
Unsupervised Multi-object Segmentation
by Predicting Probable Motion Patterns

Supplementary Material

Laurynas Karazija∗∗, Subhabrata Choudhury∗,
Iro Laina, Christian Rupprecht, Andrea Vedaldi

Visual Geometry Group
University of Oxford

Oxford, UK
{laurynas,subha,iro,chrisr,vedaldi}@robots.ox.ac.uk

In this supplementary material, we provide additional details for our loss function (Appendix A),
including detailed derivation steps, implementation details, and further discussion of the advantages.
Appendix C specifies hyperparameters used and how they were selected. We conclude with additional
ablation experiments (Appendix D) and results (Appendix E). Project page and code: https:
//www.robots.ox.ac.uk/~vgg/research/ppmp.

A Loss derivation

The key part of our loss function is the likelihood of the optical flow p(f | m), which serves to
evaluate how probable is a region of the optical flow carved out by the predicted masks for K regions.
We assume that optical flow within a region depends only on the region itself and that other regions
have no influence. Intuitively, this is a reasonable assumption, as in large, the movement/flow of
an object does not depend on the background or other objects. Thus, enforcing this assumption
encourages regions to correspond to objects.

The assessment of probability of optical flow within the region is based on the assumption that objects
should be moving rigidly. We use an approximate parametric motion model (Eq. (2)). The parameters
of the motion model θ abstract away unknown aspects such as scene geometry and camera intrinsics
but enable to translate between assumed 3D rigid motion and 2D optical flow.

We assume that motion parameters θk ∼ N (θ;µ,Σ) come from a multivariate Gaussian prior. This
choice enables expressing marginal-likelihood in closed-form.

We model the error of the approximate motion model as zero-mean isotropic Gaussian noise ϵ ∼
N (ϵ; 0, σ2I).

Following the motion model (Eq. (2)), the optical flow fk is an affine combination of Gaussian
random variables. Using this observation, its distribution is

p(fk |mk) = det(2π(PkΣP
⊤
k + σ2I))−

1/2 · exp(−1

2
F⊤

k (PkΣP
⊤
k + σ2I)−1Fk), (9)

where Fk = fk−Πµ(Ωk)+Ωk is the centered flow within the region k. This equation can be slightly
simplified by considering its two troublesome parts, the determinant and the quadratic form inside

∗Authors contributed equally.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://www.robots.ox.ac.uk/~vgg/research/ppmp
https://www.robots.ox.ac.uk/~vgg/research/ppmp

the exponent. For the determinant, we note the following:

det(2πPkΣP
⊤
k + 2πσ2I) = (2πσ2)2nk det(1/σ2PkΣP

⊤
k + I)

= (2πσ2)2nk det(Σ) det(1/σ2P⊤
k Pk +Σ−1) (*)

=
(2πσ2)2nk

det(Λ)
det(1/σ2P⊤

k Pk + Λ︸ ︷︷ ︸
Sk

),

where in the line marked with (*) we apply matrix determinant lemma, and in the last line we
substitute covariance Σ−1 = Λ for the precision matrix. Similarly, the quadratic form in the exponent
can be expanded

F⊤
k (PkΣP

⊤
k + σ2I)−1Fk = 1/σ2F⊤

k (1/σ
2PkΣP

⊤
k + I)−1Fk

= 1/σ2F⊤
k

(
I − 1/σ2Pk(1/σ2P⊤

k Pk + Λ)−1P⊤
k

)
Fk (†)

= 1/σ2F⊤
k Fk − (1/σ2)2F⊤

k Pk(1/σ2P⊤
k Pk + Λ︸ ︷︷ ︸
Sk

)−1P⊤
k Fk,

where in the line marked with (†) the Woodbury identity is applied. The optical flow for the whole
image is modeled as a joint of independent flow regions fk, giving the log-likelihood as

log p(f |m) =
∑
k

log p(fk |mk)

= −1

2

(
2 log(2πσ2)

∑
k

nk +
∑
k

log
detSk

detΛ
+ 1/σ2

∑
k

F⊤
k Fk − (1/σ2)2

∑
k

F⊤
k PkS

−1
k P⊤

k Fk

)

= −1

2

(
2 log(2πσ2)n+

∑
k

log
detSk

detΛ
+ 1/σ2F⊤F− (1/σ2)2

∑
k

F⊤LkPS−1
k P⊤LkF

)
, (10)

where in the last line we introduced n =
∑

k nk = HW , the number of pixels in the image. We also
use product of selector matrices Lk = R⊤

k Rk = diag(mk,mk) = L⊤
k such that F⊤

k Pk = F⊤LkP .
This explicitly includes masks in the expression. Finally, we use the fact that regions partition the full
image

∑
k F

⊤
k Fk =

∑
k

∑
i(Fk)

2
i = F⊤F. We now manipulate Eq. (10) using specific details of

the motion model to arrive at expressions that are convenient to implement in code.

