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Abstract

Score-based generative models (SGMs) are a powerful class of generative models
that exhibit remarkable empirical performance. Score-based generative modelling
(SGM) consists of a “noising” stage, whereby a diffusion is used to gradually add
Gaussian noise to data, and a generative model, which entails a “denoising” process
defined by approximating the time-reversal of the diffusion. Existing SGMs assume
that data is supported on a Euclidean space, i.e. a manifold with flat geometry. In
many domains such as robotics, geoscience or protein modelling, data is often
naturally described by distributions living on Riemannian manifolds and current
SGM techniques are not appropriate. We introduce here Riemannian Score-based
Generative Models (RSGMs), a class of generative models extending SGMs to
Riemannian manifolds. We demonstrate our approach on a variety of manifolds,
and in particular with earth and climate science spherical data.

1 Introduction

Score-based Generative Models (SGMs) also called diffusion models (Song and Ermon, 2019; Song
et al., 2021; Ho et al., 2020; Dhariwal and Nichol, 2021) formulate generative modelling as a
denoising process. Noise is incrementally added to data using a diffusion process until it becomes
approximately Gaussian. The generative model is then obtained by simulating an approximation of
the corresponding time-reversal process, which progressively denoises a Gaussian sample to obtain
a data sample. This process is also a diffusion whose drift depends on the logarithmic gradients of
the noised data densities, i.e. the Stein scores, estimated using a neural network via score matching
(Hyvärinen, 2005; Vincent, 2011).

SGMs have been primarily applied to data living on Euclidean spaces, i.e. manifolds with flat
geometry. However, in a large number of scientific domains the distributions of interest are supported
on Riemannian manifolds. These include, to name a few, protein modelling (Shapovalov and
Dunbrack Jr, 2011), cell development (Klimovskaia et al., 2020), image recognition (Lui, 2012),
geological sciences (Karpatne et al., 2018; Peel et al., 2001), graph-structured and hierarchical data
(Roy et al., 2007; Steyvers and Tenenbaum, 2005), robotics (Feiten et al., 2013; Senanayake and
Ramos, 2018) and high-energy physics (Brehmer and Cranmer, 2020).

We introduce in this work Riemannian Score-based Generative Models (RSGMs), an extension of
SGMs to Riemannian manifolds which incorporate the geometry of the data by defining the forward
diffusion process directly on the Riemannian manifold, inducing a manifold-valued reverse process.
This requires constructing a noising process on the manifold that converges to an easy-to-sample
reference distribution. We establish that, as in the Euclidean case, the corresponding time-reversal
process is also a diffusion whose drift includes the Stein score which is intractable but can similarly be
estimated via score matching. Methodological extensions are required as in most cases the transition
kernel of the noising process cannot be sampled exactly. For example on compact manifolds it is
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typically only available as an infinite sum through the Sturm–Liouville decomposition (Chavel, 1984).
To this end, we develop non-standard techniques for score estimation and rely on the use of Geodesic
Random Walks for sampling (Jørgensen, 1975). We provide theoretical convergence bounds for
RSGMs on compact manifolds and demonstrate our approach on a range of manifolds and tasks,
including modelling a number of natural disaster occurrence datasets collected by Mathieu and Nickel
(2020). We show that RGSMs achieve better performance than recent baselines (Mathieu and Nickel,
2020; Rozen et al., 2021) and scale better to high-dimensional manifolds.

2 Euclidean Score-based Generative Modelling

We recall here briefly the key concepts behind SGMs on the Euclidean space Rd and refer the readers
to Song et al. (2021) for a more detailed introduction. We consider a forward noising process (Xt)t≥0

defined by the following Stochastic Differential Equation (SDE)

dXt = −Xtdt+
√

2dBt, X0 ∼ p0, (1)

where (Bt)t≥0 is a d-dimensional Brownian motion and p0 is the data distribution. The available data
gives us an empirical approximation of p0. The process (Xt)t≥0 is simply an Ornstein–Ulhenbeck
(OU) process which converges with geometric rate to N(0, Id). Under mild conditions on p0, the time-
reversed process (Yt)t≥0 = (XT−t)t∈[0,T ] also satisfies an SDE (Cattiaux et al., 2021; Haussmann
and Pardoux, 1986) given by

dYt = {Yt + 2∇ log pT−t(Yt)}dt+
√

2dBt, Y0 ∼ pT , (2)

where pt denotes the density of Xt. By construction, the law of YT−t is equal to the law of Xt for
t ∈ [0, T ] and in particular YT ∼ p0. Hence, if one could sample from (Yt)t∈[0,T ] then its final
distribution would be the data distribution p0. Unfortunately we cannot sample exactly from (2) as pT
and the scores (∇ log pt(x))t∈[0,T ] are intractable. Hence SGMs rely on a few approximations. First,
pT is replaced by the reference distribution N(0, Id) as we know that pT converges geometrically
towards it. Second, the following denoising score matching identity is exploited to estimate the scores

