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Abstract

We study the problem of representation learning in stochastic contextual linear
bandits. While the primary concern in this domain is usually to find realizable repre-
sentations (i.e., those that allow predicting the reward function at any context-action
pair exactly), it has been recently shown that representations with certain spectral
properties (called HLS) may be more effective for the exploration-exploitation task,
enabling LinUCB to achieve constant (i.e., horizon-independent) regret. In this
paper, we propose BANDITSRL, a representation learning algorithm that com-
bines a novel constrained optimization problem to learn a realizable representation
with good spectral properties with a generalized likelihood ratio test to exploit the
recovered representation and avoid excessive exploration. We prove that BAN-
DITSRL can be paired with any no-regret algorithm and achieve constant regret
whenever an HLS representation is available. Furthermore, BANDITSRL can be
easily combined with deep neural networks and we show how regularizing towards
HLS representations is beneficial in standard benchmarks.

1 Introduction

The contextual bandit is a general framework to formalize the exploration-exploitation dilemma
arising in sequential decision-making problems such as recommendation systems, online advertising,
and clinical trials [e.g., [1l. When solving real-world problems, where contexts and actions are
complex and high-dimensional (e.g., users’ social graph, items’ visual description), it is crucial
to provide the bandit algorithm with a suitable representation of the context-action space. While
several representation learning algorithms have been proposed in supervised learning and obtained
impressing empirical results [e.g.,[2, 13]], how to efficiently learn representations that are effective for
the exploration-exploitation problem is still relatively an open question.

The primary objective in representation learning is to find features that map the context-action space
into a lower-dimensional embedding that allows fitting the reward function accurately, i.e., realiz-
able representations [e.g.,4H10]. Within the space of realizable representations, bandit algorithms
leveraging features of smaller dimension are expected to learn faster and thus have smaller regret.
Nonetheless, Papini et al. [[11] have recently shown that, even among realizable features, certain
representations are naturally better suited to solve the exploration-exploitation problem. In particular,
they proved that LINUCB [12}[13] can achieve constant regret when provided with a “good” repre-
sentation. Interestingly, this property is not related to “global” characteristics of the feature map (e.g.,
dimension, norms), but rather on a spectral property of the representation (the space associated to
optimal actions should cover the context-action space, see HLS property in Def. 2.T)). This naturally
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raises the question whether it is possible to learn such representation at the same time as solving
the contextual bandit problem. Papini et al. [[11]] provided a first positive answer with the LEADER
algorithm, which is proved to perform as well as the best realizable representation in a given set up
to a logarithmic factor in the number of representations. While this allows constant regret when a
realizable HLS representation is available, the algorithm suffers from two main limitations: 1) it
is entangled with LINUCB and it can hardly be generalized to other bandit algorithms; 2) it learns
a different representation for each context-action pair, thus making it hard to extend beyond finite
representations to arbitrary functional space (e.g., deep neural networks).

In this paper, we address those limitations through BANDITSRL, a novel algorithm that decouples
representation learning and exploration-exploitation so as to work with any no-regret contextual bandit
algorithm and to be easily extended to general representation spaces. BANDITSRL combines two
components: 1) a representation learning mechanism based on a constrained optimization problem
that promotes “good” representations while preserving realizability; and 2) a generalized likelihood
ratio test (GLRT) to avoid over exploration and fully exploit the properties of “good” representations.
The main contributions of the paper can be summarized as follows:

1. We show that adding a GLRT on the top of any no-regret algorithm enables it to exploit the
properties of a HLS representation and achieve constant regret. This generalizes the constant
regret result for LINUCB in [11] to any no-regret algorithm.

2. Similarly, we show that BANDITSRL can be paired with any no-regret algorithm and perform
effective representation selection, including achieving constant regret whenever a HLS repre-
sentation is available in a given set. This generalizes the result of LEADER beyond LINUCB.
In doing this we also improve the analysis of the misspecified case and prove a tighter bound
on the time to converge to realizable representations. Furthermore, numerical simulations in
synthetic problems confirm that BANDITSRL is empirically competitive with LEADER.

3. Finally, in contrast to LEADER, BANDITSRL can be easily scaled to complex problems where
representations are encoded through deep neural networks. In particular, we show that the La-
grangian relaxation of the constrained optimization problem for representation learning becomes
a regression problem with an auxiliary representation loss promoting HL S-like representations.
We test different variants of the resulting NN-BANDITSRL algorithm showing how the auxiliary
representation loss improves performance in a number of dataset-based benchmarks.

