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Abstract

We propose a new approach to learn to segment multiple image objects without
manual supervision. The method can extract objects form still images, but uses
videos for supervision. While prior works have considered motion for segmen-
tation, a key insight is that, while motion can be used to identify objects, not
all objects are necessarily in motion: the absence of motion does not imply the
absence of objects. Hence, our model learns to predict image regions that are
likely to contain motion patterns characteristic of objects moving rigidly. It does
not predict specific motion, which cannot be done unambiguously from a still
image, but a distribution of possible motions, which includes the possibility that
an object does not move at all. We demonstrate the advantage of this approach
over its deterministic counterpart and show state-of-the-art unsupervised object
segmentation performance on simulated and real-world benchmarks, surpassing
methods that use motion even at test time. As our approach is applicable to variety
of network architectures that segment the scenes, we also apply it to existing image
reconstruction-based models showing drastic improvement. Project page and code:
https://www.robots.ox.ac.uk/~vgg/research/ppmp.

1 Introduction

Humans have an innate ability to segment individual objects in a picture, but learning this capability
with an algorithm usually relies on manual supervision. In this paper, we consider the problem of
learning to segment objects from visual data only — without externally provided labels. Algorithms
for this task usually assume that objects are seen in different configurations and in front of different
backgrounds. They then exploit cues such as the visual consistency and the co-occurrence of
characteristic object parts to learn to discover and segment individual object instances.

Most such methods use still images as input and train with a reconstruction objective [19, 23, 37].
They work well on simple synthetic scenes, but they struggle in scenes with more complex visual
appearance [27]. This has motivated the development of algorithms that use videos as input and
can thus observe the motion of the objects as evidence of their presence. A common way of using
motion for unsupervised learning is to seek for a compact representation to reconstruct the video
itself [24, 26, 33, 53]. Effectively, such methods seek for a compressed representation of appearance,
but do not sidestep entirely the difficult task of modeling it. This has motivated authors to look instead
at reconstructing the video’s optical flow [28, 57]. In fact, the optical flow measures the motion of the
objects directly and is much simpler to model than the objects’ appearance.
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In this paper, we propose a method that lies in-between these two classes, i.e. single image-based and
video-based. Our model learns to segment objects in still images, and is thus based on appearance, but
learns to do so using video as a learning signal, in an unsupervised manner. The learning process can
be summarized as follows. Given an image, each pixel is assigned to a slot that represents a certain
object. The quality of the assignments is then measured by the coherence of the (unobserved) optical
flow within the extracted regions. Because predicting optical flow from a still image is intrinsically
ambiguous, the method models distributions of probable flow patterns within each region. The idea is
that (rigid) objects generate characteristic flow patterns that can be used to distinguish between them.

Note that, because the segmentation network is based on a single image, it will learn to partition all
objects contained in the scene, not just the ones that actually move in the video, i.e. solving an object
instance segmentation problem, rather than motion segmentation.

We derive closed-form distributions for the flow field generated by rigid objects moving in the scene.
We also derive efficient expressions for the calculation of the flow probability under such models. The
problem of decomposing the image into a number of regions is cast as a standard image segmentation
task and an off-the-shelf neural network can be used for it.

As our method uses videos to train an image-based model, we introduce two new datasets which are
straightforward video extensions of the existing image datasets CLEVR [25] and CLEVRTEX [27].
These datasets are built by animating the objects with initial velocities and using a physics simulation
to generate realistic object movement. Our datasets are constructed with the realistic assumption that
not all objects are moving at all times. This means that motion alone cannot be used as the sole cue
for objectness and reflects scenarios such as a workbench where a person only interacts with a small
number of objects at a time.

Empirically, we validate our model against several ablations and baselines. We compare our approach
to existing unsupervised multi-object segmentation methods achieving state-of-the-art performance.
We demonstrate particularly strong performance in visually complex scenes even with unseen objects
and textures at test time. Our experiments in comparison to image-based models and, in particular,
adding our motion-aware formulation to existing models shows substantial improvements, confirming
that motion is an important cue to learn objectness. Furthermore, we show that our learned segmenter,
which operates on still images, produces better segmentation results than current video-based methods
that use motion information at test time. Finally, we also apply our method to real-world self-driving
scenarios where we show superior performance to prior work.