∇xt log pt(xt) =
∫
Rd ∇xt log pt|0(xt|x0) p0|t(x0|xt)dx0,

where pt|0(xt|x0) is the transition density of the OU process (1) which is available in closed-form. It
follows directly that ∇ log pt is the minimizer of `t(s) = E[‖s(Xt)−∇xt log pt|0(Xt|X0)‖2] over
functions s where the expectation is over the joint distribution of X0,Xt. This result can be leveraged
by considering a neural network sθ : [0, T ] × Rd → Rd trained by minimizing the loss function
`(θ) =

∫ T
0
λt`t(sθ(t, ·))dt for some weighting function λt > 0. Finally, an Euler–Maruyama

discretization of (2) is performed using a discretization step γ such that T = γN for N ∈ N

Yn+1 = Yn + γ{Yn + 2sθ(T − nγ, Yn)}+
√

2γZn+1, Y0 ∼ N(0, Id), Zn
i.i.d.∼ N(0, Id).

The above showcases the basics of SGMs but we highlight that many improvements have been
proposed; see (e.g. Song and Ermon, 2020; Jolicoeur-Martineau et al., 2021; Dhariwal and Nichol,
2021). In particular, selecting an adaptive stepsize (γn)n∈N (Bao et al., 2022; Watson et al., 2021)
and using a predictor-corrector scheme (Song et al., 2021) instead of a simple Euler–Maruyama
discretization drastically improves performance.

3 Riemannian Score-based Generative Modelling

We now move to the Riemannian manifold setting, and more specifically assume thatM is a complete,
orientable connected and boundaryless Riemannian manifold, endowed with a Riemannian metric
g 4. Four components are required to extend SGMs to this setting: i) a forward noising process on
M which converges to an easy-to-sample reference distribution, ii) a time-reversal formula onM
which defines a backward generative process, iii) a method for approximating samples of SDEs on
manifolds, iv) a method to efficiently approximate the drift of the time-reversal process. Notation are
gathered in App. B.

4Metrics g are sections of T∗M⊗ T∗M, the rank 2 tensor bundle of the dual tangent space, i.e. smooth
varying bilinear maps on TM, verifying symmetry and positive semi-definiteness.
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3.1 Noising processes on manifolds

The first necessary component is a suitable generic noising process on manifolds that will converge
to a convenient stationary distribution. A simple choice is to use Langevin dynamics described by

dXt = − 1
2 ∇Xt

U(Xt)dt+ dBMt , (3)

which admits the invariant density (w.r.t. the volume form) given by dpref/dVolM(x) ∝ e−U(x) (Dur-
mus, 2016, Section 2.4), where∇ is the Riemannian gradient5.

Two simple choices for U(x) present themselves. Firstly, setting U(x) = dM(x, µ)2/(2γ2), where
dM is the geodesic distance and µ ∈M is an arbitrary mean location, induces the drift∇Xt

U(Xt) =
− exp−1

Xt
(µ)/γ2 6. This is the potential of the ‘Riemannian normal’ (Pennec, 2006) distribution, from

which it is in general neither trivial to sample nor to compute the normalisation constant (Hauberg,
2018; Mathieu et al., 2019). An alternative is to target the ’exponential wrapped’ Gaussian. This is the
pushforward of a Gaussian distribution in the tangent space at the mean location along the exponential
map. The potential is given by U(x) = dM(x, µ)2/(2γ2) + log |∂ exp−1

µ (x)|7. In contrast to the
Riemannian normal, sampling and evaluating the density of this distribution is easy.

One recovers the standard Ornstein–Uhlenbeck noising process (Song et al., 2021) for both of these
target distributions whenM = Rd and µ = 0 since then the drift b(t,Xt) = 1

2 exp−1
Xt

(0) = − 1
2 Xt.

On compact manifolds, the invariant measure VolM has finite volume, thus a natural choice is to
target the uniform distribution which is given by VolM/|M|. In this case, ∇XtU(Xt) = 0 and the
noising process is simply a Brownian motion onM.

