
u1
k = (t− kγ`)b(kγ`, X`

k),

v1
k = γ`+1b(2kγ`+1, X

`+1
2k ) + (t− (2k + 1)γ`+1)b((2k + 1)γ`+1, X

`+1
2k ),

u2
k = (Bt −Bkγ`)E

`
k, v2

k = (Bt −Bkγ`)E
`+1
2k ,

uk = u1
k + u2

k, vk = v1
k + v2

k.

In particular, since E`k = Γ
X`k
X`+1

2k

E`+1
2k using (S20), we have that u2

k = Γ
X`k
X`+1

2k

v2
k. Therefore, combin-

ing this result and that t− (2k + 1)γ`+1 + γ`+1 = t− kγ`, we get that

‖ΓX
`
k

X`+1
2k

v1
k − u1

k‖ ≤ γ`+1‖b(kγ`, X`
k)− Γ

X`k
X`+1

2k

b(kγ`, X
`+1
2k )‖

+ γ`+1‖b(kγ`, X`
k)− Γ

X`k
X`+1

2k

b((2k + 1)γ`+1, X
`+1
2k )‖

≤ γ`‖b(kγ`, X`
k)− Γ

X`k
X`+1

2k

b(kγ`, X
`+1
2k )‖+ L2γ

2
`

≤ L1γ`d(X`
k, X

`+1
2k ) + L2γ

2
` .

Therefore, we get that ‖uk − vk‖ ≤ L1γ`d(X`
k, X

`+1
2k ) + L2γ

2
` . In addition, we have that ‖w′(0)‖ ≤

d(X`
k, X

`+1
2k ) since w is a minimizing geodesic. Combining these results and (S22) we get that

d(X̄`+1
t ,X`

t)
2 ≤ (1 + Cκ2

k exp[4κk])d(X`
k, X

`+1
2k )2

+ C exp[4κk](L1γ`d(X`
k, X

`+1
2k ) + L2γ

2
` )2

+ 2(L1γ`d(X`
k, X

`+1
2k ) + L2γ

2
` )d(X`

k, X
`+1
2k )

≤ (1 + Cκ2
k exp[4κk] + 2C exp[4κk]L2

1γ
2
` )d(X`

k, X
`+1
2k )2

+ 2(L1γ`d(X`
k, X

`+1
2k ) + L2γ

2
` )d(X`

k, X
`+1
2k ) + 2L2

2γ
4
`

≤ (1 + Cκ2
k exp[4κk] + 2C exp[4κk]L2

1γ
2
` + 2L1γ` + 4L2γ`)d(X`

k, X
`+1
2k )2 + 8L2γ

3
` ,

Hence, there exists C1 ≥ 0 (not dependent on k or `) such that

(1 + 2−`)d(X̄`+1
t ,X`

t)
2 ≤ (1 + C1{κ2

k exp[4κk] + γ2
` exp[4κk] + 2−`})d(X`

k, X
`+1
2k )2 + C1γ

3
` .

Next, we assume that t ∈ [kγ`, (2k + 1)γ`+1]. Recall that

X̄`+1
t = expX`+1

2k
[(t− kγ`)b(kγ`, X`+1

2k ) + (Bt −Bkγ`)E
`+1
2k ],

X`
t = expX`k [(t− kγ`)b(kγ`, X`

k) + (Bt −Bkγ`)E
`
k].

Hence, using Lemma S18, we have that

d(X̄`+1
t ,X`

t)
2 ≤ (1 + Cκ2

k exp[4κk])d(X`
k, X

`+1
2k )2 (S23)

+ C exp[4κk]‖ΓX
`
k

X`+1
2k

vk − uk‖2 + 2〈w′(0),Γ
X`k
X`+1

2k

vk − uk〉,

with w : [0, 1]→M a minimizing geodesic between X`
k and X`+1

2k

κk = ‖uk‖+ ‖vk‖,
u1
k = (t− kγ`)b(kγ`, X`

k),

v1
k = (t− kγ`)b(kγ`, X`+1

2k ),

u2
k = (Bt −Bkγ`)E

`
k, v2

k = (Bt −Bkγ`)E
`+1
2k ,

uk = u1
k + u2

k, vk = v1
k + v2

k.
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In particular, since E`k = Γ
X`k
X`+1

2k

E`+1
2k using (S20) and t− (2k + 1)γ`+1 + γ`+1 = t− kγ`, we have

that u2
k = Γ

X`k
X`+1

2k

v2
k. Therefore, we get that

‖ΓX
`
k

X`+1
2k

v1
k − u1

k‖ ≤ γ`+1‖b(kγ`, X`
k)− Γ

X`k
X`+1

2k

b(kγ`, X
`+1
2k )‖

≤ γ`‖b(kγ`, X`
k)− Γ

X`k
X`+1

2k

b(kγ`, X
`+1
2k )‖+ L2γ

2
`

≤ L1γ`d(X`
k, X

`+1
2k ).