2 Preliminaries

We consider a stochastic contextual bandit problem with context space X and finite action set A.
At each round ¢ > 1, the learner observes a context x; sampled i.i.d. from a distribution p over X,
selects an action a; € A, and receives a reward y; = p(x¢, a;) + 7 where 1 is a zero-mean noise and
X x A — Ris the expected reward. The objective of a learner 2 is to minimize its pseudo-regret
Ry = Zthl (1*(x¢) — p(xe, aq)) forany T > 1, where p*(24) := maxae 4 p(x¢, a). We assume
that for any « € X the optimal action a, := argmax, 4 p(x, a) is unique and we define the gap
A(z,a) = p*(x) — p(z,a). We say that 2 is a no-regret algorithm if, for any instance of y, it
achieves sublinear regret, i.e., Ry = o(T).
We consider the problem of representation learning in given a candidate function space & C
{gb c XA x A = R% }, where the dimensionality ds may depend on the feature ¢. Let
5 = argming pa, Eump| Y o(0(z,a)T0 — p(z,a))?] be the best linear fit of 1 for representa-
tion ¢. We assume that ® contains a linearly realizable representation.

Assumption 1 (Realizability). There exists an (unknown) subset ®* C ® such that, for each ¢ € *,
w(z,a) = QS(I,Q)T%,VI eX,ae A

Assumption 2 (Regularity). Let B, := {0 € R% : ||0|la < By} be a ball in R%. We as-
sume that, for each ¢ € ®, sup, , lo(z,a)lla < Lg, |6;H2 < By, sup, , |p(x,a)T0] < 1

forany 0 € By and |y;| < 1 almost surely for all t. We assume parameters Ly and By are
known. We also assume the minimum gap A = inf ¢ x.,(2)>0,0€4,A(z,0)>01A(2, a)} > 0 and that

Amin (ﬁ Y uEanplo(z, a)p(z, a)T]) > 0 for any ¢ € ®*, i.e, all realizable representations are

non-redundant.




Under Asm. (I} when |®| = 1, the problem reduces to a stochastic linear contextual bandit and can be
solved using standard algorithms, such as LINUCB/OFUL [12}13]], LinTS [14]], and e-greedy [15],
which enjoy sublinear regret and, in some cases, logarithmic problem-dependent regret. Recently,
Papini et al. [[11]] showed that LINUCB only suffers constant regret when a realizable representation
is HLS, i.e., when the features of optimal actions span the entire d4-dimensional space. HLS

Definition 2.1 (HLS Representation). A representation ¢ is HLS (the acronym refers to the last
names of the authors of [16]) if

M(9) = Amin (Eonp [0(z, a})d(z,a%)T]) > 0

where Amin(A) denotes the minimum eigenvalue of a matrix A.

Papini et al. showed that HLS, together with realizability, is a sufficient and necessary property for
achieving constant regret in contextual stochastic linear bandits for non-redundant representations.

In order to deal with the general case where ® may contain non-realizable representations, we rely on
the following misspecification assumption from [[L1].

Assumption 3 (Misspecification). For each ¢ ¢ O*, there exists €5 > 0 such that

min min, Eap (92, 7(2))70 — (e, 7(2)))°] 2 €.

This assumption states that any non-realizable representation has a minimum level of misspecification
on average over contexts and for any context-action policy. In the finite-context case, a sufficient
condition for Asm.[3]is that, for each ¢ ¢ ®*, there exists a context z € X’ with p(z) > 0 such that
d(z,a)70 # p(z,a) foralla € Aand 0 € By,

Related work. Several papers have focused on contextual bandits with an arbitrary function space
to estimate the reward function under realizability assumptions [e.g., 4} |5, [7]. While these works
consider a similar setting to ours, they do not aim to learn “good” representations, but rather focus on
the exploration-exploitation problem to obtain sublinear regret guarantees. This often corresponds
to recovering the maximum likelihood representation, which may not lead to the best regret. After
the work in [[11]], the problem of representation learning with constant regret guarantees has also
been studied in reinforcement learning [[17} [18]]. As these approaches build on the ideas in [11], they
inherit the same limitations as [[11]].