A.1 Implementation details

Translation-only likelihood We assume that translation along x and y directions is independent,
such that θ prior is a zero-mean Gaussian with isotropic covariance τ2I . P tr

k = diag(1nk
,1nk

) and
by extension P tr = diag(1n,1n). The matrix Sk simplifies to

Sk = 1/σ2P⊤
k Pk + Λ = 1/σ2

(
1⊤
nk

1nk
0

0 1⊤
nk

1nk

)
+ 1/τ2I = 1/σ2(nk + σ2

/τ2)I ,

such that

detSk = (1/σ2(nk + σ2
/τ2))2, log

detSk

detΛ
= 2 log

nk + σ2
/τ2

σ2
/τ2

, S−1
k = (1/σ2(nk + σ2

/τ2))−1I.

Writing F⊤ = (u⊤,v⊤) to denote x and y components of the flow, respectively, the term reduces

(1/σ2)2
∑
k

F⊤LkPS−1
k P⊤LkF = 1/σ2

∑
k

F⊤L⊤
k PP⊤LkF

1

nk + σ2
/τ2

= 1/σ2

∑
k

1

nk + σ2
/τ2

[u⊤ v⊤]
[
mkm

⊤
k

mkm
⊤
k

]
[uv]

= 1/σ2

∑
k

1

nk + σ2
/τ2

(
(u⊤mk)

2 + (v⊤mk)
2
)

= 1/σ2

∑
k

n2
k

nk + σ2
/τ2

(ū2
k + v̄2k) ,

2

where in the last line we introduced mean flow ūk = n−1
k u⊤mk and v̄k = n−1

k v⊤mk. This gives
the negative log-likelihood as

log p(f |m) =
∑
k

log p(fk |mk)

= −1

2

(
2 log(2πσ2)n+

∑
k

log
detSk

detΛ
+ 1/σ2F⊤F− (1/σ2)2

∑
k

F⊤LkPS−1
k P⊤LkF

)

= −n log(2πσ2)−
∑
k

log
nk + σ2

/τ2

σ2
/τ2

− 1

2σ2

(
F⊤F−

∑
k

n2
k(ū

2
k + v̄2k)

nk + σ2
/τ2

)

= −n log(2πσ2)−
∑
k

log
nk + σ2

/τ2

σ2
/τ2

− 1

2σ2

n∑
i=1

(
u2
i + v2i −

∑
k

nk(ū
2
k + v̄2k)

nk + σ2
/τ2

(mk)i

)
. (11)

In our implementation, we extend this equation further. Writing wk = 1−
√

σ2/τ2

nk+σ2/τ2
, we note that

the following sum is equivalent

n∑
i=1

(ui −
∑
k

ūkwk(mk)i)
2 =

n∑
i=1

(u2
i −

∑
k

2uiūkwk(mk)i +
∑
k

(mk)iw
2
kū

2
k)

=

n∑
i=1

u2
i −

∑
k

2ūkwk

n∑
i=1

ui(mk)i +
∑
k

w2
kū

2
k

n∑
i=1

(mk)i

=

n∑
i=1

u2
i −

∑
k

2ū2
kwknk +

∑
k

w2
kū

2
knk

=

n∑
i=1

u2
i −

∑
k

ū2
knk(2wk − w2

k)

=

n∑
i=1

u2
i −

∑
k

ū2
k

nk

nk + σ2
/τ2

n∑
i=1

(mk)i

=

n∑
i=1

(
u2
i −

∑
k

nkū
2
k(mk)i

nk + σ2
/τ2

)
,

where in the first line we make use of the fact that masks are one-hot (m)i ∈ {0, 1}k, thus only a
single term in the sums over k is non-zero, i.e. (

∑
k wkūk(mk)i)

2 =
∑

k w
2
kū

2
k(mk)i). Using the

above insight, the log-likelihood is

log p(f |m) = −n log(2πσ2)−
∑
k

log
nk + σ2

/τ2

σ2
/τ2

− 1

2σ2

n∑
i=1

(
(ui −

∑
k

ūkwk(mk)i)
2 + (vi −

∑
k

v̄kwk(mk)i)
2

)
, (12)

where

nk =

n∑
i=1

(mk)i , wk = 1−

√
σ2
/τ2

nk + σ2
/τ2

.