2 Related Work

Multi-object decomposition. Learning unsupervised object segmentation for static scenes is a
well-researched problem in computer vision [5, 9, 11, 12, 13, 14, 17, 18, 23, 34, 37, 45, 46, 56].
These methods aim to decompose the scene into constituent parts, e.g. the different foreground
objects and the background. Glimpse-based methods [9, 14, 23, 34] find input patches (glimpses) that
contain the objects in the scene. These methods learn object descriptors that encode their properties
(e.g. position, number, size of the objects) using variational inference, composing glimpses into the
final picture. More related to ours are approaches that learn per-pixel object masks [5, 11, 12, 13, 37].
MoNet [5] and IODINE [19] employ multiple encoding-decoding steps to sequentially explain the
scene as a collection of regions. Slot Attention [37] uses a multi-step soft clustering-like scheme to
find the regions simultaneously. In all cases, learning is posed as an image reconstruction problem.
In order to align learnable slots with semantic objects, models have to make efficient use of a limited
representation available for each region, such as learning to only explain visual appearance. This
principle, however, is difficult to extend to visually complex data [27] and relies on custom specialized
architectures. Instead, our method allows for any standard segmentation architecture to be used,
which we train to predict regions that are most likely described by rigid motion patterns.

Video-based multi object decomposition. Another line of work extends the unsupervised object
decomposition problem to videos [21, 24, 26, 29, 30, 31, 33, 44, 52, 54, 55, 59]. Many of these
methods work mainly with simpler datasets [30, 44, 59] and require sequential frames for training.
For example, SCALOR [24] is a glimpse-based method that discovers and propagates objects across
frames to learn intermediate object latents. SIMONe [26] processes the whole video at once, learning
both temporal scene representation and time-invariant object representations simultaneously. Slot
Attention for Video (SAVi) [28] poses the multi-object problem as optical-flow prediction using
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sequential frames as input. The internal slot-attention mechanism drives the network to learn regions
that move in a simple and consistent manner. Different to our work, it does not assume a specific
motion model but relies on directly regressing the flow. It is computationally more expensive and
struggles when only one or few frames are available.

Unsupervised video object segmentation. Unsupervised video object segmentation (VOS) is a
popular problem in computer vision [10, 15, 32, 38, 43, 49, 51, 57, 58], that focuses on extracting the
most salient object in the scene. Many of the approaches treat the problem as a motion segmentation
task as the background typically shows a dominant motion independent of the salient object. Motion
Grouping [57] employs the Slot Attention architecture to reconstruct optical flow from itself, avoiding
appearance information entirely. In [6] objects are iteratively explained away starting from confident
flow segments, which are refined using a graph propagation method. Another related line of work [8,
40, 41, 50] employs approximate motion models. These approaches rely on a point estimate of the
motion model parameters. In contrast, we adopt a more principled probabilistic approach, placing
a prior on the motion parameters and integrating them out. To deal with flow outliers that do not
conform to a rigid motion model, Mahendran et al. [40] use a histogram matching-based loss and
GWM [8] over-segments the scene relying on spectral clustering to produce a binary segmentation
during inference. Instead, we model the noise in our formulation directly. Finally, Meunier et al. [41]
rely on flow as input, limiting the method to videos only.

3 Method

Let a frame I ∈ R3×H×W of a video and its optical flow f ∈ R2×H×W be defined on the H ×W
lattice. The optical flow is a local summary of the motion from one frame to the next. We use it to
supervise a network Φ that, given the (single) image I as input, predicts soft assignments of each
pixel to up to K different image regions, outputting an H × W collection of probability vectors
Φ(I) ∈ ∆̂H×W

K ⊂ [0, 1]K×H×W , where ∆̂K is the K − 1-dimensional simplex. The quality of
the regions is measured based on how likely they contain flow patterns typical of the motion of
independent objects.

In more detail, we represent the predicted image regions by a hard K-way pixel assignment (mask)
m ∈ ∆H×W

K ⊂ {0, 1}K×H×W , where ∆K is the space of K-dimensional one-hot vectors. Each
mask is a sample from the categorical distribution output by the network, i.e. m ∼ pΦ(m | I) =
Categorical[Φ(I)]. Note that there is one categorical distribution for each pixel and that these are
mutually independent.

We then assume that the flow depends only on the regions, in the sense that pΦ(f ,m | I) = p(f |
m) pΦ(m | I), where p(f | m) is a model of the distribution of the flow field given the regions. The
likelihood of the modeled Φ is bounded by:

log pΦ(f | I) = log E
m∼pΦ(m|I)

[p(f | m)] ≥ E
m∼pΦ(m|I)

[log p(f | m)] .