Another related literature is the one of expert learning and model selection in bandits [e.g.,[19H25]],
where the objective is to select the best candidate among a set of base learning algorithms or experts.
While these algorithms are general and can be applied to different settings, including representation
learning with a finite set of candidates, they may not be able to effectively leverage the specific
structure of the problem. Furthermore, at the best of our knowledge, these algorithms suffers a
polynomial dependence in the number of base algorithms (|®| in our setting) and are limited to

worst-case regret guarantees. Whether the /7 or poly(|®|) dependency can be improved in general
is an open question (see [25[] and [11, App. A]). Finally, [8} 26] studied the specific problem of
model selection with nested linear representations, where the best representation is the one with the
smallest dimension for which the reward is realizable.

Several works have recently focused on theoretical and practical investigation of contextual bandits
with neural networks (NNs) [27H29]. While their focus was on leveraging the representation power
of NNs to correctly predict the rewards, here we focus on learning representations with good spectral
properties through a novel auxiliary loss. A related approach to our is [29] where the authors leverage
self-supervised auxiliary losses for representation learning in image-based bandit problems.

3 A General Framework for Representation Learning

We introduce BANDITSRL (Bandit Spectral Representation Learner), an algorithm for stochastic con-
textual linear bandit that efficiently decouples representation learning from exploration-exploitation.
As illustrated in Alg.[T] BANDITSRL has access to a fixed-representation contextual bandit algorithm
2, the base algorithm, and it is built around two key mechanisms: @ a constrained optimization
problem where the objective is to minimize a representation loss L to favor representations with HL'S
properties, whereas the constraint ensures realizability; ® a generalized likelihood ratio test (GLRT)



Algorithm 1 BANDITSRL

1: Input: representations ®, no-regret algorithm 2, confidence § € (0, 1), update schedule v > 1
2: Initialize j = 0, ¢}, 0y, o arbitrarily, Vo(¢;) = Ma, . tj =1, letd; := 5/(2( +1)%)
3: fort =1,...do

4:  Observe context

50 if GLR—1(x¢; ®;) > 5t—1,5/|<b\(¢j) then

6: Play a; = argmax ¢ 4 {qu (z¢, a)T0¢j,t,1} and observe reward y;
7:  else

8: Play a; = 2, (245 ¢5,6;/|®|), observe reward y,, and feed it into 2A
9: endif

10: ift = [+¢;] and |®| > 1 then

11: Setj=j+1landt; =1t

12: Compute ¢; = argmingcq, {L:(¢)} and reset 2A

13:  end if

14: end for

to ensure that, if a HLS representation is learned, the base algorithm 2( does not over-explore and the
“good” representation is exploited to obtain constant regret.

Mechanism @ (line 12). The first challenge when provided with a generic set ® is to ensure that
the algorithm does not converge to selecting misspecified representations, which may lead to linear
regret. This is achieved by introducing a hard constraint in the representation optimization, so that
BANDITSRL only selects representations in the set (see also [[11, App. F]),

ori= {0 @ jin £1(6.0) < iy anin (E(@'6) +05(6")} } (1)

where FE(¢,0) := % Zi:l ((;S(xs, as)To — ys)2 is the empirical mean-square error (MSE) of model

d
(¢,0) and a4 5(¢) := 470 log (8‘¢|2(12L§B¢t) ¢t3) + % This condition leverages the existence of a

realizable representation in ®; to eliminate representations whose MSE is not compatible with the
one of the realizable representation, once accounted for the statistical uncertainty (i.e., oy s (0)).

Subject to the realizability constraint, the representation loss £;(¢) favours learning a HLS representa-
tion (if possible). As illustrated in Def.[2.T] a HLS representation is such that the expected design ma-
trix associated to the optimal actions has a positive minimum eigenvalue. Unfortunately it is not pos-
sible to directly optimize for this condition, since we have access to neither the context distribution p
nor the optimal action in each context. Nonetheless, we can design a loss that works as a proxy for the
HLS property whenever 2 is a no-regret algorithm. Let V;(¢) = Mg, + ZZ:l d(ws,a5)p(xs,as)"
be the empirical design matrix built on the context-actions pairs observed up to time ¢, then we define
Leig t(¢) := —Amin (Vt(gi)) — Ay ¢) /L2, where the normalization factor ensures invariance w.r.t.
the feature norm. Intuitively, the empirical distribution of contexts (z;);>1 converges to p and the
frequency of optimal actions selected by a no-regret algorithm increases over time, thus ensuring
that V;(¢)/t tends to behave as the design matrix under optimal arms E,.,[¢(x, a%)d(z,a%)T]. As
discussed in Sect. [5 alternative losses can be used to favour learning HLS representations.