We then replace m with m̂ from the Gumbel-Softmax approximation.

Affine motion likelihood. For the affine motion model, the full covariance matrix Σ prevents
significant further simplification. Instead, we transform the log-likelihood (Eq. (10)) to an equivalent
form involving only 3× 3 matrices, for which the required determinant and inverse can be calculated

3

analytically. To that end, we introduce the following auxiliary variables:

Gk = [xk yk 1nk] , Pk =

[
Gk 0
0 Gk

]
, Σ−1 = Λ =

[
α β
γ δ

]
.

Then Sk is

Sk = 1/σ2P⊤
k Pk + Λ =

[
1/σ2G⊤

k Gk + α β
γ 1/σ2G⊤

k Gk + δ

]
,

with

G⊤
k Gk =

 x⊤
k xk x⊤

k yk x⊤
k 1nk

x⊤
k yk y⊤

k yk y⊤
k 1nk

x⊤
k 1nk

y⊤
k 1nk

1⊤
nk
1nk

 .

Using this, the determinant is

detSk = det(1/σ2G⊤
k Gk + α− β(1/σ2G⊤

k Gk + δ)−1γ) det(1/σ2G⊤
k Gk + δ).

Similarly, the inverse is then

S−1
k =

[
Ak Bk

Ck Dk

]
, where

Dk = (1/σ2G⊤
k Gk + δ − γ(1/σ2G⊤

k Gk + α)−1β)

Ck = −Dkγ(1/σ2G⊤
k Gk + α)−1

Bk = −(1/σ2G⊤
k Gk + α)−1βDk

Ak = (1/σ2G⊤
k Gk + α)−1 −Bkγ(1/σ2G⊤

k Gk + α)−1, such that

hk =
(
u⊤
k xk u⊤

k yk u⊤
k 1nk

)
rk =

(
v⊤
k xk v⊤

k yk v⊤
k 1nk

)
F⊤

k PkS
−1
k P⊤

k Fk = hkAkr
⊤
k + rkCkh

⊤
k + hkBkr

⊤
k + rkDkr

⊤
k .

We implement inner products under Gumbel-Softmax as a⊤k bk =
∑n

i=1(a)i(b)i(m̂k)i, for some
vectors a,b. The coordinate vectors xk,yk have the origin set to the centroid of the predicted
region

(xc,k
yc,k

)
= n−1

k

(
x⊤mk

y⊤mk

)
. The expressions can then be substituted back to Eq. (10). We show

implementation in Algorithm 1.

A.2 Further justification

We consider whether the inclusion of the prior on the motion parameters offers any benefits. Consider
a simple translation-only model. Since objects are only translating, each pixel in a region should be
very close to the mean translation of that region. We can assess the mean for a region as

[
ūkmk
v̄kmk

]
,

considering some variance σ2 around it:

log p̂(f |m) = logN ([uv];
∑
k

[
ūkmk
v̄kmk

]
, σ2I)

= −n log(2πσ2)− 1

2σ2

n∑
i=1

(
(ui −

∑
k

ūk(mk)i)
2 + (vi −

∑
k

v̄k(mk)i)
2

)
.

Such model, up to a scaling factor, was already considered for features [?] and optical flow [2].
This expression for log p̂(f | m) can be compared with our version of translation only model
Eq. (12). By considering the prior on the motion parameters, we introduce a weighing factor wk

for each mean ūkmk, which discounts the contribution of smaller segments. Similarly, the term∑
k log

nk+σ2/τ2

σ2/τ2
≈
∑

k log nk encourages larger masks, since
∑

k nk = n. The prior helps to
encode that larger regions should be preferred.

4

Algorithm 1 Implementation of negative flow likelihood − log p(f |m) under affine motion prior.
Key quantities in the inner loop are underlined.