Therefore, we get that ‖uk − vk‖ ≤ L1γ`d(X`
k, X

`+1
2k ). In addition, we have that ‖w′(0)‖ ≤

d(X`
k, X

`+1
2k ) since w is a minimizing geodesic. Combining these results and (S23) we get that

d(X̄`+1
t ,X`

t)
2 ≤ (1 + Cκ2

k exp[4κk])d(X`
k, X

`+1
2k )2

+ C exp[4κk]L2
1γ

2
` d(X`

k, X
`+1
2k )2

+ 2L1γ`d(X`
k, X

`+1
2k )d(X`

k, X
`+1
2k )

≤ (1 + Cκ2
k exp[4κk] + 2C exp[4κk]L2

1γ
2
` )d(X`

k, X
`+1
2k )2

+ 2L1γ`d(X`
k, X

`+1
2k )2 + 2L2

2γ
4
`

≤ (1 + Cκ2
k exp[4κk] + 2C exp[4κk]L2

1γ
2
` + 2L1γ`)d(X`

k, X
`+1
2k )2.

Hence, there exists C1 ≥ 0 (not dependent on k or `) such that for any t ∈ [kγ`, (k + 1)γ`]

(1 + 2−`)d(X̄`+1
t ,X`

t)
2 ≤ (1 + C1{κ2

k exp[4κk] + γ2
` exp[4κk] + 2−`})d(X`

k, X
`+1
2k )2 + C1γ

3
` .

(S24)

(b) We recall that if t ∈ [kγ`, (2k + 1)γ`+1] the second term in (S21) is zero. Therefore in what
follows, we assume t ∈ [(2k + 1)γ`+1, (k + 1)γ`]. We introduce

X̂`+1
t = expX`+1

2k+1
[(t− (2k+ 1)γ`+1)Γ

X`+1
2k+1

X`+1
2k

b((2k+ 1)γ`+1, X
`+1
2k ) + (Bt−B(2k+1)γ`+1

)E`+1
2k+1].

(S25)
In what follows, we provide an upper-bound for d(X̄`+1

t ,X`+1
t ). First, we have that

d(X̄`+1
t ,X`+1

t ) ≤ d(X̄`+1
t , X̂`+1

t ) + d(X̂`+1
t ,X`+1

t ).

We recall that

X̄`+1
t = expX`+1

2k
[γ`+1b(2kγ`+1, X

`+1
2k )+(t−(2k+1)γ`+1)b((2k+1)γ`+1, X

`+1
2k )+(Bt−Bkγ`)E

`+1
2k ].

(S26)
Denote ak, bk such that

ak = b(2kγ`+1, X
`+1
2k ) + (B(2k+1)γ`+1

−Bkγ`)E
`+1
2k ,

bk = (t− (2k + 1)γ`+1)b((2k + 1)γ`+1, X
`+1
2k ) + (Bt −B(2k+1)γ`+1

)E`+1
2k .

Using (S20), (S25) and (S26) we have that

X`+1
2k+1 = expX`+1

2k
[ak], X̂`+1

t = expX`+1
2k+1

[Γ
X`+1

2k+1

X`+1
2k

bk], X̄`+1
t = expX`+1

2k
[ak + bk].

Using this result and (Sun et al., 2019, Lemma 3), there exists C2 ≥ 0 (not dependent on k or `) such
that

d(X̂`+1
t , X̄`+1

t ) ≤ C2(‖ak‖+ ‖bk‖)3.

Using this result and that for any t ∈ [0, γ] and x ∈M, ‖b(t, x)‖ ≤ K we get that there exists C3 ≥ 0
(not dependent on k or `) such that

d(X̂`+1
t , X̄`+1

t )2 ≤ C3(γ6
`+1 + ‖Bt −B(2k+1)γ`+1

‖6 + ‖B(2k+1)γ` −B(k+1)γ`‖6). (S27)

Finally, we recall that

X̂`+1
t = expX`+1

2k+1
[(t− (2k + 1)γ`+1)Γ

X`+1
2k+1

X`+1
2k

b((2k + 1)γ`+1, X
`+1
2k ) + (Bt −B(2k+1)γ`+1

)E`+1
2k+1],

X`+1
t = expX`+1

2k+1
[(t− (2k + 1)γ`+1)b((2k + 1)γ`+1, X

`+1
2k+1) + (Bt −B(2k+1)γ`+1

)E`+1
2k+1].
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Let us define

τk = ‖ck‖+ ‖dk‖,
ck = c1k + c2k, dk = d1

k + d2
k,

c1k = (t− (2k + 1)γ`+1)b((2k + 1)γ`+1, X
`+1
2k+1),

d1
k = (t− (2k + 1)γ`+1)Γ

X`+1
2k+1

X`+1
2k

b((2k + 1)γ`+1, X
`+1
2k ),

c2k = d2
k = (Bt −B(2k+1)γ`+1

)E`+1
2k+1. (S28)

Using Lemma S18, we get that

d(X`+1
t , X̂`+1

t )2 ≤ C exp[4τk]‖ck − dk‖2 ≤ CL2
2γ

2
`+1 exp[4τk]d(X`+1

2k+1, X
`+1
2k )2. (S29)

In addition, using Lemma S18, we get that

d(X`+1
2k+1, X

`+1
2k )2 ≤ exp[4‖ek‖]‖ek‖,

with ek = γ`+1b(kγ`, X
`+1
2k ) + (B(2k+1)γ`+1

−Bkγ`)E
`+1
2k . Combining this result and (S29), we

get that

d(X`+1
t , X̂`+1

t )2 ≤ C3γ
2
`+1(γ2

`+1 + ‖B(2k+1)γ`+1
−Bkγ`‖2) exp[4τk + ‖ek‖]. (S30)

Combining (S27) and (S30), there exists C5 such that

d(X̄`+1
t ,X`+1

t )2 ≤ C5γ
2
`+1(γ2

`+1 + ‖B(2k+1)γ`+1
−Bkγ`‖2) exp[4τk + ‖ek‖]

+ C5(γ6
`+1 + ‖Bt −B(2k+1)γ`+1

‖6 + ‖B(2k+1)γ` −B(k+1)γ`‖6). (S31)

In what follows, we denote

αk = C1{(κ+
k )2 exp[4κk] + γ2

` exp[4κ+
k ] + 2−`}.