Mechanism  (line 5). While Papini et al. [L1] proved that LINUCB is able to exploit HLS
representations, other algorithms such as e-greedy may keep forcing exploration and do not fully
take advantage of HLS properties, thus failing to achieve constant regret. In order to prevent this, we
introduce a generalized likelihood ratio test (GLRT). At each round ¢, let ¢, be the representation
used at time ¢, then BANDITSRL decides whether to act according to the base algorithm 2 with
representation ¢,_; or fully exploit the learned representation and play greedily w.r.t. it. Denote
by 0411 = Vio1(p)~t 22;11 o(xs,as)ys the regularized least-squares parameter at time ¢ for
representation ¢ and by m;_; (2; ¢) = argmax,¢ 4 {¢(z,a)"6y,—1} the associated greedy policy.
Then, BANDITSRL selects the greedy action 7;_; (z; ¢r—1) when the GLR test is active, otherwise
it selects the action proposed by the base algorithm 2(. Formally, for any ¢ € ® and x € X, we define



the generalized likelihood ratio as

(@ (@:6) = 6(2,a)) Gpas
agni_ (x:9) ||o(z, m5_ 1 (25 0)) — D(s,a)|lv,_, (o)1

GLR;_1(z;¢) := 2)

and, given 3,_1 5(¢) = a\/2 log(1/6) + dg log(1 + (t — 1)Li/(>\d¢)) + V/ABy, the GLR test is

GLR;—1(x;¢) > Bi_1,5/0|(¢) [16,30L31]. If this happens at time ¢ and ¢, is realizable, then we
have enough confidence to conclude that the greedy action is optimal, i.e., 7 (2¢; ¢¢—1) = aj,.
An important aspect of this test is that it is run on the current context z; and it does not require
evaluating global properties of the representation. While at any time ¢ it is possible that a non-HLS
non-realizable representation may pass the test, the GLRT is sound as 1) exploration through 2( and
the representation learning mechanism work in synergy to guarantee that eventually a realizable
representation is always provided to the GLRT; 2) only HLS representations are guaranteed to
consistently trigger the test at any context x.

In practice, BANDITSRL does not update the representation at each step but in phases. This is
necessary to avoid too frequent representation changes and control the regret, but also to make the
algorithm more computationally efficient and practical. Indeed, updating the representation may be
computationally expensive in practice (e.g., retraining a NN) and a phased scheme with « parameter
reduces the number of representation learning steps to J ~ [log. (T")]. The algorithm 2/ is reset at the
beginning of a phase ;7 when the representation is selected and it is run on the samples collected during
the current phase when the base algorithm is selected. If 2l is able to leverage off-policy data, at the
beginning of a phase j, we can warm-start it by providing ¢; and all the past data (s, as, ys)s<t, -
While the reset is necessary for dealing with any no-regret algorithm, it can be removed for algorithms
such as LINUCB and e-greedy without affecting the theoretical guarantees.

Comparison to LEADER. We first recall the basic structure of LEADER. Denote by UCB,(z, a, ¢)
the upper-confidence bound computed by LINUCB for the context-action pair (z, a) and represen-
tation ¢ after ¢ steps. Then LEADER selects the action a; € argmax,c 4 minges, UCBy (¢, a, ¢).
Unlike the constrained optimization problem in BANDITSRL, this mechanism couples representation
learning and exploration-exploitation and it requires optimizing a representation for the current
z; and for each action a. Indeed, LEADER does not output a single representation and possibly
chooses different representations for each context-action pair. While this enables LEADER to mix
representations and achieve constant regret in some cases even when ® does not include any HLS
representation, it leads to two major drawbacks: 1) the representation selection is directly entangled
with the LINUCB exploration-exploitation strategy, 2) it is impractical in problems where ® is an
infinite functional space (e.g., a deep neural network). The mechanisms @ and @ successfully address
these limitations and enable BANDITSRL to be paired with any no-regret algorithm and to be scaled
to any representation class as illustrated in the next section.