Furthermore, inspired by ELBO, we regularize the model’s prediction pΦ(m | I) by taking its KL
divergence from a uniform prior p0(m), obtaining the learning objective

Lβ = E
m∼pΦ(m|I)

[− log p(f | m)] + βDKL (pΦ(m | I) ∥ p0(m)) . (1)

Next, we introduce the closed-form motion model p(f | m) in Eq. (1) and then explain how the
Gumbel-Softmax trick can be used to train the network.

Approximate motion models for optical flow. We now turn to describing the models of motion
used in our work, which play a role in assessing the likelihood of optical flow p(f | m). Optical
flow measures the coordinate change of pixels between neighboring frames, which arises due to the
motion of the camera and objects. We consider rigid-body motion of some object k.

Let xt
k,y

t
k ∈ Rnk be the spatial locations of the pixels belonging to region/object k at time t, where

nk is the number of pixels in the region. For convenience, we stack the coordinates in a single vector
Ωt

k = (xt
k,y

t
k) ∈ R2nk . The pixels comprising this object undergo coordinate change from Ωt

k to
Ωt+1

k , giving rise to the optical flow for this object as fk = Ωt+1
k − Ωt

k. We assume this underlying
3D rigid-body motion can be approximated using a linear 2D parametric model Πθ with parameters
θ, so that:

Ωt+1
k = Πθ(Ω

t
k) + ϵ, fk = Πθ(Ω

t
k)− Ωt

k + ϵ, (2)
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where ϵ captures the residual error of the approximation. Several forms of models are available (see
[1, 4] for an overview). Here, we consider two such models: the translation of an object within the
camera plane, and an affine motion, given respectively by linear functions:

Πtr
θ (Ω

t
k) = Ωt

k+

[
1nk

0
0 1nk

]
︸ ︷︷ ︸

P tr
k

(
θ1
θ2

)
, Πaff

θ (Ωt
k) =

[
xt yt 1nk

0 0 0
0 0 0 xt yt 1nk

]
︸ ︷︷ ︸

P aff
k

θ1
...
θ6

 , (3)

where we use 1nk
is a vector of nk ones and matrix Pk contains the coefficients of the model.

The affine model supports object rotation, scaling and shearing in addition to translation. It is often a
sufficient approximation to real-world optical flow, provided the objects are rigid, convex, and mainly
rotating in-plane.

We can then use the motion equations (2) to construct the distribution p(f | m) by assuming a prior
on the motion parameters and by marginalizing over it. Specifically, denote by mk the k-th slice
of the tensor m encoding the regions (i.e. the mask of the k-th region). We assume that regions are
statistically independent and decompose the log-likelihood p(f | m) as:

log p(f | m) =
∑
k

log p(fk | mk) =
∑
k

∫
log p(fk, θk | mk)dθk. (4)

Assuming that each object has i.i.d. parameters θk with a Gaussian prior N (θ;µ,Σ), and assuming ϵ
is a zero-mean noise with variance σ2, Eq. (2) gives marginal optical flow likelihood for segment k:

p(fk | mk) = N
(
fk; Πµ(Ωk)− Ωk, PkΣP

⊤
k + σ2I

)
(5)

where I is the identity matrix. A practical issue with Eq. (5) is that, if segment k contains nk =∑
i(mk)i pixels, then the covariance matrix PkΣP

⊤
k + σ2I has dimension 2nk × 2nk. Inverting

such a matrix in the evaluation of the Gaussian log-density is very slow except for very small regions.
Furthermore, it is not obvious how to relax Eq. (4) to support gradient-based learning, e.g. through
the Gumbel-Softmax approximation. We solve these problems in the next section.

Expressions for the likelihood. We now derive expressions for Eq. (5) which are efficient and
that lead to a natural relaxation for use in the Gumbel-Softmax sampling. Given the definitions
Fk = fk −Πµ(Ωk) + Ωk and Λ = Σ−1, we can rewrite Eq. (5) as:

p(fk | mk) = (2πσ2)−nk

(
detSk

detΛ

)− 1
2

e−
d2

2σ2 , d2 = F⊤
k Fk − 1

σ2
F⊤

k PkS
−1
k P⊤

k Fk , (6)

where Sk = 1/σ2P⊤
k Pk +Λ. The significant advantage of this form is that it involves the computation

of the inverse and determinant of matrix Sk, whose size is only 2× 2 (for the translation model) or
6× 6 (for the affine one), instead of the much larger 2nk × 2nk.