βk = C1γ
3
` + C5(1 + 2`)γ2

`+1(γ2
`+1 + ‖B(2k+1)γ`+1

−Bkγ`‖2) exp[4τ+
k + ‖ek‖]

+C5(1 + 2`) (γ6
`+1 + supt∈[kγ`,(k+1)γ`]

{‖Bt −B(2k+1)γ`+1
‖6}+ ‖B(2k+1)γ` −B(k+1)γ`‖6),

with τ+
k = sup{‖ck‖+ ‖dk‖ : t ∈ [kγ`, (k + 1)γ`]}, see (S28). Therefore, using (S21), (S24) and

(S31), we get that for any k ∈ {0, . . . , 2` − 1}
Uk+1 ≤ (1 + αk)Uk + βk.

Let {Rk}2
`

k=−1 such that R−1 = 0 and for any k ∈ {0, . . . , 2` − 1}
Rk+1 = (1 + αk)Rk + βk.

Then, for any k ∈ {0, . . . , 2` − 1}, we have that R2`−1 ≥ Rk ≥ Uk. Therefore

E[R2` ] ≥ E[sup{Uk : k ∈ {0, . . . , 2`}}] ≥ E[sup{d(X`
t,X

`+1
t )2 : t ∈ [0, γ]}]. (S32)

In addition, using that for any k ∈ {0, . . . , 2`− 1}, E[αk|Fk] = ᾱk and E[βk|Fk] = β̄k are constant,
where Fk = σ({Bt : t ∈ [0, kγ`]}). Therefore, we get that for any k ∈ {0, . . . , 2` − 1}

E[Rk+1] = (1 + ᾱk)E[Rk] + β̄k.

Therefore, using the discrete Grönwall lemma we get that for any k ∈ {0, . . . , 2` − 1}

E[R2` ] ≤ β̄2`−1 + exp[
∑2`−1
n=0 ᾱn]

∑2`−1
j=0 β̄jᾱj .

In addition, there exists C8 ≥ 0 such that for any k ∈ {0, . . . , 2`}, ᾱk ≤ C82−` and β̄k ≤ C8γ
32−2`.

Hence, there exists C9 ≥ 0 such that

E[R2` ] ≤ C9γ
32−2`,

which concludes the proof upon using (S32).
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Proposition S20. Assume A1. Then, there exists (Xt)t∈[0,γ] such that lim`→+∞ sup{d(X`
t,Xt) :

t ∈ [0, γ]} = 0 and (Xt)t∈[0,γ] is a weak solution to dXt = b(t,Xt)dt+ dBMt .

Proof. The proof is a straightforward application of Proposition S19 and (Cheng et al., 2022, A.1
(Step 2 and Step 3), A.2).

Proposition S21. Assume A1. Then, there exists C ≥ 0 such that E
[
d(X0

1 ,Xγ)2 ≤ Cγ3/2
]
.

Proof. Using Proposition S19, there exists C ≥ 0 such that for any ` ∈ N

E[supt∈[0,γ] d(X`
t,X

`+1
t )] ≤ Cγ3/22−`.

Therefore, combining this result and Proposition S20 we get that for any ` ∈ N

E[supt∈[0,γ] d(X`
t,Xt)] ≤ 2Cγ3/2,

which concludes the proof.

Finally, we consider the two following processes (X1
k , X

2
k)k∈N such that for any k ∈ N and i ∈ {1, 2}

Xi
k+1 = expXik [γb(kγ,Xi

k) +
√
γEikZk],

where {Zk}k∈N is a family of independent Gaussian random variables with zero mean and identity

covariance matrix, and for any k ∈ N, E1
k is a frame for TX1

k
M and E2

k = Γ
X2
k

X1
k
E1
k .

Proposition S22. Assume A1. Then, there exists C ≥ 0 such that for any k ∈ N

E
[
d(X1

k , X
2
k)
]
≤ exp[Ckγ]E

[
d(X1

0 , X
2
0 )
]
.

Proof. Let k ∈ N. Using Lemma S18, there exists D ≥ 0 such that

d(X1
k+1, X

2
k+1)2 ≤ (1 +Dκ2

k exp[4κk])d(X1
k , X

2
k)2

+D exp[4κk]‖ΓX
1
k

X2
k
vk − uk‖2 + 2〈w′(0),Γ

X1
k

X2
k
vk − uk〉,

with w : [0, 1]→M a minimizing geodesic between X1
k and X2

k

κk = ‖uk‖+ ‖vk‖,
u1
k = γb(kγ,X1

k),

v1
k = γb(kγ,X2

k),

u2
k =
√
γZkE

1
k, v2

k =
√
γZkE

2
k,

uk = u1
k + u2

k, vk = v1
k + v2

k.