3.2 Time-reversal on Riemannian manifolds

In order to use these noising processes we prove the time-reversal formula for manifolds, a general-
isation of the results in the Euclidean case, e.g. see Cattiaux et al. (2021, Theorem 4.9). Consider
an SDE of the form dXt = b(Xt)dt+ dBMt where BMt is a Brownian motion onM. We refer to
App. C.3 for an introduction to Brownian motions on manifolds. This result shows that if (Xt)t∈[0,T ]

is a diffusion process then (XT−t)t∈[0,T ] is also a diffusion process w.r.t. the backward filtration
whose coefficients can be computed, and are shown in Eq. (4). The proof relies on an extension of
Cattiaux et al. (2021, Theorem 4.9) to the Riemannian manifold case and is postponed to App. H.
Theorem 1 (Time-reversed diffusion). Let T ≥ 0 and (BMt )t≥0 be a Brownian motion on M
such that BM0 has distribution the volume form pref

8. Let (Xt)t∈[0,T ] be associated with the SDE
dXt = b(Xt)dt + dBMt . Let (Yt)t∈[0,T ] = (XT−t)t∈[0,T ] and assume that KL(P|Q) < +∞,
where Q is the distribution of (BMt )t∈[0,T ] and P the distribution of (Xt)t∈[0,T ]. In addition, assume
that Pt = L(Xt), the distribution of Xt, admits a smooth positive density pt w.r.t. pref for any
t ∈ [0, T ]. Then, (Yt)t∈[0,T ] is associated with the SDE

dYt = {−b(Yt) +∇ log pT−t(Yt)}dt+ dBMt . (4)

3.3 Approximate sampling of diffusions

Obtaining samples from SDEs on a manifold is non-trivial in general. IfM is isometrically embedded
into Rp (with p ≥ d) one can define (BMt )t≥0 as a Rp-valued process, see App. C.3. However, this
approach is extrinsic, as it requires the knowledge of the projection operator to place points back
on the manifold at each step which can accumulate errors. Here we consider an intrisic approach
based on Geodesic Random Walks (GRWs), see Jørgensen (1975) for a review of their properties.
GRWs can approximate any well-behaved diffusion onM. Hence, we introduce GRWs in a general
framework and consider a discrete-time process (Xγ

n)n∈N which approximates the diffusion (Xt)t≥0

defined by
dXt = b(t,Xt)dt+ σ(t,Xt)dBMt . (5)

This generalisation is key to sampling the backward diffusion process defined in Theorem 1.
5The (Riemannian) gradient∇ is defined s.t. for any f :M→ R, x ∈M, v ∈ TxM, 〈∇f, v〉g = df(v).
6expx : TxM→M denotes the exponential mapping on the manifold, see e.g. Lee (2013, Chapter 20).
7| · | denotes the absolute value of the determinant, and ∂f the Jacobian of f .
8Note that in the case of a non-compact manifold pref is only a measure and not a probability measure.
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(a) A single step of a
Geodesic Random Walk.

(b) Many steps yield an ap-
proximate Brownian mo-
tion trajectory.

(c) The density of a single step of Gaussian Random
Walk [Left] and the Brownian motion density [Right]
agree well for small time steps.

Figure 1: Geodesic Random Walks can be used to approximate Brownian motion and more generally SDEs on
manifolds. (a) At each step, tangential noise is sampled (red), which is added the drift term (not pictured). This
tangent vector is then pushed through the exponential map to produce a geodesics step on the manifold (blue).
(b) Iterating this procedure yield approximate sample paths from the process.

Algorithm 1 GRW (Geodesic Random Walk)
Require: T,N,Xγ

0 , b, σ,P
1: γ = T/N . Step-size
2: for k ∈ {0, . . . , N − 1} do
3: Zk+1 ∼ N(0, Id) . Sample a Gaussian in the tangent space of Xγ

k
4: Wk+1 = γb(kγ,Xγ

k ) +
√
γσ(kγ,Xγ

k )Zk+1 . Compute the Euler–Maruyama step on tangent space
5: Xγ

k+1 = expXγ
k

[Wk+1] . Move along the geodesic defined by Wk+1 and Xγ
k onM

6: end for
7: return {Xγ

k }
N
k=0

Definition 2 (Geodesic Random Walk). Let Xγ
0 be aM-valued random variable. For any γ > 0, we

define (Xγ
n)n∈N such that for any n ∈ N, Xγ

n+1 = expXγn [γ{b(Xγ
n) +

√
γVn+1}], where (Vn)n∈N

is a sequence of TM-valued random variables such that for any n ∈ N, E[Vn+1|Fn] = 0 and
E[Vn+1V

>
n+1|Fn] = σσ>(Xγ

n), where Fn is the filtration generated by {Xγ
k }nk=0. We say that the

M-valued process (Xγ
n)n∈N is a Geodesic Random Walk.

Algorithm 1 approximately simulates the diffusion (Xt)t∈[0,T ] defined in Eq. (5) using GRWs; see
Kuwada (2012); Cheng et al. (2022) for quantitative error bounds in the time-homogeneous case
and App. I.2 for a novel extentsion for the time-inhomogeneous case. Fig. 1 provides a graphical
illustration of this procedure.