1: procedure NLL(mean µ, covariance Σ, variance σ2, flow f , masks mk, height H , width W)
2: (µ1 µ2 µ3 µ4 µ5 µ6)← µ
3: x,y← lattice(H,W)
4: [uv]← f
5: Λ← Σ−1

6:
[
α β
γ δ

]
← Λ

7: for all k regions do
8: nk ←

∑
i(mk)i

9: x̂k ← x− n−1
k x⊤mk ▷ Set origin to centroid

10: ŷk ← y − n−1
k y⊤mk

11: x⊤
k xk ←

∑
i(x̂k)

2
i (mk)i

12: x⊤
k yk ←

∑
i(x̂k)i(ŷk)i(mk)i

13: y⊤
k yk ←

∑
i(ŷk)

2
i (mk)i

14: x⊤
k 1nk

←
∑

i(x̂k)i(mk)i
15: y⊤

k 1nk
←
∑

i(ŷk)i(mk)i

16: G⊤
k Gk ←

 x⊤
k xk x⊤

k yk x⊤
k 1nk

x⊤
k yk y⊤

k yk y⊤
k 1nk

x⊤
k 1nk

y⊤
k 1nk

nk

17: Dk ← (1/σ2G⊤

k Gk + δ − γ(1/σ2G⊤
k Gk + α)−1β)

18: Ck ← −Dkγ(1/σ2G⊤
k Gk + α)−1

19: Bk ← −(1/σ2G⊤
k Gk + α)−1βDk

20: Ak ← (1/σ2G⊤
k Gk + α)−1 −Bkγ(1/σ2G⊤

k Gk + α)−1

21: u⊤
k xk ←

∑
i((u)i)((x)i − xc,k)(mk)i

22: ûk ← u− ((µ1 − 1)x̂+ µ2ŷ + µ3) ▷ Center flow according to mean motion
23: v̂k ← v − ((µ5 − 1)ŷ + µ4x̂+ µ6)
24: F⊤

k Fk ←
∑

i(ûk)
2
i (mk)i +

∑
i(v̂k)

2
i (mk)i

25: u⊤
k xk ←

∑
i(ûk)i(x̂k)i(mk)i

26: u⊤
k yk ←

∑
i(ûk)i(ŷk)i(mk)i

27: u⊤
k 1nk

←
∑

i(ûk)i(mk)i
28: hk ←

(
u⊤
k xk u⊤

k yk u⊤
k 1nk

)
29: v⊤

k xk ←
∑

i(v̂k)i(x̂k)i(mk)i
30: v⊤

k yk ←
∑

i(v̂k)i(ŷk)i(mk)i
31: v⊤

k 1nk
←
∑

i(v̂k)i(mk)i
32: rk ←

(
v⊤
k xk v⊤

k yk v⊤
k 1nk

)
33: F⊤

k PkS
−1
k P⊤

k Fk ← hkAkr
⊤
k + rkCkh

⊤
k + hkBkr

⊤
k + rkDkr

⊤
k

34: detSk ← det(1/σ2G⊤
k Gk + α− β(1/σ2G⊤

k Gk + δ)−1γ) det(1/σ2G⊤
k Gk + δ)

35: end for
36: return HW log(2πσ2) + 1

2

∑
k log

detSk

det Λ + 1
2σ2

∑
k(F

⊤
k Fk − F⊤

k PkS
−1
k P⊤

k Fk)
37: end procedure

5

B MOVINGCLEVRTEX and MOVINGCLEVR

We extend the implementation of [9] to generate video datasets of CLEVR and CLEVRTEX scenes.
We follow original sampling set up of CLEVRTEX – each scene contains a random arrangement
of 3–10 objects. We uniformly choose between scenarios where a single random objects is given
initial motion, two random objects are provided initial motion or all objects are moving. We sample
a random initial translation in XY plane for the object between keyframes 0 and 3, which builds
momentum. Physics simulation takes over from keyframe 4. Mass of each object is set to equal its
scale (numerically), and we use value of 0.1 for the ‘bounciness’ parameters. This results in objects
sliding, rotating due to shape and friction, and colliding. Collisions can make other objects move.
Each simulation is 5 frames long and we render keyframes 4 to 8.