We can more explicitly introduce the dependency on the region assignments m by defining selector
matrices Rk ∈ {0, 1}2nk×2n (with n =

∑
k nk = HW ) that extract the x and y coordinates of the

pixels that belong to the corresponding region, i.e. Ωk = RkΩ. We can then also write Fk = RkF
and Pk = RkP . Furthermore, the product of the selectors Lk = R⊤

k Rk ∈ {0, 1}2n×2n can be
written directly as a function of the assignment m as Lk(m) = diag(mk,mk). Plugging these back
in Eq. (6), we obtain expressions involving Lk only:

nk =
1

2
|Lk|1, Sk =

1

σ2
P⊤LkP + Λ, d2 = F⊤LkF− 1

σ2
(F⊤LkP )S−1

k (P⊤LkF). (7)

Translation-only model. Further simplifications are possible for specific models. For instance, for
the translation-only model, assuming that Λ = diag(1/τ2, 1/τ2) then Sk = diag(nk + 1/τ2, nk +
1/τ2) and, after some calculations, we obtain the expression:

− log p(f | m) = n log 2πσ2+
∑
k

log
nk + σ2

τ2

σ2

τ2

+
1

2σ2
F⊤

(
I −

∑
k

1

nk + σ2

τ2

[
mkm

⊤
k

mkm
⊤
k

])
F.
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Affine model. For the affine model, the expression for − log p(f | m) does not simplify as much.
Still, by exploiting the structure of matrix P aff

k , we can reduce the calculations to the computation
of inverse and determinant of small 3× 3 matrices, which can be implemented efficiently in closed
form. Please see the Appendix for the derivation. Unless otherwise stated, the mean vector is set to
µ = (1 0 0 0 1 0)⊤ centering the prior on the no-motion point.

Gumbel-softmax. In order to train the network using gradient descent, we need a differentiable
version of loss (1). To do so, we use the re-parametrizable Gumbel-softmax relaxation [22, 39].
The Gumbel-softmax relaxation replaces categorical samples m ∈ ∆H×W

K from the distribution
pΦ(m | I) = Categorical[Φ(I)] with continuous samples m̂ ∈ ∆̂H×W

K from the distribution
GumbelSoftmax[Φ(I)]. We take N = 3 samples from this distribution to evaluate the expected
negative log-likelihood, further reducing variance. Then we simply replace m̂ for m in Eq. (1),
leading to differentiable quantities.

Post-processing. Eq. (5) naturally encourages the model to form larger regions to explain parts of
the scene that move in a consistent (under the assumed prior) manner. However, we find that this
can also lead to the model grouping together objects that only coincidentally move together (e.g. all
objects mostly falling due to gravity in one of the datasets). Furthermore, optical flow is ambiguous
around object edges and occlusions. To address both the object grouping and occlusion boundary
issue, we use a simple post-processing step. We isolate connected components in the model output,
selecting the K largest masks, discarding any that are smaller than 0.1% of the image area, and
combining the left-over and discarded ones with the largest mask overall.

Warp loss. Occasionally, the optical flow used to supervise our model can be noisy as it is estimated
by other methods. This noise is also unlikely to be isotropic as some surfaces are easier to estimate
that others. Rather than supporting heterogeneous noise and approximation error (Eq. (2)), we instead
prioritize parts of the scene covered by higher-quality flow. To this end, we introduce an additional
loss term that simply enforces consistency between adjacent frames I1, I2. In particular, it warps the
predicted mask distributions Φ(I1),Φ(I2) using the optical flow, weighted by the error of warping
the frames themselves, as follows:

Lwarp(I1, I2, f1, b2) = w(I2, f1(I1)) · d(Φ(I2), f1(Φ(I1))) (8)
+ w(I1, b2(I2)) · d(Φ(I1), b2(Φ(I2))),

w(Ia, Ib) = 1− norm(|Ia − Ib|),
d(p, q) = DKL(p ∥ q)/2 +DKL(q ∥ p)/2,

where f1(·) indicates warping by forward optical flow f1 (or backward b2). The symmetrized KL
divergence, d(·), measured agreement between predicted and warped mask distributions, weighted by
the absolute error of the warped frames normalized in [0, 1]. While the use of this term is not central
to our method, we include it to show how tolerance to noisy optical flow can be improved. We do not
use the warp loss (Eq. (8)) in our experiments, unless otherwise indicated by (WL). In that case, the
final loss is simply sum of the two terms: Lβ + Lwarp.