3.4 Score approximation on Riemannian manifolds

Score matching and loss functions. The reverse process from Eq. (4) involves the Stein score
∇ log pt which is unfortunately intractable. To derive an approximation, we first remark that for any
s, t ∈ (0, T ] with t > s and xt ∈ M, pt(xt) =

∫
M pt|s(xt|xs)dPs(xs), where Ps = L(Xs), the

distribution of Xs. Thus, we have that for any s, t ∈ [0, T ] with t > s and xt ∈M
∇xt log pt(xt) =

∫
M∇xt log pt|s(xt|xs)Ps|t(xt,dxs).

Hence, for any s, t ∈ [0, T ] with t > s we have that ∇ log pt = arg min{`t|s(st) : st ∈ L2(Pt)},
where `t|s(st) =

∫
M2 ‖∇x log pt|s(xt|xs)− st(xt)‖2dPs,t(xs, xt), which is referred as the Denois-

ing Score Matching (DSM) loss. It can also be written in an implicit fashion.
Proposition 3. Let t, s ∈ (0, T ] with t > s. Then, for any st ∈ C∞(M), `t|s(st) = 2`imt (st) +∫
M2 ‖∇xt log pt|s(xt|xs)‖2dPs,t(xs, xt), where `imt (st) =

∫
M{ 1

2‖st(xt)‖2 +div(st)(xt)}dPt(xt).

The proof is postponed to App. J. For any t ∈ (0, T ] the minimizers of the loss `imt on X (M) (where
X (M) is the set of vector fields onM) are the same as the ones for `t|s. The loss `imt is referred to
as the implicit score matching (ISM) loss (Hyvärinen, 2005). These losses are direct analogous to the
versions typically used in Euclidean space.

In the case where we have access to {∇ log pt|s : T ≤ t > s ≥ 0}, the forward noising process
transition kernels, or an approximation of this family, then we can use the DSM loss to learn
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Algorithm 2 RSGM (Riemannian Score-Based Generative Model)

Require: ε, T,N, {Xm
0 }Mm=1, loss, s, θ0, Niter, pref,P

1: /// TRAINING ///
2: for n ∈ {0, . . . , Niter − 1} do
3: X0 ∼ (1/M)

∑M
m=1 δXm0 . Random mini-batch from dataset

4: t ∼ U([ε, T ]) . Uniform sampling between ε and T
5: Xt = GRW(t,N,X0, b, Id,P) . Approximate forward diffusion with Algorithm 1
6: `(θn) = `t(T,N,X0,Xt, loss, sθn) . Compute score matching loss from Table 2
7: θn+1 = optimizer_update(θn, `(θn)) . ADAM optimizer step
8: end for
9: θ? = θNepoch

10: /// SAMPLING ///
11: Y0 ∼ pref . Sample from uniform distribution
12: b?θ(t, x) = sθ?(T − t, x) for any t ∈ [0, T ], x ∈M . Reverse process drift
13: {Yk}Nk=0 = GRW(T,N, Y0, bθ? , Id,P) . Approximate reverse diffusion with Algorithm 1
14: return θ?, {Yk}Nk=0

Table 1: Differences between SGM on Euclidean spaces and RSGM on Riemannian manifolds.

Ingredient \ Space Euclidean ‘Generic’ Manifold Compact Manifold
Forward process dXt = − 1

2
Xtdt+ dBMt − 1

2
∇XtU(Xt)dt+ dBMt dBMt

Easy-to-sample distribution Gaussian Wrapped Gaussian Uniform
Time reversal Cattiaux et al. (2021) Theorem 1
Sampling forward process Direct Geodesic Random Walk (Algorithm 1)
Sampling backward process Euler–Maruyama Geodesic Random Walk (Algorithm 1)

{st ∈ X (M) : t ∈ [0, t]}. If this is not the case then we turn to `imt . Note that `imt requires the
computation of a divergence term which requires d Jacobian-vector calls. In high dimension, a
stochastic estimator is necessary (Hutchinson, 1989). Following Song and Ermon (2020); Nichol and
Dhariwal (2021) the loss can be weighted with a term λt > 0.

Parametric family of vector fields. We approximate (∇ log pt)t∈[0,T ] by a family of functions
{sθ}θ∈Θ where Θ is a set of parameters and sθ : [0, T ] → X (M). In a Euclidean space, vector
fields are simply functions sθ : Rd → Rd. In manifolds, although for any x ∈M, TxM∼= Rd, there
does not necessarily exist a set of d smooth vector fields {Ei}di=1 such that span

(
{Ei(x)}di=1

)
=

TxM (Chapter 8, page 179, Lee, 2006) 9. Fortunately, one can rely on a larger set of smooth vector
fields {Ei(x)}ni=1 with n > d that does span the tangent bundle. Then it suffices to construct a neural
network sθ : [0, T ]×M→ Rn to parametrize the score network as sθ(t, x) =

∑n
i=1 siθ(t, x)Ei(x).