We sample 10000 scenes for MOVINGCLEVRTEX, which gives the same number of frames as the
original CLEVRTEX (where each scene had only single frame). For MOVINGCLEVR, we sample 5000
scenes. 1000 and 500 scenes are kept as validation for MOVINGCLEVRTEX and for MOVINGCLEVR,
respectively. We use the same rendering and lighting parameters as in [9], except we slightly reduce
the scale of the surface displacement mapping for the background. This reduces the visibility of
clipping of the detailed object geometry with the background geometry, which might occur due to
physics simulation working on simplified meshes.

C Hyperparameters

Our method can use any segmentation network Φ. We employ the recent Mask2Former2 architecture,
using 6-layer CNN backbone from [10, 12] for simulated datasets and ResNet-18 for KITTI in the
main experiments. We also experiment with Swin-tiny transformer as the backbone, as it offers
balanced performance in both visually simple and complex settings. We ablate these choices in
Appendix D.

The networks are trained with AdamW [?], with a learning rate of 3× 10−6 and batch size of 32,
for 250k iterations. We employ gradient clipping when the 2-norm exceeds 0.01 and linear learning
rate warm-up for the first 5k iterations to stabilize the training. The learning rate is reduced by a
factor of 10 after 200k iterations. When training with warping loss on MOVi datasets, we found it
beneficial to train for longer, for 500k iterations, reducing the learning rate by factor of 10 also after
400k iterations.

We found it beneficial to linearly anneal β from 0.1 to -0.1 over 5k iterations, encouraging the network
to explore initially but focus on low-entropy distributions in the end. We found this had the effect of
encouraging the network to assign background pixels to a single slot.

For the prior, we set σ2 (Eq. (10)) to 0.5 and use µ = (1 0 0 0 1 0)⊤. We use the following covariance
matrix

Σ =

0.005 0 0 0 0 0
0 0.05 0 0 0 0
0 0 15 0 0 0
0 0 0 0.05 0 0
0 0 0 0 0.005 0
0 0 0 0 0 15

 .

C.1 Settings in ablations

When experimenting with translation-only model, we use the same parameters and settings where
possible. We set τ2, so 0.5, 16.0, 34.0 for CLEVR/CLEVRTEX, MOVi-A, and MOVi-C, respectively
(values picked from specialized covariance matrices, see Appendix D).

For GNM [7], we use implementation and parameters described in [9]. Owning to our loss being
lower bound on log-probability, we simply add our loss to existing ELBO loss with hyperparameters
above, only changing σ2 = 0.1. We hypothesize that lower noise model is beneficial, as it provides
stronger learning signal in the early stages when reconstruction is noisy due to untrained VAEs. The

2Code available from https://github.com/facebookresearch/Mask2Former.

6

https://github.com/facebookresearch/Mask2Former

Table 1: Supplementary ablations for our methods. We show the impact segmentation networks
have for different datasets Table 1a. We further study the impact of our tuned covariance matrix in
Table 1b. Results with post-processing applied.

(a) Choice of Model Architecture

MOVi-A MOVi-C MOVINGCLEVRTEX

Architecture # Params FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑
M2F (Swin-tiny) 47M 83.48 72.61 58.59 35.67 88.80 69.62
M2F (ResNet50) 44M 83.44 68.06 60.32 34.80 90.40 67.07
M2F (ResNet18) 31M 84.04 67.48 60.84 35.69 90.31 67.33
MF (Swin-tiny) 44M 81.78 71.28 54.45 33.67 71.07 51.06
U-Net 31M 90.79 82.85 60.28 26.62 87.03 39.66

(b) Choice of Covariance Marix

MOVi-A MOVi-C

Σ FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑
Generic 82.32 71.70 58.12 35.79
Tuned 83.48 72.61 58.59 35.67

overfitting to errors of the motion approximation is handled, instead, by the networks balancing
between appearance reconstruction and motion explanation objectives.

For SA [12], we also use implementation of [9]. SA loss is multiplied by 100 before adding our
formulation.

C.2 Settings in KITTI

For experiments on KITTI, we replace the backbone to ResNet-18 to match prior work. We reduce
batch size to 8, increase learning rate to 10−4. Learning rate is linearly warmed up for 10 iteration,
and reduced by a factor of 10 after 5500 iterations. We employ backbone learning rate multiplier of
0.1. All other settings as before.

C.3 Model parameters of comparisons

Here we describe implementation and hyperparameters used for comparative methods in our experi-
ments.