We have that Γ
X1
k

X2
k
v2
k = vk and

‖ΓX
1
k

X2
k
v1
k − u1

k‖ ≤ L1γd(X1
k , X

2
k).

In addition, ‖w′(0)‖ ≤ d(X1
k , X

2
k). Therefore, we get that

d(X1
k+1, X

2
k+1)2 ≤ (1 +Dκ2

k exp[4κk] +Dγ2 exp[4κk] + 2γ)d(X1
k , X

2
k)2.

Hence, using that for any t ≥ 0,
√

1 + t ≤ 1 + t/2, we have

d(X1
k+1, X

2
k+1) ≤ (1 +Dκ2

k exp[4κk] +Dγ2 exp[4κk] + 2γ)d(X1
k , X

2
k).

Therefore, we get that there exists C ≥ 0 such that

E[d(X1
k+1, X

2
k+1)] ≤ (1 + Cγ)E[d(X1

k , X
2
k)],

which concludes the proof.
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J Proof of Proposition 3

Proof. Let t ∈ (0, T ] and st ∈ C∞(M). Using the divergence theorem (see Lee, 2018, p.51), we
have

`t|s(st)=
∫
M×M ‖∇ log pt|s(xt|xs)‖2dPs,t(xs, xt) +

∫
M ‖st(xt)‖2dPt(xt)

−2
∫
M×M〈∇ log pt|s(xt|xs), st(xt)〉MdPs,t(xs, xt)

=
∫
M×M ‖∇ log pt|s(xt|xs)‖2dPs,t(xs, xt) +

∫
M ‖st(xt)‖2dPt(xt)

−2
∫
M×M〈∇ log pt|s(xt|xs), st(xt)〉Mpt|s(xt|xs)ps(xs)d(pref ⊗ pref)(xs, xt)

=
∫
M×M ‖∇ log pt|s(xt|xs)‖2dPs,t(xs, xt) +

∫
M ‖st(xt)‖2dPt(xt)

−2
∫
M{
∫
M〈∇pt|s(xt|xs), st(xt)〉Mdpref(xt)}ps(xs)dpref(xs)

=
∫
M×M ‖∇ log pt|s(xt|xs)‖2dPs,t(xs, xt) +

∫
M ‖st(xt)‖2dPt(xt)

+2
∫
M{
∫
M div(st)(xt)pt|s(xt|xs)dpref(xt)}ps(xs)dpref(xs),

which concludes the proof.

K Comparison with Moser flows

In this section, we compare ourselves with Rozen et al. (2021) in greater details. Rozen et al. (2021)
also aims at interpolating between a reference distribution pref and a target distribution p0. We assume
that we have access to the density pref and that we know how to sample form pref (which is often the
case if pref is the uniform distribution onM). Contrary to RSGM, pref is not necessary the uniform
distribution.

We then consider the following interpolation p̂t = (1 − t)p̂0 + tp̂1, with p̂0 = pref and p̂1 = p0.
Let (Xt)t∈[0,1] be given by X0 ∼ p̂0 and dXt = vt(Xt)dt where for any t ∈ [0, 1], vt =
u/((1− t)p̂0 + p̂1), with div(u) = p̂0 − p̂1. Using the Fokker-Planck equation, we have that for any
t ∈ [0, 1], Xt ∼ p̂t. In Rozen et al. (2021), u is replaced by a parametric version uθ and the authors
optimize the loss

`(θ) = E[(p̂0 − div(uθ))
+,ε(X1)] + λ

∫
M(p̂0 − div(uθ))

−,ε(x)dx,

with λ, ε > 0 and for any f : M → R, f+,ε = max(f, ε) and f−,ε = ε − min(f, ε). Given
uθ, we then consider (Xθ

t )t∈[0,1] such that dXθ
t = vθt (X

θ
t )dt, where for any t ∈ [0, 1], vθt =

uθ/(p̂0 + tdiv(uθ)). Note that uθ also enables density estimation using that p̂1 = p̂0 − div(uθ).
Density estimation is not directly accessible using RSGM, however in App. L we propose a way to
perform such an estimation using Fisher score in a manner akin to Choi et al. (2021).

Let p̂0 = pref to be the uniform distribution onM. As RSGM, Moser flow defines a continuous
time interpolation between p0 and pref. One major difference between the two approaches is that
Moser flows perform the interpolation in density space, i.e. p̂t = (1− t)p̂0 + tp̂1 for any t ∈ [0, 1],
whereas RSGM performs the interpolation in sample space, i.e. pt =

∫
M p0(y)pt|0(y, x)dpref(y).

Interpolation in the density space results in spontaneous creation of density, whereas interpolation
in sample space corresponds to a displacement of the density, see Figs. S3a and S3b. In that
respect, Moser flows can be seen as vertical displacement whereas RSGM corresponds to horizontal
displacement, see Santambrogio (2017). The drawback with the ‘spontaneous creation of density’ of
Moser flows, is that when solving trajectories in sample space—for sampling or likelihood evaluation
purposes—the Stein score’s amplitude can get extremely high in settings where the reference and
target distributions have little overlap as shown on Fig. S3c.