See App. E for a discussion on the different choices of generating sets {Ei(x)}ni=1.

Combining this parameterization with the score matching losses, the time-reversal formula of The-
orem 1 and the sampling of forward and backward processes described in Sec. 3.3, we define our
RGSM algorithm in Algorithm 2. This algorithm can also benefit from a predictor-corrector scheme
as in (Song et al., 2021), see App. G.

4 RSGMs on compact manifolds

Assuming compactness of the manifold M, we can leverage a number of special properties to
implement a specific case of our algorithm. In particular we benefit from the fact that on compact
manifolds we have a proper uniform distribution over the manifold, and have access to a variety of
approximations of the heat kernel. As highlighted in Sec. 3.1, in the compact setting we use Brownian
motion as the noising SDE, which targets the uniform distribution as the stationary distribution.
Table 1 highlights the main differences between RSGMs on compact manifolds, generic manifolds
and Euclidean score-based models.

9Manifolds for which there exists such a global frame {Ei(x)}di=1 are referred as parallelizable. S2 is a
well-known example of non-parallelizable manifold as per the Hairy ball theorem.
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Heat kernel on compact Riemannian manifolds. For any x0 ∈ M and t ≥ s ≥ 0, the heat
kernel pt|s(·|xs) is defined as the density of BMt w.r.t. the uniform measure on the manifold.

Contrary to the Gaussian transition density of the OU process (or the Brownian motion) in the
Euclidean setting, it is typically only available as an infinite series. In order to circumvent this issue
we consider two techniques: i) a truncation approach, ii) a Taylor expansion around t = 0 called a
Varadhan asymptotics. First, we recall that in the case of compact manifolds the heat kernel is given
by the Sturm–Liouville decomposition (Chavel, 1984) given for any t > 0 and x0, xt ∈M by

pt|0(xt|x0) =
∑
j∈N e−λjtφj(x0)φj(xt), (6)

where the convergence occurs in L2(pref ⊗ pref), (λj)j∈N and (φj)j∈N are the eigenvalues, respec-
tively the eigenvectors, of −∆M, the Laplace-Beltrami operator in the manifold, in L2(pref) (see
Saloff-Coste, 1994, Section 2). When the eigenvalues and eigenvectors are known, we rely on an
approximation of the logarithmic gradient of pt|0 by truncating the sum in Eq. (S8) with J ∈ N terms
to obtain for any t > 0 and x0, xt ∈M

∇xt log pt|0(xt|x0) ≈ SJ,t(x0, xt) , ∇xt log
∑J
j=0 e−λjtφj(x0)φj(xt). (7)

Under regularity conditions on M it can be shown that for any x, y ∈ M and t ≥ 0,
limJ→+∞ SJ,t(x0, xt) = ∇xt log pt|0(xt|x0) (see Jones et al., 2008, Lemma 1). In the case of
the d-dimensional torus or sphere the eigenvalues and eigenvectors are computable (see Saloff-Coste,
1994, Section 2) and we can apply this method to approximate pt|0 for any t > 0, see App. F

When the eigenvalues and eigenvectors are unknown or not tractable, we can still derive an approx-
imation of the heat kernel for small times t. Using Varadhan’s asymptotics—see Bismut (1984,
Theorem 3.8) or Chen et al. (2021, Theorem 2.1)—for any x, y ∈ M with y /∈ Cut(x) (where
Cut(x) is the cut-locus of x inM (see Lee, 2018, Chapter 10)) we have that

limt→0 t∇xt log pt|0(xt|x0) = exp−1
xt (x0). (8)

Using the previously defined score-matching losses and the approximations to the heat kernel above,
we highlight three methods to compute∇ log pt in Table 2.

Table 2: Computational complexity of score matching losses w.r.t. score network forward and backward passes.
ε is a random variable on TXtM such that E[ε] = 0 and E[εε>] = Id.

Loss Approximation Loss function
Requirements

Complexity
pt|0 exp−1

Xt

`t|0 (DSM)
None 1

2
E
[
‖s(Xt)−∇ log pt|0(Xt|X0)‖2

]
3 7 O(1)

Truncation (7) 1
2
E
[
‖s(Xt)− SJ,t(X0,Xt)‖2

] asymptotic
expansion 7 O(1)

Varhadan (8) 1
2
E
[
‖s(Xt)− exp−1

Xt
(X0)/t‖2

]
7 3 O(1)

`t|s (DSM) Varhadan (8) 1
2
E
[
‖s(Xt)− exp−1

Xt
(Xs)/(t− s)‖2

]
7 3 O(1)

`imt (ISM)
Deterministic E

[
1
2
‖s(Xt)‖2 + div(s)(Xt)

]
7 7 O(d)