SAVi [10]. We follow the parameters given for conditional SAVi-S in their code repository3, except
to make SAVi unconditional we unset the conditioning key and make the slots to be learnable
parameters.

SCALOR [8]. We use the optimized SCALOR parameters mentioned by SAVi [10] to train
SCALOR. Particularly we use the MOVI dataset parameters to train MOVi-A and MOVI++ parame-
ters to train MOVi-C.

GWM [2]. For GWM, we follow the parameters mentioned in the paper, except we do not employ
spectral clustering and match the number of components to our settings for each dataset.

D Additional ablations

Segmentation network. We study the effect of segmentation network in Table 1a. We find that
using a much simpler U-Net [?] architecture is beneficial on MOVi-A which contains visually plain
scenes. The U-Net architecture, however, results in performance degradation on visually complex
data.

3Code available from https://github.com/google-research/slot-attention-video.

7

https://github.com/google-research/slot-attention-video

We also consider a version of Mask2Former architecture that uses much deeper backbone, using
Resnet-50 and Resnet-18, instead. We find that the deeper backbones leads to similar performance,
indicating that our formulation is not architecture-specific. Finally, we change to MaskFormer
architecture, matching the network architecture used in [2], and use smaller Swin-tiny backbone. We
find that our loss formulation leads to improved performance still.

Covariance matrix. We investigate whether further improvements are possible using specialised
versions of the prior. To that end, we offset the mean translation prior to account for the dominantly
downward motion of objects on MOVi-A/MOVi-C. We use µMOVi−A = (1 0 0 0 1 1.5)⊤ and
µMOVi−C = (1 0 0 0 1 1.8)⊤, respectively.4 We use the following specialized covariance matrices:

ΣMOVi−A =

0.006 −0.00004 0 0.00004 0.001 0
−0.00004 0.04 0 −0.01 −0.00008 0

0 0 16 0 0 0
0.00004 −0.01 0 0.04 0.00004 0
0.001 −0.00008 0 0.00004 0.006 0
0 0 0 0 0 14

ΣMOVi−C =

0.02 0.00002 0 0.000009 0.002 0

0.00002 0.03 0 −0.009 −0.000006 0
0 0 36 0 0 0

0.000009 −0.009 0 0.04 −0.00007 0
0.002 −0.000006 0 −0.00007 0.02 0
0 0 0 0 0 34

We obtain the dataset specific covariance matrices by forming initial estimates using a method
described below using only optical flow. We then overwrite the entries to encode our belief that
translation should be independent. Finally, we further tuned the values through by taking one search
step for MOVi-A and MOVi-C each. In our experiments, we found that increasing diagonal elements
(variances) and decreasing off-diagonal elements produced slightly better results.

Initial covariance estimation. We form initial estimate for the dataset-specific covariance matrices
used in ablation only to start hyperparameter search in a sensible range. This method relies on
observation that to form an estimate (1) all objects from a frame are not required – only some are
sufficient. Furthermore, for the selected object candidates, (2) precise boundaries are not necessary.
The method is as follows:

1. We extract discontinuities from the flow using Sobel filtering and treat these as flow edges.

2. We then only consider regions where the optical flow is larger than zero, identifying fore-
ground.

3. We subtract edge pixels from the candidate foreground mask. This attempts to disconnect
any overlapping objects using discontinuity in optical flow.

4. We run connected components algorithm to identify candidate object regions.

5. Within each region, using the motion model (Eq. (2)) we estimate θ̂ by forming least-squares
solution. We only considered estimates from regions larger than 100 pixels (for numerical
stability) and where the residual error was within the 90% percentile.

6. Initial covariance estimate Σ̂ is formed by calculating sample covariance over the combined
set of inliers and extra n no-motion values to account for stationary regions.

We apply this method on a subset of the data. n is the size of the subset.

We find using the specialized settings above give slight improvement on most metrics (Table 1b),
indicating that using more appropriate prior for the data further improves results.

8

Table 2: Expanded benchmark results on CLEVR, CLEVRTEX, CAMO, and OOD comparing
FG-ARI and mIoU metrics. Results are a mean of 3 seed (±σ). Methods above the line are trained
on single images, while methods below train on videos.† – indicates post-processing.