L Density estimation with Fisher score

In this section, we show how we can adapt ideas from Choi et al. (2021) for density estimation onM
using the Fisher score. The main idea of using Fisher score is to leverage the following decomposition
for any x ∈M

log p0(x) = log pT (x)−
∫ T

0
∂t log pt(x)dt.
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Figure S3: The reference distribution is pref = N(0, 1).

Assume that an approximation ŝθ of ∂t log pt (the Fisher score) is available then we have that for any
x ∈M

log p0(x) ≈ log pref(x)−
∫ T

0
ŝθ(x)dt.

Before turning to our main result, we state the following lemma.

Lemma S23. Assume A1. Then, there exists C, T0 ≥ 0 such that for any x ∈ M and T ≥ T0,
|pT (x)− 1| ≤ C exp[−λ1T/2], where λ1 is the first non-negative eigenvalue of −∆M in L2(pref).

Proof. First, using Proposition S10, there exists C0 ≥ 0 such that for any T ≥ 1/2 we have∫
M |pT (x)− 1|dpref(x) ≤ C0e−λ1T .

Using (Grigor’yan, 1999, Corollary 5.5), (Hsu, 1999, Theorem 1.2)and the fact thatM is compact,
there exists C1, β ≥ 0 such that for any T ≥ 1/2 and x0, xT ∈M

‖∇pT |0(xT |x0)‖ ≤ C1(1 + T β). (S33)
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In addition, using (Croke, 1980, Proposition 14) we have that there exists C2, r0 > 0 such that for
any x0 ∈M and r ∈ (0, r0) ∫

B̄(x0,r)
dpref(x) ≥ C2r

d. (S34)

Assume that that
∫
M |pT (x)− 1|dpref(x) ≤ ε and that there exists x0 ∈M such that |pT (x)− 1| >

κε with κ > 0 and let T ≥ T0 with T0 = (κε/(2C1))1/β . Then, using (S33) and (S34), we have for
any r ∈ (0, r0)

ε ≥
∫

B̄(0,r)
|pT (x)− 1| ≥ C2r

d(κε− C1(1 + T β)r).

Since κε/(2C1(1 + T β)) ∈ (0, r0) we have

ε ≥ C2(κε)d+1/(4C1(1 + T β)).

Therefore, we get that
ε ≥ C2(κε)d+1/(4C1(1 + T β)).

Therefore, we get that κ ≤ (4C1(1 + T β)/C2)1/(d+1)ε−1/(d+1). Therefore, we have that for any
x ∈M

|pT (x)− 1| ≤ (8C1(1 + T β)/C2)1/(d+1)ε1−1/(d+1). (S35)

Let T0 ≥ 0 such that for any T ≥ T0 we have

(8C1(1 + T β)/C2)1/(d+1)C
1−1/(d+1)
0 e−(1−1/(d+1))λ1T ≤ 21−βC1.

Combining this result and (S36), we get that for any x ∈M and T ≥ 0

|pT (x)− 1| ≤ (8C1(1 + T β)/C2)1/(d+1)C
1−1/(d+1)
0 e−(1−1/(d+1))λ1T , (S36)

which concludes the proof.

The following proposition quantifies this approximation.

Proposition S24. Assume A1 and that p0 ∈ C∞(M, (0,+∞)). Let x0 ∈ M and assume that for
any t ∈ [0, T ], |ŝθ(t, x0)− ∂t log pt(x0)| ≤ M with M ≥ 0. Then, there exists C, T0 ≥ 0 such that for
any T ≥ 0

| log p0(x0)−
∫ T

0
ŝθ(t, x0)dt| ≤ C exp[−λ1T/2] + MT.,

where λ1 is the first non-negative eigenvalue of −∆M in L2(pref).

Proof. First using, Lemma S23, there exists C0, T
(a)
0 ≥ 0 such that for any T ≥ T (a)

0

|pT (x0)− 1| ≤ C0 exp[−λ1T/2].

Let T (b)
0 = |log(C0)| /λ1. Using that for any s ∈ [1/2,+∞) we have that | log(1 +s)| ≤ 2 log(2)|s|

we get that for any T ≥ max(T
(a)
0 , T

(b)
0 )

| log pT (x0)| ≤ 2 log(2)C0 exp[−λ1T/2],

which concludes the proof.

In practice, we do not have access to ∂t log pt. However, following (Choi et al., 2021, Proposition 2),
we have the following property.

Proposition S25. Let ŝ such that for any t ∈ [0, T ] and x ∈ M, ŝ(t, x) = ∂t log pt(x). Then, we
have that ŝ = arg min{L(s) : s ∈ C∞([0, T ] ×M,R)}, where for any s ∈ C∞([0, T ] ×M,R)
we have

L(s) = (1/2)E[
∫ T

0
λ(t)s(t,Xt)dt] + E[

∫ T
0
λ(t)∂ts(t,Xt)dt]

+E[
∫ T

0
∂tλ(t)∂ts(t,Xt)dt] + E[λ(0)s(0,X0)]− E[λ(T )s(T,XT )],

where λ ∈ C∞([0, T ] ,R) is a weighting function.
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Proof. For any t ∈ [0, T ] and xt ∈M we have

ŝ(xt) =
∫
M ∂t log pt|0(xt|x0)p0|t(x0|xt)dx0.