4 Experiments

Our method lies in between image-based and video-based segmentation approaches, because it uses
videos for supervision, but trains an image segmentation network that operates on still images only.
We thus evaluate our approach under a number of settings. Firstly, we evaluate how well motion
can be used to supervise an object instance segmenter that operates on still images. Secondly, we
compare such a segmenter to state-of-the-art object segmentation methods that use motion also at test
time (and are thus advantaged compared to our model). We conduct further analysis to validate our
modelling assumptions and the model’s reliance on the quality of the optical flow used for supervision.
Finally, we apply our method to a real-world setting.

4.1 Experimental setup

Datasets. We evaluate our method on video and still image datasets. For video-based data, we use
the Multi-Object Video (MOVi) datasets, released as part of Kubric [20]. Specifically, we employ
MOVi-{A,C,D,E} versions. MOVi-A is similar to CLEVR [25] in terms of visual complexity and
contains videos of 3–10 falling objects on a simple, gray background. MOVi-C is significantly more
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Figure 1: Example images and optical flow of the MOVINGCLEVR and MOVINGCLEVRTEX
datasets, which extend CLEVR and CLEVRTEX respectively to short videos based on physics
simulation. Note that only a subset of objects is in motion in each frame.

challenging, as it features scanned, textured, common objects on top of backgrounds textured using
HDR images. In MOVi-D, the number of objects is increased up to 23. In MOVi-E, the camera is
additionaly moving. We use a resolution of 128× 128 and the provided ground truth optical flow.

To evaluate our method on still images, we use CLEVR [25] and CLEVRTEX [27] benchmark suites.
Both consist of images depicting 3–10 objects. CLEVR images are simpler with uniformly colored
objects with metallic or rubbery materials. CLEVRTEX features more diverse objects with complex
textures applied. We also use the OOD and CAMO test sets from CLEVRTEX benchmark. OOD
contains out-of-distribution shapes and textures. CAMO has camouflaged objects where the same
texture is sampled for objects and the background.

Since our method requires optical flow during training, we extend the implementation of [27] to
generate video datasets of CLEVR and CLEVRTEX scenes, where a subset of objects contained in
each scene are sliding, rolling and colliding based on a physics simulation (Fig. 1). We generate 10k
sequences for MOVINGCLEVRTEX and 5k for MOVINGCLEVR, where we retain 1000 and 500
sequences, respectively, for validation. Each sequence is 5 frames long. Dataset details can be found
in the Appendix. The evaluation is performed on the original CLEVR and CLEVRTEX test sets.

We also evaluate our method on the real-world KITTI [16] benchmark which depicts street scenes
captured from a moving car. We follow the set up of [3], using 147 videos for training and evaluate
on the instance segmentation subset which contains 200 annotated validation frames.

Metrics. Following prior work [27, 28], we measure performance using two metrics. FG-ARI
is the Adjusted Rand Index measured on foreground pixels only (selected using the ground-truth
segmentation). Mean Intersection-over-Union (mIoU), is measured through Hungarian matching and
averaged across the number of predicted or ground truth components, whichever is higher. When
evaluating on videos, we calculate these metrics per-frame.

Network architecture. Our method can employ any image segmentation network architecture and
train from scratch. Unless otherwise specified, we use Mask2Former [7], using only its semantic
segmentation. Following prior work [28, 37], we use a 6-layer CNN backbone on synthetic datasets
and ResNet-18 for KITTI. We also experiment with Swin-tiny transformer [36] as the backbone. We
use 11 transformer queries which become K = 11 slots on CLEVR, CLEVRTEX, and MOVi-A/C.
On MOVi-D/E, we set K = 24 and K = 22 on KITTI. The model takes approximately 48h to train
on a single A30 24GB GPU.2 All training details and hyper-parameters are included in the Appendix.

4.2 Unsupervised multi-object segmentation in images

In Table 1, we evaluate our method on the CLEVR [25] and CLEVRTEX [27] benchmarks and
compare to prior work. Our method outperforms image models based on appearance reconstruction
on both metrics (mIoU and FG-ARI) and across all datasets. The performance gap increases on
the visually complex CLEVRTEX, OOD, and CAMO variants, demonstrating the strong inductive
bias that motion provides during training, especially when the objects are camouflaged. Note that,
in this setting, our model is advantaged compared to the other models in Table 1, as it can observe
(through the loss) the optical flow of the training scenes. For this reason, we also train the optical
flow-based, unconditional SAVi [28] model. Nevertheless, we find that despite having access to
motion information during training, SAVi does not surpass appearance-only models, likely due to
only having access to single frames at test time.