CLEVR CLEVRTEX OOD CAMO

Model FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑
SPAIR [3] 77.13± 1.92 65.95± 4.02 0.00± 0.00 0.00±0.00 0.00± 0.00 0.00±0.00 0.00± 0.00 0.00±0.00

SPAIR† 77.05± 1.96 66.87± 9.65 0.00± 0.00 0.00±0.00 0.00± 0.00 0.00±0.00 0.00± 0.00 0.00±0.00
SPACE [11] 22.75±14.04 26.31±12.93 17.53± 4.13 9.14±3.46 12.71± 3.44 6.87±3.32 10.55± 2.09 8.67±3.50

SPACE† 22.74±14.03 27.00±13.69 17.52± 4.12 9.68±4.10 12.71± 3.44 7.20±3.75 10.54± 2.08 9.25±3.95
GenV2 [5] 57.90±20.38 9.48± 0.55 31.19±12.41 7.93±1.53 29.04±11.23 8.74±1.64 29.60±12.84 7.49±1.67

GenV2† 57.78±21.12 10.76± 1.39 30.55±14.27 9.04±0.63 28.41±13.20 9.96±0.70 29.19±14.55 8.40±1.00
MN [14] 72.12± 0.64 56.81±0.40 38.31± 0.70 10.46±0.10 37.29± 1.04 12.13±0.19 31.52± 0.87 8.79±0.15

MN† 72.08± 0.62 57.61±0.40 38.34± 0.73 10.34±0.12 37.28± 1.07 11.97±0.21 31.54± 0.87 8.77±0.18
MONet [1] 54.47±11.41 30.66±14.87 36.66± 0.87 19.78±1.02 32.97± 1.00 19.30±0.37 12.44± 0.73 10.52±0.38

MONet† 61.36± 7.33 45.61± 4.80 35.64± 1.17 23.59±0.29 31.51± 1.46 23.04±0.52 9.94± 0.50 11.31±0.30
SA [12] 95.89± 2.37 36.61±24.83 62.40± 2.23 22.58±2.07 58.45± 1.87 20.98±1.59 57.54± 1.01 19.83±1.41

SA† 94.88± 1.67 37.68±26.56 61.60± 2.29 21.96±1.79 57.41± 1.92 20.60±1.45 56.85± 1.12 19.42±1.42
IODINE [6] 93.81± 0.76 45.14±17.85 59.52± 2.20 29.17±0.75 53.20± 2.55 26.28±0.85 36.31± 2.57 17.52±0.75

IODINE† 93.68± 0.83 44.20±18.67 60.63± 2.50 29.40±1.10 54.92± 2.24 27.96±0.81 38.29± 1.40 18.87±0.52
eMORL [4] 93.25± 3.24 50.19±22.56 55.62± 2.12 30.17±2.60 49.21± 2.69 25.03±1.99 37.66± 8.41 19.13±4.88

eMORL† 93.09± 2.68 49.28±24.28 58.59± 1.96 31.64±2.22 51.97± 2.44 26.91±1.69 43.83± 7.34 22.40±4.35
DTI-S [13] 89.54± 1.44 48.74± 2.17 79.90± 1.37 33.79±1.30 73.67± 0.98 32.55±1.08 72.90± 1.89 27.54±1.55

DTI-S† 89.86± 1.78 53.38± 3.51 79.86± 1.36 32.20±1.49 73.60± 0.97 30.74±1.22 72.89± 1.88 26.30±1.57
GNM [7] 65.05± 4.19 59.92± 3.72 53.37± 0.67 42.25±0.18 48.43± 0.86 40.84±0.30 15.73± 0.89 17.56±0.74

GNM† 65.67± 4.23 63.38± 3.76 53.38± 0.67 44.30±0.19 48.44± 0.86 42.87±0.28 15.72± 0.89 18.53±0.75

SAVi [10] — — 49.54 31.88 42.68 30.31 42.67 29.60
Ours 91.69± 0.30 66.70± 0.32 90.80± 0.22 55.07±0.44 76.01± 0.56 46.84±0.20 72.78± 1.31 42.30±1.09

Ours † 95.94± 0.43 84.86± 4.06 92.61± 0.22 77.67±0.25 78.24± 0.43 55.54±0.44 77.43± 0.86 56.43±0.80

E Additional results

Expanded results on CLEVR and CLEVRTEX. In Table 2 we show expanded version of the
results on CLEVR and CLEVRTEX benchmarks.