3.1 Extension to Neural Networks

We now consider a representation space ® defined by the last layer of a NN. We denote by ¢ :
X x A — R the last layer and by f(x,a) = ¢(x,a)T the full NN, where 6 are the last-layer
weights. We show how BANDITSRL can be easily adapted to work with deep neural networks (NN).

First, the GLRT requires only to have access to the current context x; and representation ¢, i.e.,
the features defined by the last layer of the current network, and its cost is linear in the number of
actions. Second, the phased scheme allows lazy updates, where we retrain the network only logW(T)
times. Third, we can run any bandit algorithm with a representation provided by the NN, including
LINUCB, LinTS, and e-greedy. Fourth, the representation learning step can be adapted to allow
efficient optimization of a NN. We consider a regularized problem obtained through an approximation
of the constrained problem:

arg;nin {Ct(d)) — Creg ((r;/lier} {Ei(¢',0") + o 5(8)} — mein E, (o, 9)) }

= arg;nin Hbin {L4(¢) + creg Er(9,0)} 3)

where c;¢; > 0 is a tunable parameter. The fact we consider ¢,z constant allows us to ignore terms
that do not depend on either ¢ or . This leads to a convenient regularized loss that aims to minimize



the MSE (second term) while enforcing some spectral property on the last layer of the NN (first term).
In practice, we can optimize this loss by stochastic gradient descent over a replay buffer containing
the samples observed over time. The resulting algorithm, called NN-BANDITSRL, is a direct and
elegant generalization of the theoretically-grounded algorithm.

While in theory we can optimize the regularized loss with all the samples, in practice it is
important to better control the sample distribution. As the algorithm progresses, we expect the replay
buffer to contain an increasing number of samples obtained by optimal actions, which may lead the
representation to solely fit optimal actions while increasing misspecification on suboptimal actions.
This may compromise the behavior of the algorithm and ultimately lead to high regret. This is an
instance of catastrophic forgetting induced by a biased/shifting sample distribution [e.g.,[32]]. To
prevent this phenomenon, we store two replay buffers: i) an explorative buffer Dy ; with samples
obtained when %[ was selected; ii) an exploitative buffer Dgy,; ¢ with samples obtained when GLRT
triggered and greedy actions were selected. The explorative buffer Dy ; is used to compute the MSE
E:(¢,0). While this reduces the number of samples, it improves the robustness of the algorithm
by promoting realizability. On the other hand, we use all the samples D; = Dy( s U Dgyyt+ for the
representation loss £(¢). This is coherent with the intuition that mechanism @ works when the
design matrix V; drifts towards the design matrix of optimal actions, which is at the core of the HLS
property. Refer to App. |C|for a more detailed description of NN-BANDITSRL.

4 Theoretical Guarantees

In this section, we provide a complete characterization of the theoretical guarantees of BANDITSRL
when @ is a finite set of representations, i.e., |®| < co. We consider the update scheme with v = 2.

4.1 Constant Regret Bound for HLS Representations

We first study the case where a realizable HLS representation is available. For the characterization of
the behavior of the algorithm, we need to introduce the following times:

* Telim: an upper-bound to the time at which all non-realizable representations are eliminated, i.e.,
for all t > Telim, ®r = P*;

e 7yLs: an upper-bound to the time (if it exists) after which the HLS representation is selected,
ie., ¢ = ¢* for all t > s, where ¢* € ®* is the unique HLS realizable representation;

* Tgire: an upper-bound to the time (if it exists) such that the GLR test triggers for the HLS
representation ¢* for all £ > Tgiy¢.
We begin by deriving a constant problem-dependent regret bound for BANDITSRL with HLS
representations. The proof and explicit values of the constants are reported in App.

Theorem 4.1. Let A be any no-regret algorithm for stochastic contextual linear bandits, ® satisfy
Asm. |®| < 00, v =2 and Li(¢) = Leig,t(9) := —Amin(Vi(®) — Ma,)/LZ. Moreover, let
®* contains a unique HLS representation ¢*. Then, for any 6 € (0,1) and T € N, the regret of
BANDITSRL is bounded, with probability at least 1 — 40, aé]

RT S 27—elim + gé%)f EQ[((Topt - Telim) A T7 ¢a 6log2(7‘opt/\T)/|(bD 10g2 (Topt A T)»

where §; := 6/(2(j + 1)?) and

Topt = Tglrt V THLS V Telim g Talg

L3 log(|®|/6) (L3, do- |4 ) @
X\ N6 T AT (minggas )4 )

with T, a finite (independent from the horizon T') constant depending on algorithm A (see Tab. [Zl)

and Ry (1, ¢, ) an anytime bound (non-decreasing in T and 1/5) on the regret accumulated over T
steps by 21 using representation ¢ and confidence level 6.

