
A Implementation Details

For all algorithms, all Q functions and policies are approximated using deep neural networks with
2 hidden layers of size 256. They are all updated using the Adam optimizer from Kingma and Ba
[2015].

A.1 Behavioral Cloning

We used a straightforward implementation of behavioral cloning, regressing with a mean square error
loss. For all experiments learners were provided with the same number of demonstrators as the other
algorithms and optimized for 10000 gradient steps using a learning rate of 1× 10−4.

A.2 Twin Delayed Deep Deterministic Policy Gradients

We use the author implementation of TD3 from Fujimoto et al. [2018], modifying it to implement
MCAC. In order to maintain the assumption about complete trajectories described in the main text,
we modify the algorithm to only add to the replay buffer at the end of sampled trajectories, but
continue to update after each timestep. We found the default hyperparameters from the repository to
be sufficient in all environments.

A.3 Soft Actor Critic

For all SAC experiments we used a modified version of the SAC implementation from Tandon which
implements SAC with a double-Q critic update function to combat Q overestimation. Additionally,
we modify the algorithm to satisfy the trajectory assumption as in Section A.2. We mostly use the
default hyperparameters from Haarnoja et al. [2018], but tuned α and τ . Parameter choices are shown
in Table 1.

Table 1: Hyperparameters for SAC
Parameter Navigation MuJoCo Robosuite

Learning Rate 3× 10−4 3× 10−4 3× 10−4

Automatic Entropy Tuning False False False
Batch Size 256 256 256

Hidden Layer Size 256 256 256
Hidden Layers 2 2 2

Updates Per Timestep 1 1 1
α 0.2 0.1 0.05
γ 0.99 0.99 0.99
τ 5× 10−2 5× 10−3 5× 10−2

A.4 Generalized Q Estimation

Similarly to the advantage estimation method in Schulman et al. [2016], we estimate Q values by
computing a weighted average over a number of Q estimates estimated with k-step look-aheads.
Concretely, if a Q

(k)
t is a Q estimate with a k-step look-ahead given by

Q
(k)
t =

k−1∑
i=0

rt+i + γkQθ(st+k, at+k), (A.1)

we compute the n-step GQE estimate QGQE
t as

QGQE
t =

1− λ

1− λn

n∑
k=1

λk−1Q
(k)
t . (A.2)

We built GQE on top of SAC, using the SAC Q estimates for the values of Qθ. However, in principle
this method can be applied to other actor-critic methods.

15

Where applicable we used the hyperparameters from SAC, and tuned the values of λ and n as
hyperparameters, trying values in the sets λ ∈ {0.8, 0.9, 0.95, 0.99, 0.999} and n values in the set
n ∈ {8, 16, 32, 64}. The chosen parameters for each environment are given in Table 2.

Table 2: Hyperparameters for GQE
Parameter Navigation Extraction Push Door Lift

λ 0.9 0.95 0.95 0.9 0.9
n 32 8 16 16 16

A.5 Overcoming Exploration with Demonstrations

We implement the algorithm from Nair et al. [2018] on top of the implementation of TD3 described in
Section A.2. Because it would provide an unfair advantage over comparisons, the agent is not given
the ability to reset to arbitrary states in the replay buffer. Since our setting is not goal-conditioned,
our implementation does not include hindsight experience replay. For the value λ balancing the actor
critic policy update loss and behavioral cloning loss, we use λ = 1.0. In all experiments the agent is
pretrained on offline data for 10000 gradient steps.

A.6 Conservative Q-learning

Offline reinforcement learning algorithm that produces a lower bound on the value of the current
policy. We used the implementation from [Dittert, 2021], which implements CQL on top of SAC
as is done in the original paper, modified for additional online-finetuning. We used the default
hyperparameters from [Kumar et al., 2020] in all environments and pretrained the agent on offline
data for 10000 gradient steps.

A.7 Advantage Weighted Actor Critic

For AWAC experiments we use the implementation from Sikchi and Wilcox, once again modifying
it to maintain the assumption about complete trajectories and to implement MCAC. We found the
default hyperparameter values to be sufficient in all settings. In all experiments the agent is pretrained
on offline data for 10000 gradient steps.

B Additional Experiments

B.1 No Demonstrations

To study the effects that MCAC has without demonstration data in the replay buffer we compare
performance with and without MCAC and demonstrations in all environments with the SAC learner,
shown in Figure 5. Overall we see that, as desired, the agent is unable to make progress in most
environments. The only exception is the sequential pushing environment results (Figure 5(c)), where
the intermediate reward for pushing each block helps the agent learn to make some progress. Overall,
this experiment does not conclusively answer whether MCAC is helpful without demonstrations, but
this is an exciting direction for future work.