Hence, sinceM is compact and ŝ ∈ C∞([0, T ]×M,R), we have that ŝ = arg min{L0(s) : s ∈
C∞([0, T ]×M,R)} where for any s ∈ C∞([0, T ]×M,R) we have

L0(s) =
∫ T

0
λ(t)

∫
M×M(s(t, xt)− ∂t log pt|0(xt|x0))2dp0,t(x0, xt)dt (S37)

=
∫ T

0
λ(t)

∫
M s(t, xt)

2dpt(xt)dt− 2
∫ T

0
λ(t)

∫
M×M s(t, xt)∂t log pt|0(x0, xt)dp0,t(x0, xt)dt

+
∫ T

0
λ(t)

∫
M dpt(xt)dt

In addition, we have that∫ T
0
λ(t)

∫
M×M s(t, xt)∂t log pt|0(xt|x0)dp0,t(x0, xt)dt

=
∫ T

0

∫
M×M λ(t)s(t, xt)∂tpt|0(xt)dp0(x0)dpref(xt)dt.

By integration by parts we get∫ T
0

∫
M×M λ(t)s(t, xt)∂tpt|0(xt)dp0(x0)dpref(xt)dt

= −
∫ T

0

∫
M×M ∂t(λ(t)s(·, xt))(t)dp0,t(x0, xt)dt

+λ(T )
∫
M s(T, xT )dpT (xT )−

∫
M s(0, x0)dp0(x0)

= −
∫ T

0

∫
M×M ∂tλ(t)s(t, xt)dpt(xt)dt−

∫ T
0

∫
M×M λ(t)∂ts(t, xt)dpt(xt)dt

+λ(T )
∫
M s(T, xT )dpT (xT )− λ(0)

∫
M s(0, x0)dp0(x0)

Combining this result and (S37) we get that

L0(s) =
∫ T

0
λ(t)

∫
M×M(s(t, xt)− ∂t log pt|0(xt|x0))2dp0,t(x0, xt)dt

=
∫ T

0
λ(t)

∫
M s(t, xt)

2dpt(xt)dt+ 2
∫ T

0

∫
M×M ∂tλ(t)s(t, xt)dpt(xt)dt

+ 2
∫ T

0

∫
M×M λ(t)∂ts(t, xt)dpt(xt)dt−λ(T )

∫
M s(T, xT )dpT (xT )

+ λ(0)
∫
M s(0, x0)dp0(x0)+

∫ T
0
λ(t)

∫ 2

M dpt(xt)dt,

which concludes the proof.

Hence, using Proposition S25, we could estimate jointly the spatial (or Stein) score used in RSGM
and the Fisher score considered in this section, see Choi et al. (2021).

M Extensions

M.1 Schrödinger bridge.

For Euclidean SGM, the generative model is given by an approximation of the time-reversal of
the noising dynamics (Xt)t∈[0,T ] while the backward dynamics (Yt)t∈[0,T ] is initialized with the
invariant distribution of the noising dynamics (the uniform distribution pref in case of RSGM).
However, in order for the method to yield good results we need L(Y0) ≈ L(XT ) (see De Bortoli
et al., 2021, Theorem 1). Usually, this requires the number of steps in the backward process to
be large in order to keep T large and γ small (where γ > 0 is the stepsize in the GRW). Another
limitation of SGM is that existing methods target an easy-to-sample reference distribution. Hence,
classical SGM cannot interpolate between two distributions defined by datasets. To circumvent this
problem, one can consider a process whose initial and terminal distribution are pinned down using
Schrödinger bridges (Schrödinger, 1932; Léonard, 2012a; Chen et al., 2016; De Bortoli et al., 2021;
Vargas et al., 2021).
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M.2 Conditional RSGM.

Another extension of interest is conditional sampling. By amortizing SGM with respect to an
observation y it is possible to approximately sample from a given posterior distribution. In the
Euclidean setting this idea has been successfully applied for several image processing problems such
as deblurring, denoising or inpainting (see for instance Kawar et al., 2021a,b; Lee et al., 2021; Sinha
et al., 2021; Batzolis et al., 2021; Chung et al., 2021). Similarly, RSGM can be amortized to handle
such situations in the case where the underlying posterior distribution is supported on a manifold.
Practically, this requires for the score network takes an additional input, i.e sθ (t, x; y).

M.3 Invariant distributions

In what follows, we propose an extension for modelling probability distributions which known
invariance. That is, we assume that p0 (ρ(g)x) = p0(x) for all g ∈ G, with G a group and
ρ : G→ GLn(R) a representation. Following Köhler et al. (2020), we have that if pref is invariant
w.r.t. G and φ : M → M is equivariant w.r.t. to G, then the pushforward probability density
p = pref ◦ φ−1 is invariant w.r.t. G.

Let’s consider the probability flow φ associated with the reverse diffusion (4)—given by dYt =
{−b(Yt) +∇ log pT−t(Yt)}dt+ dBMt — i.e. the solution of the following ODE (see App. D)

dYt = {−b(Yt) + 1
2 ∇ log pT−t(Yt)}dt.

In practice, the Stein score∇ log pt is approximated with the score network sθ(t, ·). It is sufficient to
parametrize the score network so that it is equivariant w.r.t. its second argument —assuming that
ρ(g) and the drift b commute (e.g. which is true for a linear drift)—since we then have[

−b+ 1
2 sθ (T − t, ·)

]
(ρ(g)Yt) = ρ(g)

[
−b+ 1

2 sθ (T − t, ·)
]

(Yt).