2Approx. total compute in this paper: 100 GPU days for our models, 154 GPU days for comparisons.
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Table 1: Benchmark results on CLEVR, CLEVRTEX, CAMO, and OOD comparing FG-ARI and
mIoU metrics (see also Appendix for an extended version). Results are a mean of 3 seeds (±σ).
Methods above the line are trained on single images, while methods below train on videos.† – indicates
post-processing.

CLEVR CLEVRTEX OOD CAMO

Model FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑
SPAIR [9] 77.13± 1.92 65.95± 4.02 0.00± 0.00 0.00±0.00 0.00± 0.00 0.00±0.00 0.00± 0.00 0.00±0.00

SPAIR† 77.05± 1.96 66.87± 9.65 0.00± 0.00 0.00±0.00 0.00± 0.00 0.00±0.00 0.00± 0.00 0.00±0.00
MN [45] 72.12± 0.64 56.81±0.40 38.31± 0.70 10.46±0.10 37.29± 1.04 12.13±0.19 31.52± 0.87 8.79±0.15

MN† 72.08± 0.62 57.61±0.40 38.34± 0.73 10.34±0.12 37.28± 1.07 11.97±0.21 31.54± 0.87 8.77±0.18
MONet [5] 54.47±11.41 30.66±14.87 36.66± 0.87 19.78±1.02 32.97± 1.00 19.30±0.37 12.44± 0.73 10.52±0.38

MONet† 61.36± 7.33 45.61± 4.80 35.64± 1.17 23.59±0.29 31.51± 1.46 23.04±0.52 9.94± 0.50 11.31±0.30
SA [37] 95.89± 2.37 36.61±24.83 62.40± 2.23 22.58±2.07 58.45± 1.87 20.98±1.59 57.54± 1.01 19.83±1.41

SA† 94.88± 1.67 37.68±26.56 61.60± 2.29 21.96±1.79 57.41± 1.92 20.60±1.45 56.85± 1.12 19.42±1.42
IODINE [19] 93.81± 0.76 45.14±17.85 59.52± 2.20 29.17±0.75 53.20± 2.55 26.28±0.85 36.31± 2.57 17.52±0.75

IODINE† 93.68± 0.83 44.20±18.67 60.63± 2.50 29.40±1.10 54.92± 2.24 27.96±0.81 38.29± 1.40 18.87±0.52
DTI-S [42] 89.54± 1.44 48.74± 2.17 79.90± 1.37 33.79±1.30 73.67± 0.98 32.55±1.08 72.90± 1.89 27.54±1.55

DTI-S† 89.86± 1.78 53.38± 3.51 79.86± 1.36 32.20±1.49 73.60± 0.97 30.74±1.22 72.89± 1.88 26.30±1.57
GNM [23] 65.05± 4.19 59.92± 3.72 53.37± 0.67 42.25±0.18 48.43± 0.86 40.84±0.30 15.73± 0.89 17.56±0.74

GNM† 65.67± 4.23 63.38± 3.76 53.38± 0.67 44.30±0.19 48.44± 0.86 42.87±0.28 15.72± 0.89 18.53±0.75

SAVi [28] — — 49.54 31.88 42.68 30.31 42.67 29.60
Ours 91.69± 0.30 66.70± 0.32 90.80± 0.22 55.07±0.44 76.01± 0.56 46.84±0.20 72.78± 1.31 42.30±1.09

Ours † 95.94± 0.43 84.86± 4.06 92.61± 0.22 77.67±0.25 78.24± 0.43 55.54±0.44 77.43± 0.86 56.43±0.80

CLEVR CLEVRTEX OOD CAMO

R
G
B

G
T

O
ur
s

O
ur
s†

SA
V
i

Figure 2: Unsupervised object segmentation on CLEVR and CLEVRTEX benchmarks. Our model is
able to segment simple and visually complex scenes. Occasional mistakes around object boundaries
and the assignment of different objects to the same component are addressed by post-processing. † –
indicates post-processing.

Post-processing helps improve results further. As shown in Fig. 2, separating connected components
in post-processing distinguishes objects that might be assigned to the same mask and suppresses
boundary segments that tend to group difficult occlusion boundaries. For a fairer comparison, we
also test if this post-processing improves the results of other methods but only obtain mixed results.

4.3 Unsupervised multi-object segmentation in video

We now evaluate our approach on video segmentation, where motion is available at test time. We
report the performance of our method in Table 2 compared to video-based models: SCALOR [24],
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Table 2: Segmentation results on MOVi datasets. Mean ± standard error (5 seeds). We calculate
metric for each frame. All values in %. (WL) marks use of warp loss. † – indicates post-processing.