B.2 MCAC Sensitivity Experiments

In Figure 6, we first study the impact of demonstration quality (Figure 6(a)) and quantity (Figure 6(b))
on MCAC when applied to SAC (SAC + MCAC) on the Pointmass Navigation domain. We evaluate
sensitivity to demonstration quality by injecting ϵ-greedy noise into the demonstrator for the Pointmass
Navigation domain. Results suggest that MCAC is somewhat sensitive to demonstration quality, since
MCAC’s performance does drop significantly for most values of ϵ, although it still typically makes
some task progress. In Figure 6(b), results suggest that MCAC is relatively robust to the number of
demonstration.

16

0 20000 40000 60000 80000 100000
Timesteps

100

90

80

70

60

50

Re
wa

rd

(a) Pointmass Navigation

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

15

Re
wa

rd

(b) Block Extraction

50000 100000150000200000250000
Timesteps

400

300

200

100

0

Re
wa

rd

(c) Sequential Pushing

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

15
Re

wa
rd

(d) Door Opening

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

Re
wa

rd

(e) Block Lifting

Demos SAC SAC (ND) SAC + MCAC SAC + MCAC (ND)

Figure 5: MCAC without Demonstrations: Learning curves showing the exponentially smoothed (smoothing
factor γ = 0.9) mean and standard error across 10 random seeds for experiments with demonstrations and 3
seeds for experiments without them. We see that in all environments the demonstrations are critical for learning
an optimal policy. The only place the variants without demonstrations make progress is in the push environment,
because of the intermediate reward for pushing each block.

0 20000 40000 60000 80000 100000
Timesteps

120

110

100

90

80

70

60

50

Re
wa

rd

= 0.0
= 0.1

= 0.15
= 0.25

= 0.35

(a) Demonstration Quality

0 20000 40000 60000 80000 100000
Timesteps

110

100

90

80

70

60

50

Re
wa

rd

Demos
N = 1

N = 5
N = 10

N = 20
N = 50

(b) Demonstration Quantity

Figure 6: MCAC Sensitivity Experiments: Learning curves showing the exponentially smoothed (smoothing
factor γ = 0.9) mean and standard error across 10 random seeds for varying demonstration qualities (a) and
quantities (b) for SAC + MCAC. (a): Results suggest that MCAC is somewhat sensitive to demonstration quality,
as when ϵ-greedy noise is injected into the demonstrator, MCAC’s performance does drop significantly, although
it eventually make some task progress for most values of ϵ. (b): MCAC appears to be much less sensitive to
demonstration quantity, and is able to achieve relatively high performance even with a single task demonstration.

B.3 Pretraining

In Figure 7 we ablate on the pretraining step of the algorithm to determine whether it is useful to
include. We find that it was helpful for the Navigation environment but unhelpful and sometimes
limiting in other settings. Thus, we leave pretraining as a hyperparameter to be tuned.

17

0 20000 40000 60000 80000 100000
Timesteps

110

100

90

80

70

60

50

Re
wa

rd

(a) Pointmass Navigation

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

15

Re
wa

rd

(b) Block Extraction

50000 100000150000200000250000
Timesteps

400

300

200

100

0

Re
wa

rd

(c) Sequential Pushing

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

15
Re

wa
rd

(d) Door Opening

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

Re
wa

rd

(e) Block Lifting
Demos BC TD3 + MCAC TD3 + MCAC (Pre) SAC + MCAC SAC + MCAC (Pre)

Figure 7: MCAC with and without Pretraining Results: Learning curves showing the exponentially smoothed
(smoothing factor γ = 0.9) mean and standard error across 10 random seeds. We find that other than in the
navigation environment pretraining does not provide a significant benefit.

B.4 Lambda Weighting

As an additional comparison we consider computing a weighted combination of the Monte Carlo and
Bellman updates, using a Q target Qtarget

λ given by

Qtarget
λ = (1− λ)Qtarget(sij , a

i
j) + λQtarget

MC-∞(sij , a
i
j). (B.1)

Results of this experiment are shown in Figure 8 alongside results from our GQE experiments. We
find that this method is comparable to GQE in most environments.

B.5 Critic Tail

In this experiment, we consider replacing Qtarget
MC-∞ defined in the main text with a new target, which

replaces the infinite geometric sum with the critic’s Q value estimate. Formally, for a trajectory
given by [(si, at, ri), (si+1, ai+1, ri+1), . . . , (sT , aT , rT), sT+1], a delayed target network Qπ

θ′ and
a policy π, the new target is

Q̂target
MC-∞(si, ai) = γT−j+1Qπ

θ′(sT+1, π(sT+1)) +

T∑
k=j

γk−jrk. (B.2)

We compare this version to the standard version of MCAC presented in the paper in Figure 10.
Results suggest that the version presented in the main paper performs at least as well if not better
than this version. Since this version also adds implementation difficulty and computation load, we
choose to use the original Qtarget

MC-∞ estimate. However, it would be interesting in future work to study
whether there are environments where this estimate has better performance.