Stochastic E
[
1
2
‖s(Xt)‖2 + ε>∂s(Xt)ε

]
7 7 O(1)

Convergence results in the compact setting We now provide a theoretical analysis of RSGM
under the assumption thatM is compact. The following result ensures that RSGM generates samples
whose distribution is close to the data distribution p0. Let us denote {Yk}n∈{0,...,N} the sequence
generated by Algorithm 2. This result relies on the following assumption, which is satisfied for a
large class of manifoldsM such as the d-dimensional sphere and torus, compact matrix groups and
products of these manifolds.
A1. There exist C,α > 0 such that for any t ∈ (0, 1] and x ∈ M, pt|0(x|x) ≤ Ct−α/2, where
pt|0(·|x0) is the density of the heat kernel, i.e. the density of BMt with initial condition x0

10.
10The diagonal upper-bound is implied by Sobolev inequalities which control of the growth of some functions

by the growth of their gradient. A1 is satisfied in our experiments, see Saloff-Coste (1994); Gross (1992).
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Theorem 4. Assume A1, that p0 is smooth and positive and that there exists M ≥ 0 such that for
any t ∈ [0, T ] and x ∈ M, ‖sθ?(t, x)−∇ log pt(x)‖ ≤ M, with sθ? ∈ C([0, T ] ,X (M)). Then if
T > 1/2, there exists C ≥ 0 independent on T such that

W1(L(YN ), p0) = C(e−λ1T +
√
T/2M + eT γ1/2),

where W1 is the Wasserstein distance of order one on the probability measures onM.

The proof is postponed to App. I. In particular, for any ε > 0, choosing T > 0 large enough, M small
enough (which can be achieved using the universal property of neural networks) and γ small enough,
we get that W1(L(YN ), p0) ≤ ε. This result might seem weaker than the result obtained for Moser
flows in (Rozen et al., 2021, Theorem 3), but we emphasize that our bound takes into account the
time-discretization contrary to Rozen et al. (2021) which considers the continuous-time flow. If we
consider the time-reversed continuous-time SDE then we recover a bound in total variation distance,
see App. I. Note that the upper bound M encompasses both the bias introduced by the use of a neural
network and the bias introduced by the use of an approximation of the score.

5 Related work

In this section we discuss previous work on parametrizing family of distributions for manifold-valued
data. Here, the manifold structure is considered to be prescribed, in contrast with methods that jointly
learn the manifold structure and density (e.g. Brehmer and Cranmer, 2020; Caterini et al., 2021).

Parametric family of distributions. The various parametric families of manifold-valued distribu-
tions that have been proposed can be categorized into three main approaches (Navarro et al., 2017):
wrapping, projecting and conditioning. Wrapped distributions consider a parametric distribution on
Rn that is pushed-forward along a surjective map ψ : Rn →M. Projected distributions are defined
by marginalizing out some distribution along the normal bundle ofM. Conditioning distributions
encompass the von Mises-Fisher and Kent distributions (Fisher, 1953; Kent, 1982). Considering
mixtures of these distributions is key to increase flexibility (Peel et al., 2001; Mardia et al., 2008).

Push-forward of Euclidean normalizing flows. More recently, approaches leveraging the flexibility
of normalizing flows (Papamakarios et al., 2019) have been proposed. Following the wrapping method
described above, these methods parametrize a normalizing flow in Rn before being pushed along an
invertible map ψ : Rn →M. However, to globally represent the manifold, the map ψ needs to be a
homeomorphism, which can only happen ifM is topologically equivalent to Rn, hence limiting the
scope of that approach. One natural choice for this map is the exponential map expx : TxM∼= Rd.
This approach has been taken, for instance, by Falorsi et al. (2019) and Bose et al. (2020), respectively
parametrizing distributions on Lie groups and hyperbolic space.

Neural ODE on manifolds. To avoid artifacts or numerical instabilities due to the manifold em-
bedding, another line of work uses tools from Riemannian geometry to define flows directly on the
manifold of interest (Falorsi and Forré, 2020; Mathieu and Nickel, 2020; Falorsi, 2021). Since these
methods do not require a specific embedding mapping, they are referred as Riemannian. They extend
continuous normalizing flows (CNFs) (Grathwohl et al., 2019) to the manifold setting, by implicity
parametrizing flows as solutions of Ordinary Differential Equations (ODEs). As such, the parametric
flow is a continuous function of time. This approach has recently been extended by Rozen et al.
(2021) introducing Moser flows, whose main appeal being that it circumvents the need to solve an
ODE in the training process. We refer to App. K for an in-depth discussion on the links between our
work and Moser flows.