Qualitative results on MOVi-A and MOVi-C. In Fig. 1 and 2 we show additional qualitative
results on MOVi-A and MOVi-C respectively. Following the results in main paper, the segments
discovered by our method are semantically meaningful. Our object boundaries are of higher quality
than the comparable methods. GWM suffers from oversegmentation of the objects. SCALOR has
dificulty with complex datasets, such as MOVi-C as observed in Fig. 2. SAVI’s object boundaries do
not conform to object shape. We also provide additional failure cases of our model in Fig. 3. Our
model has difficulty with objects that have complex motion for our affine formulation to model ably.

Additional references
[1] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,

and Alexander Lerchner. Monet: Unsupervised scene decomposition and representation. arXiv preprint
arXiv:1901.11390, 2019.

[2] Subhabrata Choudhury, Laurynas Karazija, Iro Laina, Andrea Vedaldi, and Christian Rupprecht. Guess
What Moves: Unsupervised video and image segmentation by anticipating motion. In British Machine
Vision Conference (BMVC), 2022.

[3] Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with convolutional
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
3412–3420, 2019.

[4] Patrick Emami, Pan He, Sanjay Ranka, and Anand Rangarajan. Efficient iterative amortized inference for
learning symmetric and disentangled multi-object representations. In Proceedings of the 38th International
Conference on Machine Learning, pages 2970–2981. PMLR, 2021.

[5] Martin Engelcke, Oiwi Parker Jones, and Ingmar Posner. Genesis-v2: Inferring unordered object represen-
tations without iterative refinement. In Advances in Neural Information Processing Systems, volume 34,
2021.

[6] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel Zoran,
Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation learning with

4In our experiments, Y axis is pointing down and X is pointing right.

9

iterative variational inference. In International Conference on Machine Learning, pages 2424–2433.
PMLR, 2019.

[7] Jindong Jiang and Sungjin Ahn. Generative neurosymbolic machines. In Advances in Neural Information
Processing Systems, volume 33, pages 12572–12582, 2020.

[8] Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and Sungjin Ahn. Scalor: Generative world models
with scalable object representations. In International Conference on Learning Representations, 2020.

[9] Laurynas Karazija, Iro Laina, and Christian Rupprecht. Clevrtex: A texture-rich benchmark for unsuper-
vised multi-object segmentation. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2021.

[10] Thomas Kipf, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg Heigold,
Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional object-centric learning from video.
In International Conference on Learning Representations, 2022.

[11] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong Jiang,
and Sungjin Ahn. SPACE: Unsupervised object-oriented scene representation via spatial attention and
decomposition. In International Conference on Learning Representations, 2020.

[12] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention. In Advances
in Neural Information Processing Systems, volume 33, pages 11525–11538, 2020.

[13] Tom Monnier, Elliot Vincent, Jean Ponce, and Mathieu Aubry. Unsupervised layered image decomposition
into object prototypes. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 8640–8650, 2021.

[14] Dmitriy Smirnov, Michael Gharbi, Matthew Fisher, Vitor Guizilini, Alexei A Efros, and Justin Solomon.
Marionette: Self-supervised sprite learning. In Advances in Neural Information Processing Systems,
volume 34, 2021.

10

MOVi-A-savi1

Frame Flow GWMGT SCALOR SAVi Ours Ours†

+

MOVi-A-savi1

+

MOVi-A-savi1

+

MOVi-A-savi1

+
Figure 1: Additional qualitative comparison on MOVi-A. Our method performs consistently well
compared to other methods. †– indicates post-processing.

11

MOVi-A-savi1

Frame Flow GWMGT SCALOR SAVi Ours Ours†

+

MOVi-A-savi1

+

MOVi-A-savi1

+

MOVi-A-savi1

+
Figure 2: Additional qualitative comparison on MOVi-C. †– indicates post-processing.

12

MOVi-A-failure

+

Frame Flow GWMGT SCALOR SAVi Ours Ours†

M
O

V
i-A

MOVi-C-failure

+

M
O

V
i-C

Figure 3: Additional examples of failure cases on MOVi-A and MOVi-C. †– indicates post-processing.

13

	Loss derivation
	Implementation details
	Further justification

	MovingClevrTex and MovingClevr
	Hyperparameters
	Settings in ablations
	Settings in KITTI
	Model parameters of comparisons

	Additional ablations
	Additional results