N Stereographic baseline details

In the experiments on the sphere we compare to a Stereographic Score-Based baseline model. This
model is an alternative to the RSGM the we propose in order to construct score-based models on
manifolds without having to construct the intrinsic approach presented in the paper as Riemannian
Score-Based models. They can be applied to more cases than just the sphere.

In general these models work as follows:

1. Project the datapoints from the manifold to Euclidean space through a invertible11 function
f :M→ Rd.

2. Train a Euclidean score-based generative model on the datapoints projected to Euclidean
space, giving a density pθ on Rd (where θ are the parameters of the density).

3. Define the density on the manifold as the pushforward of the density in Euclidean space
under the inverse of the bijection, Pθ,M = f−1

∗ pθ.

One could also apply these models to the torus. By using the bijection f : θ 7→ tan(θ) we can project
each coordinate onto the real line.

In general we found that these models perform less well than their intrinsic counterparts. In order to
map density near the seams of the bijection, it requires the model to send data points off to infinity in
the Euclidean space. This is numerically challenging and leaves artefacts in the pushforward density
on the manifold. In addition, these methods depend on the bijection used to project the data into a
Euclidean space and therefore are not intrinsic.

O Experimental details

In what follows we describe the experimental settings used to generate results introduced in Sec. 6.
The models and experiments have been implemented in Jax (Bradbury et al., 2018), using a modified
version of the Riemannian geometry library Geomstats (Miolane et al., 2020b).

11Note that this may not be a bijection. For example for the sphere we use the stereographic projection of the
earth onto the plane, which misses out a single point, opposite the projection point.
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Anonymized code can be found at here12. Due to difficulties referencing anonymized repositories,
the modified version of geomstats is included as a zip file in the supplementary material. Additionally
modified versions of the submitit and hydra-submitit-launcher packages are not supplied for
the same reasons, but the default versions of these will suffice for most users. Full code and all repos
will be publicly available after publication.

Models Following Song et al. (2021), the score-based generative models (SGMs) diffusion coeffi-
cient is parametrized as g(t) =

√
β(t) with β : t 7→ βmin + (βmax − βmin) · t.

Architecture The architecture of the score network sθ is given by a multilayer perceptron with
5 hidden layers for the Earth and SO(3) experiments, and 3 for the high-dimension experiments
with 512 units each. We use sinusoidal activation functions. We decompose the output of the score
network on the set of divergence free vector fields as per Sec. 3.4.

Loss Where not specified, SGMs are trained with the sliced score matching (SSM) loss `imt , relying
on the Hutchinson estimator for computing the divergence with Rademacher noise described in
Sec. 3.4. We found that training with the denoising score matching (DSM) loss `t|0 gave similar
results. Regarding the weighting function, for DSM loss `t|0 we use λt = Var[Xt|X0] (where we rely
on the closed-form standard deviation available in the Euclidean setting as a proxy for the compact
manifold setting), while for the ISM/SSM losses `imt we use λt = g(t)2 = β(t).

Optimization All models are trained by the stochastic optimizer Adam (Kingma and Ba, 2015)
with parameters β1 = 0.9, β2 = 0.999, batch-size of 512 data-points. The learning rate is annealed
with a linear ramp from 0 to 1000 and from then with a cosine schedule.

Likelihood evaluation and sample drawing We rely on the Dormand-Prince solver (Dormand
and Prince, 1980), an adaptive Runge-Kutta 4(5) solver, with absolute and relative tolerance of 1e− 5
to compute approximate numerical solutions of any ODEs. For the rollouts of the SGM SDEs we use
a Euler Maruyama predictor and no corrector. Unless stated we use 100 step rollouts.

Hardware Models are trained on a cluster with a mixture of GeForce RTX 1080, 1080 Ti and 2080
Ti GPU cards.

O.1 Sphere

Data We randomly split the datasets intro training, validation and test datasets with (0.8, 0.1, 0.1)
proportions. In each case the earth is approximated as a perfect sphere.

Models The mixture of Kent distributions (Peel et al., 2001) were optimised using the EM
algorithm and the number of components were selected from a grid search over the range
5, 10, 15, 20, 25, 30, 40, 50, 75, 100, based on validation set likelihood and 250 EM iterations. The
number of components selected were: Volcano 25, Earthquake 50, Flood 100 and Fire 100.

For the stereographic SGM–which is a standard SGM with an Ornstein–Uhlenbeck process followed
with the inverse stereographic projection–we found βmin = 0.001 and βmax = 2 to work best.

Optimization The score-based models are trained for 600k iterations for all datasets but ‘Flood’
where 300k performed best.

Additional experimental results

Approximate forward sampling Standard Euclidean SGMs rely on a Ornstein–Ulhenbeck (OU)
forward process (1) which can easily be simulated since Xt|X0 is Gaussian. In contrast, for most
manifolds one has to rely on an approximate sampling scheme—see Sec. 3.3. First, we directly
assess the quality of the approximate samples X̂t|X0 obtained via geodesic random walk (GRW),
against ‘exact’ samples Xt|X0 which are obtained by using a high number of discretization steps

12https://anonymous.4open.science/r/rimannian-score-sde
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(N = 1000). We report on Fig. S4a the discrepancy between these distributions for different values
of discretization steps N , as measured by maximum mean discrepancy (MMD) (Gretton et al., 2012).
We see that from N = 5 the approximate samples are very closely distributed to the true samples.
Then, in order to assess the impact of this approximation on the RSGMs’ performance, we report on
Fig. S4b the log-likelihood when varying the number of discretization steps N . We similarly observe
that apart from very small values of N , the models’ performance is very robust to the approximation
quality of the forward sampling samples.
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(b) Test log-likelihood of trained RSGMs on the Flood
dataset while varying the number of discretization steps
N when simulating forward sampling Xt|X0.