Optimal transport on manifolds. Another line of work has developed flows on manifolds using
tools from optimal transport. Sei (2013) introduced a flow that is given by fθ : x 7→ expx(∇ψcθ) with
ψcθ a c-convex function and c = d2

M the squared geodesic distance. This approach is motivated by
the fact that the optimal transport map takes such an expression (Ambrosio, 2003). These methods
operate directly on the manifold, similarly to CNFs, yet in contrast they are discrete in time. The
benefits of this approach depend on the specific choice of parametric family of c-convex functions
(Rezende and Racanière, 2021; Cohen et al., 2021), trading-off expressivity with scalability.
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Table 3: Summary of computational complexity (w.r.t. neural network forward and backward passes) for different
methods. d is the manifold dimension, k the number of Monte Carlo batches in Moser flow’s regularizer,N is the
number of steps in the (adaptive) ODE solver, whereas N∗ is the number of steps in the SDE Euler-Maruyama
solver–which can usually be lower than N . Moser flow and RSGM training complexity varies if the Hutchinson
stochastic estimator is used. See Table 2 for score matching losses complexity.

Method Training Likelihood evaluation Sampling

RCNF Solving ODE O(dN) Solving augmented ODE O(dN) Solving ODE O(N)

Moser flow Computing div O(dk) or O(k) Solving augmented ODE O(dN) Solving ODE O(N)

RSGM Score matching O(d) or O(1) Solving augmented ODE O(dN) Solving SDE O(N∗)

6 Experiments

In this section we benchmark the empirical performance of RSGMs along with other manifold-valued
methods introduced in Sec. 5. We also compare to a ‘Stereographic‘ score-based model, introduced
in App. N. First, we assess their modelling capacity on earth and climate science spherical data. Then,
we test the methods scalability with respect to manifold dimensions with a synthetic experiment on
the torus Td. Eventually, we evaluate the models’ regularity and time complexity with a synthetic
SO3(R) target. Experimental details are provided in App. O.

6.1 Earth and climate science datasets on the sphere

We start by evaluating RSGMs on a collection of simple datasets, each containing an empirical
distribution of occurrences of earth and climate science events on the surface of the earth. These
events are: volcanic eruptions (NGDC/WDS), earthquakes (NGDC/WDS), floods (Brakenridge,
2017) and wild fires (EOSDIS, 2020). We compare to previous baseline methods: Riemannian
Continuous Normalizing Flows (Mathieu and Nickel, 2020), Moser Flows (Rozen et al., 2021) and a
mixture of Kent distributions (Peel et al., 2001). Additionally, we consider a standard SGM on the
2D plane followed by the inverse stereographic projection which induces a density on the sphere
(Gemici et al., 2016). We evaluate the log-likelihood of each model, extending to the manifold
setting the likelihood computation techniques of SGMs, see App. D. We observe from Table 4,
that all benchmarked methods have comparable performance when evaluated on these simple tasks
with RSGM performing marginally better on most datasets. However, we empirically notice that
Moser flows are slow to train and additionally that both Moser flows and stereographic SGMs are
computationally expensive to evaluate.

6.2 Synthetic data on tori

We now move to another manifold, that is the torus Td = S1 × · · · × S1, so as to assess the scalability
of the different methods with respect to the dimension d. We consider a wrapped Gaussian target
distribution on Td with a random mean and unit variance. Moser flows’ (Rozen et al., 2021) loss
involves a regularization term which involves an integral over the manifold, approximated by a
Monte Carlo (MC) estimator with uniform proposal. This term regularizes Moser flows towards
probability measures, i.e. with unit volume. We thus expect Moser flows to fail in high-dimension as
the number of samples K required for the MC estimator to be accurate will grows as O(ed), and the
Table 4: Negative log-likelihood scores for each method on the earth and climate science datasets. Bold indicates
best results (up to statistical significance). Means and confidence intervals are computed over 5 different runs.
Novel methods are shown with blue shading.

Method Volcano Earthquake Flood Fire

Mixture of Kent −0.80±0.47 0.33±0.05 0.73±0.07 −1.18±0.06

Riemannian CNF −6.05±0.61 0.14±0.23 1.11±0.19 −0.80±0.54

Moser Flow −4.21±0.17 −0.16±0.06 0.57±0.10 −1.28±0.05

Stereographic Score-Based −3.80±0.27 −0.19±0.05 0.59±0.07 −1.28±0.12

Riemannian Score-Based −4.92±0.25 −0.19±0.07 0.45±0.17 −1.33±0.06

Dataset size 827 6120 4875 12809
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(a) Volcano (b) Earthquake (c) Flood (d) Fire

Figure 2: Trained score-based generative models on earth sciences data. The learned density is colored green-blue.
Blue and red dots represent training and testing datapoints, respectively.

memory required to compute this estimator grows either in O(Kd) for exact divergences or O(K)
for approximated divergences (see Table 3).