B.6 Q Estimate Scale Analysis

In this experiment we investigate how the scales of the various Q value estimates we consider vary as
the agent trains. In Figure 10(a) we present average values for Q estimates based on samples from
the replay buffer for successful trajectories, while in Figure 10(b) we present the same data for failed
trajectories. The results suggest that early on, Monte Carlo estimates are much higher than Bellman

18

0 20000 40000 60000 80000 100000
Timesteps

110

100

90

80

70

60

50

Re
wa

rd

(a) Pointmass Navigation

50000 100000 150000 200000
Timesteps

50

40

30

20

Re
wa

rd

(b) Block Extraction

50000 100000150000200000250000
Timesteps

400

300

200

100

0

Re
wa

rd

(c) Sequential Pushing

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

15
Re

wa
rd

(d) Door Opening

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

Re
wa

rd

(e) Block Lifting
Demos BC = 0.0 = 0.2 = 0.5 = 0.8 = 1.0 GQE SAC + MCAC

Figure 8: MCAC with Various λ Weighting Results: Learning curves showing the exponentially smoothed
(smoothing factor γ = 0.9) mean and standard error across 10 random seeds. Results suggest that this method
performs similarly to GQE in most environments.

0 20000 40000 60000 80000 100000
Timesteps

110

100

90

80

70

60

50

Re
wa

rd

(a) Pointmass Navigation

50000 100000 150000 200000
Timesteps

50

40

30

20

Re
wa

rd

(b) Block Extraction

50000 100000150000200000250000
Timesteps

400

300

200

100

0
Re

wa
rd

(c) Sequential Pushing

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

15

Re
wa

rd

(d) Door Opening

50000 100000 150000 200000
Timesteps

50

45

40

35

30

25

20

Re
wa

rd

(e) Block Lifting
Demos BC TD3 + MCAC SAC + MCAC GQE + MCAC TD3 + MCAC (CT) SAC + MCAC (CT) GQE + MCAC (CT)

Figure 9: MCAC with Critic Tail: Learning curves showing the exponentially smoothed (smoothing factor
γ = 0.9) mean and standard error across 10 random seeds for experiments with the original Qtarget

MC-∞ estimate
and 3 seeds for experiments with the new version described in Equation B.2. We see that in all environments the
original version is at least as good as the the new version, and occasionally it performs better.

estimates for successful trajectories, but in the limit these two estimates converge to similar values.
This confirms our claims that MCAC helps to drive up Q values along demonstrator trajectories
early in training. For failed trajectories, Monte Carlo estimates are uniformly as low as possible but
the Bellman estimate and MCAC are identical because the low Monte Carlo estimates are always
cancelled out by the max term in the MCAC estimate.

19

0 20000 40000 60000 80000 100000
Timesteps

25

20

15

10

5

0

Q
 E

st
im

at
e

(a) Successful Trajectories

0 20000 40000 60000 80000 100000
Timesteps

100

80

60

40

20

0

Q
 E

st
im

at
e

(b) Failed Trajectories
Bellman Estimate Monte Carlo Estimate MCAC Estimate

Figure 10: Estimator Scale Experiment: Plots show mean and standard error across three random seeds of the
various Q estimates discussed in the paper based on uniform samples from the replay buffer for (a) successful
and (b) failed trajectories. (b) appears to only have two lines because the data for Bellman estimates and MCAC
estimates are identical, as expected for failed trajectories.

B.7 AWAC Q Estimates

In this section we briefly study the results of the AWAC+MCAC experiment in the navigation
environment, where AWAC’s policy fell apart during online training while AWAC+MCAC was more
stable. Although there are too many factors at play to arrive at a concrete conclusion, a factor that
likely differentiated the algorithms is the Q value scales, presented in Figure 11. In these results,
which show the mean Q estimates computed during gradient updates for AWAC with and without
MCAC, we see that MCAC helps to prevent the Q values from crashing with the addition of online
data, which they do without it. This phenomenon likely played a role in the difference between the
two algorithms.

0 20000 40000 60000 80000 100000
Timesteps

80

60

40

20

0

Q
 E

st
im

at
e

AWAC
AWAC + MCAC

Figure 11: AWAC Q Estimates: Plots show mean and standard error across five random seeds of the Q
estimates from the AWAC and AWAC+MCAC learners. At the 0th timestep, each algorithm has undergone a
pretraining procedure as described in Section A.7. We see that while the original Q estimate plummets after
online data is added to the buffer, the version with MCAC stays relatively constant.

20