MOVi-A MOVi-C MOVi-D MOVi-E

Model FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑
GWM [8] 70.30 42.27 49.98 30.17 39.78 18.38 42.50 18.74
SCALOR [24] 59.57 44.41 40.43 22.54 – – – –
SAVi [28] 88.30 62.69 43.26 31.92 43.45 10.60 17.39 5.75

Ours 84.01±0.72 60.08±1.47 61.18±0.84 34.72±0.17 55.74±1.02 23.50±0.35 62.62±0.92 25.78±0.27
Ours† 85.41±1.00 76.19±2.05 61.24±0.85 37.26±0.33 55.18±0.94 25.21±0.29 63.11±0.91 28.59±0.29

Ours† (Swin + WL) 90.08 84.76 67.64 52.17 66.41 30.40 72.73 35.30
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Figure 3: Qualitative comparisons on MOVi-A and MOVi-C. Our method performs consistently well
compared to other methods. GWM suffers from oversegmentation where SCALOR has underseg-
mentation issue. Among the related methods, SCALOR fails to discover all the objects and SAVi’s
object boundaries are coarser †– indicates post-processing.

unconditional SAVi [28], and GWM [8]; the latter two also use optical flow supervision. It is
important to note that SAVi and SCALOR make predictions jointly over all frames of a video, that
allows them to actually see the objects in motion at test time. Despite this comparison being unfair to
our approach, which operates on a single frame at a time, we achieve competitive results. On the
visually simpler MOVi-A, our method has more than 10% lead over SAVi in mIoU, but performs
slightly worse in terms of FG-ARI. On the more complex MoVi-C/D/E datasets our model shows
strong performance, outperforming prior work on both metrics, with the performance gap again
increasing with data complexity. Finally, we experiment with a version of the model using a deeper
backbone (Swin) and the warp loss (Eq. (8)). Though not necessary to achieve state-of-art results,
this drastically improves performance on all metrics and dataset versions. In Fig. 3, we also compare
these models qualitatively, demonstrating that the different objects are overall better captured by our
model with more refined boundaries, which explains the higher mIoU.
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Failure mode
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Figure 4: Failure cases on MOVi-A and MOVi-C. Our method has difficulty with objects that typically
exhibit complex motion. It results in an over-segmentation of the object. Due to inherently imprecise
optical flow near the boundaries our method also has a tendency to segment boundary pixels into a
separate mask, which we fix with our post-processing step. †– indicates post-processing.

Table 3: Model ablations. (3a) replacing flow supervision with an unsupervised flow method, (3b)
compares a translation-only with the affine flow model, and (3c) adds our motion-based formulation
to an appearance-only model. All models with post-processing applied.

(a) Choice of Optical Flow Method

MOVi-A MOVi-C

Optical Flow FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑
SMURF [47] 80.17 26.3 61.21 28.77
Ground Truth 83.48 72.61 58.59 35.67

(b) Choice of Motion Model

MOVi-A MOVi-C

Motion Mdl. FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑
Translation 66.03 59.94 39.77 32.23
Affine 83.48 72.61 58.59 35.67

(c) Adding motion awareness to appearance-only models

CLEVRTEX OOD CAMO

Model Train data FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑ FG-ARI↑ mIoU↑
GNM [23] CLEVRTEX 53.38 44.30 48.44 42.87 15.72 18.53
GNM [23] MOVINGCLEVRTEX 18.01 31.47 15.57 15.57 0.21 14.68
GNM+Our Loss MOVINGCLEVRTEX 63.84 55.26 59.01 48.65 51.00 47.63

SA [37] CLEVRTEX 62.40 22.58 58.45 20.98 57.54 19.83
SA [37] MOVINGCLEVRTEX 61.84 21.44 58.24 20.67 57.30 18.82
SA+Our Loss MOVINGCLEVRTEX 76.60 38.12 67.01 33.95 70.59 33.05

4.4 Model ablations

Optical flow. In Table 3a, we replace the ground-truth optical flow used so far in our experiments
with the one estimated by SMURF [47]. The additional noise impacts our model’s accuracy, as
evidenced by the significant drop in mIoU (but comparable FG-ARI scores).

Motion model. In Table 3b, we compare our affine motion model to the simpler translation-only
one. We observe that the ability to describe complex motion patterns with an affine model improves
performance over the translation model, which can only represent translation in the camera plane.