'While Thm. @provides high-probability guarantees, we can easily derive a constant expected-regret bound
by running BANDITSRL with a decreasing schedule for § and with a slightly different proof.
2We denote by a A b (resp. a V b) the minimum (resp. the maximum) between a and b.



The key finding of the previous result is that BANDITSRL achieves constant regret whenever a
realizable HLS representation is available in the set ®, which may contain non-realizable as well
as realizable non-HLS representations. The regret bound above also illustrates the “dynamics”
of the algorithm and three main regimes. In the early stages, non-realizable representations may
be included in ®;, which may lead to suffering linear regret until time 7.};;,, when the constraint
in the representation learning step filters out all non-realizable representations (first term in the
regret bound). At this point, BANDITSRL leverages the loss £ to favor HLS representations
and the base algorithm 2 to perform effective exploration-exploitation. This leads to the second
term in the bound, which corresponds to an upper-bound to the sum of the regrets of 2 in each
phase in between Telim and 71t V Tars, Which is roughly Zj << Ro(tjy1 —tj,05) <

maxgea Ro(Topt — Telims @) 108 (Topt)- In this second regime, in some phases the algorithm
may still select non-HLS representations, which leads to a worst-case bound over all realizable
representations in ®*. Finally, after 7,1t V TuLs the GLRT consistently triggers over time. During
this last regime, BANDITSRL has reached enough accuracy and confidence so that the greedy policy
of the HLS representation is indeed optimal and no additional regret is incurred.

Telim

We notice that the only dependency on the number of representations |®| in Thm. is due to
the rescaling of the confidence level § — §/|®|. Since standard algorithms have a logarithmic
dependence in 1/4, this only leads to a logarithmic dependency in |®|. On the other hand, due to the
resets, BANDITSRL has an extra logarithmic factor in the effective regret horizon 7.

Single HLS representation. A noteworthy consequence of Thm. .T]is that any no-regret algorithm
equipped with GLRT achieves constant regret when provided with a realizable HLS representation.

Corollary 4.2. Let & = ®* = {¢*} and ¢* is HLS. Then, Telim = TaLs = 0 and, with probability
at least 1 — 49, BANDITSRL suffers constant regret: Ry < Ro(Tgie A T, ¢*,9).

This corollary also illustrates that the performance of 2l is not affected when ¢* is non-HLS (.e.,
Telrt = 00), as BANDITSRL achieves the same regret of the base algorithm. Note that there is no
additional logarithmic factor in this case since we do not need any reset for representation learning.

4.2 Additional Results

No HLS representation. A consequence of Thm. is that when |®| > 1 but no realizable HLS
exists (71, = 00), BANDITSRL still enjoys a sublinear regret.

Corollary 4.3 (Regret bound without HLS representation). Consider the same setting in Thm.
and assume that ®* does not contain any HLS representation. Then, for any 6 € (0,1) and T € N,
the regret of BANDITSRL is bounded, with probability at least 1 — 49, as follows:

Ry < 27¢im + ;%%}f Ry (T, ¢, Stog, (1) /|®]) logy (T').

This shows that the regret of BANDITSRL is of the same order as the base no-regret algorithm 2{ when
running with the worst realizable representation. While such worst-case dependency is undesirable, it
is common to many representation learning algorithms, both in bandits and reinforcement learning [e.g.
4, 33]E] In App. |Cl we show that an alternative representation loss could address this problem
and lead to a bound scaling with the regret of the best realizable representation (Rp < 27l +
mingear Ry (T, ¢,5/|P|) log,(T)), while preserving the guarantees for the HLS case. Since the
representation loss requires an upper-bound on the number of suboptimal actions and a carefully
tuned schedule for guessing the gap A, it is less practical than the smallest eigenvalue, which we use
as the basis for our practical version of BANDITSRL.