In Fig. 3, we observe that RSGMs are able to fit well the target distribution even in high dimension,
with a linear or constant computational cost—depending on the divergence estimator. In contrast,
Moser flows scale poorly with the dimension, to the extent that we are unable to train them for d ≥ 10.
This is due to the combination of the complexity which grows linearly with both the dimension d and
the number of MC samples K, which itself ought to grow exponentially with d—as discussed in the
previous paragraph. This is illustrated by the gap between the ‘Moser’ and ‘ODE’ likelihoods which
increases with the manifold dimension (see left Fig. 3).

6.3 Synthetic data on the Special Orthogonal group

In order to demonstrate the broad range of applicability of our model we now turn to the task of density
estimation on the special orthogonal group SOd(R) = {Q ∈ Md(R) : QQ> = Id, det(Q) = 1}.
We consider the synthetic dataset consisting of samples in SO3(R) from a mixture of wrapped normal
distributions with M components.

We compare RSGMs against Moser flows and a wrapped-exponential baseline inspired by Falorsi
et al. (2019)—where we parametrize a standard Euclidean SGM on so(3) that is then pushed-forward
on SO3(R). RSGMs are trained using the `t|0 (DSM) loss with the Varadhan approximation (see
Table 2). From Table 5 we observe that, RSGMs perform consistently, whether the target distribution
has few or many mixture components M , as opposed to Exp-wrapped SGMs and Moser flows which
only perform well in some range of M . Similarly to Sec. 6.2, we find Moser flows to be much slower
to train due to the large number of Monte Carlo samples needed in the reguralizer (K = 104). We
also note from Table 5 that the number of score network evaluations (NFE) is significantly lower for
RSGMs, and is particularly detrimental for Moser flows (� 103).
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Figure 3: Comparison of Moser flows and RSGMs training speed and performance on the synthetic high-
dimension torus task. Moser flows trained with λmin = 1. We report two likelihoods, the ‘Moser’ closed form
density—not guaranteed to be normalized—and the ‘ODE’ likelihood given by solving an augmented ODE (as
in CNFs) with the vector field induced by the Moser flow density—which is guaranteed to have unit volume.

9



(a) Histograms of SO3(R) samples from a target mix-
ture distribution with M = 4 components, represented
via their Euler angles.
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(b) RSGMs are much more robust to hyperparameters
than Exp-wrapped SGMs. The diffusion coefficient is
given by σ(t,Xt) =

√
β(t), β(t) = β0 + (βf − β0)t.

Figure 4: Trained score-based generative models on synthetic SO3(R) data.

Table 5: Test log-likelihood and associated number of function evaluations (NFE) in 103 on the synthetic mixture
distribution with M components on SO3(R). Bold indicates best results (up to statistical significance). Means
and standard deviations are computed over 5 different runs. Novel methods are shown with blue shading.

Method M = 16 M = 32 M = 64

log-likelihood NFE log-likelihood NFE log-likelihood NFE

Moser Flow 0.85±0.03 2.3±0.5 0.17±0.03 2.3±0.9 −0.49±0.02 7.3±1.4

Exp-wrapped SGM 0.87±0.04 0.5±0.1 0.16±0.03 0.5±0.0 −0.58±0.04 0.5±0.0

RSGM 0.89±0.03 0.1±0.0 0.20±0.03 0.1±0.0 −0.49±0.02 0.1±0.0

6.4 Synthetic data on hyperbolic space

Finally we demonstrate RSGM on a non-compact manifold: the two dimensional hyperbolic space
H2, which is defined as the simply connected space of constant negative curvature. We use Langevin
dynamics as the noising process (Eq. (3)) and target a wrapped Gaussian as the invariant distribution.
We again consider a synthetic dataset of samples from a mixture of exp-wrapped normal distribution.
From Fig. 5, we can qualitatively see that both score-based models are able to fit the target distribution.

(a) Target distribution. (b) Exp-wrapped SGM. (c) RSGM.

Figure 5: Samples from different probability distributions on H2 coloured w.r.t their density.

7 Discussion and limitations

In this paper we introduced Riemannian Score-Based Generative Models (RSGMs), a class of deep
generative models that represent target densities supported on manifolds, as the time-reversal of
Langevin dynamics. The main benefits of our method stems from its scalability to high dimensions, its
applicability to a broad class of manifolds due to the diversity of available loss functions, its robustness
and crucially its capacity to model complex datasets. We also provided theoretical guarantees on the
convergence of RSGMs. In future work, we would like explore more generic classes of manifolds,
such a ones with a boundary, along with alternative noising processes. Another promising extension
concerns stochastic control on manifolds and more precisely, deriving efficient algorithms to solve
Schrödinger bridges in the same spirit as De Bortoli et al. (2021) on Euclidean state spaces.
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