Motion awareness. Finally, we investigate the effectiveness of our objective in combination with
existing appearance-based methods. The goal of this experiment is to understand the advantage of
using motion information during training (if available) and to decouple the effect of our formulation
from the choice of architecture. To this end, we employ our objective on top of two models based on
appearance reconstruction, GNM [23] and SA [37], with no other modifications. We train GNM and
SA with and without our loss on videos (MOVINGCLEVRTEX) and evaluate on the corresponding
single-image test sets of the CLEVRTEX suite. In Table 3c, we compare these models respectively to
the original methods trained on static images (CLEVRTEX). We find that when trained on video data
(MOVINGCLEVRTEX), without our loss, both GNM and SA struggle. We attribute this to the reduced
number of scenes in MOVINGCLEVRTEX compared to CLEVRTEX. However, we note that using our
loss significantly improves the performance of the appearance methods, suggesting the effectiveness
of exploiting motion information through our formulation.
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4.5 Segmentation on real-world data

Table 4: Real-world segmenta-
tion results on KITTI. Baseline
results from [3]. Bao et al. [3]
and our method use RAFT for
optical flow. Models above the
line use ResNet-18 backbone.
(WL) marks use of warp loss.

KITTI

Model FG-ARI↑
SA [37] 13.8
MONet [5] 14.9
SCALOR [35] 21.1
S-IODINE [19] 14.4
MCG [2] 40.9
Bao et al. [3] 47.1
Ours 50.8
Ours (WL) 51.9

Ours (Swin + WL) 58.3

We now turn to assessing our model’s performance in a real-
world setting. We follow the setting of Bao et al. [3] and evaluate
on KITTI [16], using RAFT [48] to estimate optical flow and
ResNet-18 as the backbone of our model, trained from scratch.
We lower the input resolution for our model from 368× 1, 248 [3]
to 288×960, which enables us to fit on a single GPU. We evaluate
at 96× 320 resolution.

As we show in Table 4, our method outperforms prior work on
the challenging real-world setting. In the same table, we also con-
sider our method with an additional warp loss term, which further
boosts performance. We also experiment with a transformer-based
backbone (Swin) which is also pre-trained using self-supervision.
Although, not necessary to show state-of-art result, this signifi-
cantly improves real-world performance.

4.6 Limitations

Motion is sometimes insufficient to distinguish different objects,
for instance because they do not move or because they move similarly. In principle, this should not
matter if sufficient motion diversity is observed in the training data as a whole; in practice, our model
occasionally merges different object at test time, which we address partly in post-processing. Further
improvements could be obtained by choosing a more informative prior p0(m) in Eq. (1), to capture
other desirable properties of objects, such as compactness and connectedness.

Figure 4 shows some failure cases where the affine motion model struggles to capture strong perspec-
tive effects caused by non-smooth depth changes in the object geometry. This could be addressed by
modeling the object geometry (depth) and the ensuing complex flow patterns. Alternatively, this could
be dealt with using a hierarchical segmentation model that can account for geometric discontinuities
and self-occlusions. Hierarchical segmentation would also help with pronounced non-rigid motion
(e.g. humans dancing or animals running) as motion could be explained at the level of object parts.

5 Conclusions

We have presented a method that bridges the gap between image-based and video-based scene
decomposition, in that it requires only a single image as input, yet exploits motion cues available in
videos during training. In comparison to prior work on image-based multi-object segmentation, our
approach shows that motion provides useful objectness cues, especially as the visual complexity of a
scene increases. Different from video-based approaches, however, our model operates on still images
and does not rely on motion to detect or refine objects, which makes it more generally applicable.
Finally, we deviate from the common objective of image or flow reconstruction and, instead, model
the problem by only predicting regions likely to contain affine flow patterns. This does not require
a specialized architecture, thus any segmentation network is suitable for this task. Our approach
achieves state-of-the-art performance on multiple image and video benchmarks, in simulated and
real-world settings, validating the paradigm of training image models using motion.

Broader impact. Our work introduces a principled method for unsupervised multi-object seg-
mentation. The work is mainly evaluated on 3D simulated datasets that do not contain people or
personal information. Additionally, we evaluate on KITTI, a real-world self-driving dataset, which
occasionally contains images of pedestrians. Consent cannot be obtained in this case, but we follow
the KITTI terms of usage. We build on top of open source projects, respecting licenses and release all
code, trained models and datasets for research purposes. Currently, the application of this approach is
mainly limited to simulated imagery. Although the results on KITTI show promise, the immediate
broader impact of our work in real-world scenarios, beyond the research community, is limited.
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information or offensive content? [Yes] See Section 5.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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