Algorithm-dependent instances and comparison to LEADER. Table[I|reports the regret bound of
BANDITSRL for different base algorithms. These results make explicit the dependence in the number
of representations |®| and show that the cost of representation learning is only logarithmic. In the
specific case of LINUCB for HLS representations, we highlight that the upper-bound to the time 7

3Notice that the worst-representation dependency is often hidden in the definition of ®, which is assumed to
contain features with fixed dimension and bounded norm, i.e., ® = {¢ : X x A — R%, sup, , ||¢(z,a)l|2 < L}.

As d and B are often the only representation-dependent terms in the regret bound Ry, no worst-representation
dependency is reported.



Algorithm Ra(T, ¢,6/|®]) Talg
L2, d Tog([2]/0)°

LINUCB d3 log(|®|T/5)*/A Oy
6 3)213 1, 3
e—greedy with €, = 2571/3 d¢|.,4‘ log(|<1>\/6)T2/3 Lgx (dlA)l\)* (¢*L)31A§(\<I>V6)

Table 1: Specific regret bounds when using LINUCB or e-greedy as base algorithms. We omit numerical
constants and logarithmic factors.

in Thm. improves over the result of LEADER. While LEADER has no explicit concept of 7,
a term with the same dependence of 7, in Tab. [T|appears also in the LEADER analysis. This term
encodes an upper bound to the pulls of suboptimal actions and depends on the LINUCB strategy. As
a result, the first three terms in Eq. [ are equivalent to the ones of LEADER. The improvement comes
from the last term (7e1;m ), Where, thanks to a refined analysis of the elimination condition, we are able
to improve the dependence on the inverse minimum misspecification (1/ minggqe+ €4) from quadratic
to linear (see App.[B|for a detailed comparison). On the other hand, BANDITSRL suffers from the
worst regret among realizable representations, whereas LEADER scales with the best representation.
As discussed above, this mismatch can be mitigated by using by a different choice of representation
loss. In the case of e-greedy, the 7%/3 regret upper-bound induces a worse Talg due to a larger
number of suboptimal pulls. This in turns reflects into a higher regret to the constant regime. Finally,
LEADER is still guaranteed to achieve constant regret by selecting different representations at different
context-action pairs whenever non-HLS representations satisfy a certain mixing condition [cf. |11}
Sec. 5.2]. This result is not possible with BANDITSRL, where one representation is selected in each
phase. At the same time, it is the single-representation structure of BANDITSRL that allows us to
accommodate different base algorithms and scale it to any representation space.

5 Experiments

We provide an empirical validation of BANDITSRL both in synthetic contextual linear bandit
problems and in non-linear contextual problems [see e.g., 6} 27].

Linear Benchmarks. We first evaluate BANDITSRL on synthetic linear problems to empirically
validate our theoretical findings. In particular, we test BANDITSRL with different base algorithms and
representation learning losses and we compare it with LEADERE] We consider the “varying dimension”
problem introduced in [[11] which consists of six realizable representations with dimension from 2
to 6. Of the two representations of dimension d = 6, one is HLS. In addition seven misspecified
representations are available. Details are provided in App.|[D| We consider LINUCB and e-greedy
as base algorithms and we use the theoretical parameters, but we perform warm start using all the
past data when a new representation is selected. Similarly, for BANDITSRL we use the theoretical
parameters (y = 2) and £,(¢) := Leig+(¢). Fig.|1|shows that, as expected, BANDITSRL with both
base algorithms is able to achieve constant regret when a HLS representation exists. As expected from
the theoretical analysis, e-greedy leads to a higher regret than LINUCB. Furthermore, empirically
BANDITSRL with LINUCB obtains a performance that is comparable with the one of LEADER
both with and without realizable HLS representation. Note that when no HLS exists, the regret of
BANDITSRL with e-greedy is 7%/3, while LINUCB-based algorithms are able to achieve log(T)
regret. When ® contains misspecified representations (Fig. [T(center-left)), we can observe that in
the first regime [1, Tejim ] the algorithm suffers linear regret, after that we have the regime of the base
algorithm ([Telim, Tolrt V THLs]) up to the point where the GLRT leads to select only optimal actions.