Figure S4: Ablation study on the impact of the forward sampling approximation quality on S2.

DSM loss `t|0 On Fig. S5, we show how the test log-likelihood varies with respect to the two
hyparameters of the DSM loss, by training RSGMs over a grid of values for τ and J on the Flood
dataset. We can see that the Varadhan approximation by itself (τ = 1) yields descent performance,
although a wise combination of Varadhan approximation with a truncation of the heat kernel can give
even better results. The performance is relatively robust to the choice of such hyperparameters as
long as τ and J are high enough.
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Figure S5: Ablation study on the denoising score matching (DSM) loss `t|0 when combining the heat kernel trun-
cation and the Varadhan approximation: ∇xt log pt|0(xt|x0) ≈ 1(t ≤ τ) exp−1

xt
(x0) + 1(t > τ)SJ,t(x0, xt).

O.2 Torus

Data The synthetic data trained on consists of a wrapped Gaussian distribution on Tn with uni-
formly chosen random mean and standard deviation of 0.2. Such a distribution is defined by taking
the density of a Normal distribution in the tangent space of the manifold at the mean and passing it
through the exponential map at the mean.

Architecture To parametrize the vector field on Tn we use a single filed per dimension pointing in
a consistent direction around the ith component in the product, with unit norm.
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Models All models were trained with the same 3 layer, 512 units per layer MLP across different
dimension sizes.

Optimization The models are optimized for 50k iterations. The RSGM models are trained with
both the implicit score-matching loss and the sliced score-matching loss.

O.3 Special Orthogonal group

Applications of orthogonal constraints span various fields, such as protein docking with ligands bind-
ing pose prediction (Ganea et al., 2022), robotics and Computer vision with rigid body transformation
estimation (Barfoot et al., 2011; Prokudin et al., 2018), and medical imaging for data alignment (Hou
et al., 2018).

Data We consider the synthetic dataset consisting of samples in SO3(Rd)13 from the mix-
ture distribution with density p(Q) = 1

K

∑K
k=1 NW (Q|Qk, σ

2
k) with K ∈ N, where for any

k ∈ {1, . . . ,K}, we have that Q = Qk expId[σkẑ] with z ∼ N(0, IdR3) satisfies Q ∼ NW (Qk, σk)
and (·)∧ : R3 → so(3). For any k ∈ {1, . . . ,K}, we set Qk ∼ µ where µ is the uniform distribution
on SO3(R) and σ2

k ∼ IG(α = 100, β = 1), where IG is the inverse Gaussian distribution. We choose
K = 32 mixture components. We showcase a conditional sampling extension of our model—see
App. M for more details— by targeting individual mixture components p(Q|k). Our model is trained
using the `t|0 (DSM) loss along with the Varadhan asymptotic approximation, see (8).

Architecture To parametrize the vector field, we rely on the basis of the Lie group, so(n) =
{A ∈ Md(R) : A> = −A} given by Eij = Uij − Uji for i, j ∈ {1, . . . , d} with i < j and
Uij = (δij(k, `))1≤k,`≤d, which induces a basis on the tangent spaces TQSOd for any Q ∈ SOd(R)
given by {QEij}1≤i<j≤d. This is the divergence-free vector field approach described in Sec. 3.4.

Models We compare our proposed approach against Moser flows (Rozen et al., 2021) and a wrapped-
exponential baseline (Falorsi et al., 2019) defined as the pushforward along the transformation

R3
F−1
θ−−−→ R3 g−→ R3 ∧−→ so(3)

exp−−→ SO3(R) with F−1
θ denoting the approximate time-reversed

diffusion, g denoting the radial operator defined by g : x 7→ 2π tanh(‖x‖)x/‖x‖, (·)∧ : R3 → so(n)
the isomorphism given by the basis on so(3) and exp the matrix exponential. The radial g operator’s
constant 2π is chosen as the injectivity radius of the group so that the transformation tanh ◦ ∧ ◦ exp
is injective (the set of elements with no preimage is then only the cut locus which is known to have
measure zero). Henceforth, this wrapped-exponential transformation cannot be bijective, it is either
injective or surjective depending on the choice of radius in the radial operator g.

Optimization Models are trained for 100k iterations. The Riemannian SGM is trained with the
Varhadan approximation of the denoising score-matching loss (DSM) Sec. 3.4, and the wrapped-
exponential model relies on the exact DSM loss. After a first hyperparameter exploration, a grid search
is performed over learning_rate ∈ [2e − 5, 4e − 5], for SGMs over βf ∈ [0.5, 1, 2, 4, 6, 8, 10]
and for Moser flows over K ∈ [1000, 10000] and λmin ∈ [1, 10, 100].

13This manifold is 3-dimensional.
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