Weak HLS. Papini et al. [11]] showed that when realizable representations are redundant (i.e., \*(¢*) =
0), it is still possible to achieve constant regret if the representation is “weakly”-HLS, i.e., the features
of the optimal actions span the features ¢(x, a) associated to any context-action pair, but not necessar-
ily R%#. To test this case, we pad a 5-dimensional vector of ones to all the features of the six realizable
representations in the previous experiment. To deal with the weak-HLS condition, we introduce the
alternative representation 10ss Lyeak,:(¢) = — ming<y {gf)(xs, as)T(Vi(¢) — Mg, )d(xs, as)/Li}.
Since, V;(¢) — Mg, tends to behave as E,[¢* (x)¢* ()], this loss encourages representations where
all the observed features are spanned by the optimal arms, thus promoting weak-HLS representations

*We do not report the performance of model selection algorithms. An extensive analysis can be found in [11],
where the author showed that LEADER was outperforming all the baselines.



(see App. |gf0r more details). As expected, Fig. Ekright) shows that the min-eigenvalue loss Leig ;
fails in identifying the correct representation in this domain. On the other hand, BANDITSRL with
the novel loss is able to achieve constant regret and converge to constant regret (we cut the figure for
readability), and behaves as LEADER when using LINUCB.

Realizable and one HLS Misspecified and one HLS Realizable, no HLS Weak HLS
180 f t t t — 1,000 150 1 T T T

2
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Figure 1: Varying dimension experiment with all realizable representations (left), misspecified representations
(center-left), realizable non-HLS representations (center-right) and weak-HLS (right). Experiments are averaged
over 40 repetitions.
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Figure 2: Average cumulative regret (over 20 runs) in non-linear domains.

Non-Linear Benchmarks. We study the performance of NN-BANDITSRL in classical benchmarks
where non-linear representations are required. The code is available at the following URL. We only
consider the weak-HLS 10ss Lyeak,:(¢) as it is more general than full HLS. As base algorithms we
consider e-greedy and inverse gap weighting (IGW) with ¢, = t~/3, and LINUCB and LINTS with
theoretical parameters. These algorithms are run on the representation ¢; provided by the NN at each
phase j. We compare NN-BANDITSRL against the base algorithms using the maximum-likelihood
representation (i.e., Neural-(e-greedy, LINTS) [6] and Neural-LINUCB [28]]), supervised learning
with the IGW strategy [e.g.,[7, [10] and NeuralUCB [Iﬂlﬂ See App. for details.

3For ease of comparison, all the algorithms use the same phased schema for fitting the reward and recomputing
the parameters. NeuralUCB uses a diagonal approximation of the design matrix.


https://github.com/facebookresearch/xbanditsrl

In all the problemsﬁ] the reward function is highly non-linear w.r.t. contexts and actions and we use
a network composed by layers of dimension [50, 50, 50, 50, 10] and ReLu activation to learn the
representation (i.e., d = 10). Fig. |2 shows that all the base algorithms (e-GREEDY, IGW, LIN-
UCB, LINTS) achieve better performance through representation learning, outperforming the base
algorithms. This provides evidence that NN-BANDITSRL is effective even beyond the theoretical
scenario.

For the baseline algorithms (NEURALUCB, IGW) we report the regret of the best configuration
on each individual dataset, while for NN-BANDITSRL we fix the parameters across datasets
(i.e., agLrT = 5). While this comparison clearly favours the baselines, it also shows that NN-
BANDITSRL is a robust algorithm that behaves better or on par with the state-of-the-art algorithms.
In particular, NN-BANDITSRL uses theoretical parameters while the baselines use tuned configura-
tions. Optimizing the parameters of NN-BANDITSRL is outside the scope of these experiments.

6 Conclusion

We proposed a novel algorithm, BANDITSRL, for representation selection in stochastic contextual
linear bandits. BANDITSRL combines a mechanism for representation learning that aims to recover
representations with good spectral properties, with a generalized likelihood ratio test to exploit the
recovered representation. We proved that, thanks to these mechanisms, BANDITSRL is not only able
to achieve sublinear regret with any no-regret algorithm 2( but, when a HLS representation exists, it
is able to achieve constant regret. We demonstrated that BANDITSRL can be implemented using
NNs and showed its effectiveness in standard benchmarks.

A direction for future investigation is to extend the approach to a weaker misspecification assumption
than Asm.[3] Another direction is to leverage the technical and algorithmic tools introduced in this
paper for representation learning in reinforcement learning, e.g., in low-rank problems [e.g.38].
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