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A Preliminaries and Notation

Preliminaries. In the supplementary material we provide the following information.

• Appendix B provides mathematically rigorous proofs of the theorems, corollaries, and
lemmas in the main paper,

• Appendix C further discusses the interpretation of minimax bounds, the assumptions made
in the proof, and how the bounds in the main paper can be used.

• Appendix D gives more details for the experiments in the main paper and provides additional
numerical on two datasets (HSLS (Ingels et al., 2011) and COMPAS (Angwin et al., 2016) ).

Notation Table.

Symbol Meaning
D dataset
PD distribution of the dataset
X non-group features space
G group features space
h0 group blind classifier
hg personalized classifier
γ BoP
γ∗ estimator of BoP
n total number of samples
d number of groups
m samples per group
k number of group attributes
Pe probability of error of a hypothesis test
Ψ decision function
ϵ threshold in hypothesis test

Table 1: Notation

Code For the code used in all experiments of this paper visit the link: https://github.com/
LucasMonteiroPaes/On-the-Epistemic-Limits-of-Personalized-Prediction.git.
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B Proofs

In this section we provide proofs for all the theorems and corollaries in the main paper. For clarity of
exposition, we re-state the result before each proof. Note that the proofs use assumptions stated in
the main text.

B.1 Proof of Theorem 1

Theorem 1 (Lower Bound on Probability of Error). Consider auditing a personalized classifier hp

using a generic classifier h0 on a dataset D drawn from an (unknown) distribution PX,G,Y with d
groups and m = ⌊n/d⌋ samples per group. Moreover, let Pe denote the probability of error for a fair
use hypothesis test with ϵ ∈ [−0.5, 0.5]. The worst-case probability of error over all distributions
and all decision functions Ψ : (D, hp, h0) → {0, 1} satisfies

min
Ψ

max
PX,G,Y

Pe ≥ 1− 1√
d

(
1 + 4ϵ2

)m/2
. (1)

Proof. Rather than considering all pairs of classifiers (hp, h0) that satisfy a hypothesis, without loss
of generality, we can fix h0 and consider all hp that satisfies the null or alternative hypothesis.

Formally, define V (h) := 1[γ(h, h0) ≥ ϵ], which is the indicator function that h does not satisfy the
null hypothesis. Hence, for each classifier h, V (h) = 1 if and only if (h, h0) ∈ H1.

The probability of error in hypothesis test can be written as:

Pe = Pr (Ψ(D, h, h0) = 1 | V (h) = 0) + Pr (Ψ(D, h, h0) = 0 | V (h) = 1) .

The minimax probability of error can be bounded as:

min
Ψ

max
P0∈H0
P1∈H1

Pe = min
Ψ

max
P0∈H0
P1∈H1

Pr (Ψ(h) = 1 | V (h) = 0) + Pr (Ψ(h) = 0 | V (h) = 1)

≥ max
P0∈H0
P1∈H1

min
Ψ

P0 (Ψ(h) = 1) + P1 (Ψ(h) = 0)

= max
P0∈H0
P1∈H1

min
Ψ

1− P0 (Ψ(h) = 0) + P1 (Ψ(h) = 0)

≥ max
P0∈H0
P1∈H1

1− sup
A measurable

(P0 (A)− P1 (A))

= max
P0∈H0
P1∈H1

1− TV(P0||P1).

P ∈ H0 and Q ∈ H1 can be chosen to lower bound the minimax probability of error by

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ max
P0∈H0
P1∈H1

1− TV(P0||P1)

≥ 1− TV(P ||Q). (2)

Let ζj = (ζ1j , ..., ζ
m
j ) ∈ {−1,+1}m, and define P and Q as

P (ζ1, ..., ζd) ≜
1

d

d∑
i=1

P ∗
i (ζi)

∏
j ̸=i

Pj(ζj), (3)

Q(ζ1, ..., ζd) ≜
d∏

k=1

Pj(ζj), (4)

where

Pi(ζi) ≜
m∏

k=1

Pr(Cat 1
2 ,0,

1
2
= ζki ),
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P ∗
i (ζi) ≜

m∏
k=1

Pr(Cat 1
2+ϵ,0, 12−ϵ = ζki ).

Where Catp1,1−p1−p2,p2
is the ternary categorical distribution, i.e., Catp1,1−p1−p2,p2

= −1 with
probability p1, Catp1,1−p1−p2,p2

= 1 with probability p2, and Catp1,1−p1−p2,p2
= 0 with probability

1− p1 − p2.

Given P and Q we can find an upper bound for the total variation is given by:

TV (P ||Q) =
1

2

∑
ζ1,...,ζd

|P (ζ1, ..., ζd)−Q(ζ1, ..., ζd)| (5)

=
1

2

∑
ζ1,...,ζd

∣∣∣∣∣∣1d
d∑

i=1

P ∗
i (ζi)

∏
j ̸=i

Pj(ζj)−
d∏

k=1

Pj(ζj)

∣∣∣∣∣∣ (6)

=
1

2

∑
ζ1,...,ζd

∣∣∣∣∣1d
d∑

i=1

P ∗
i (ζi)

Pi(ζi)

d∏
k=1

Pj(ζj)−
d∏

k=1

Pj(ζj)

∣∣∣∣∣ (7)

=
1

2
E

[∣∣∣∣∣1d
d∑

i=1

P ∗
i (ζi)

Pi(ζi)
− 1

∣∣∣∣∣
]

(8)

=
1

2
E

[∣∣∣∣∣1d
d∑

i=1

m∏
k=1

(1 + 2ϵ)
1−ζki

2 (1− 2ϵ)
1+ζki

2 − 1

∣∣∣∣∣
]

(9)

Define ζ̂i ≜ (1−ζi)/2 (element wise). Hence, each entry of zi is distributed as a Bernoulli distribution
with parameter 1/2.

TV (P ||Q) =
1

2
E

[∣∣∣∣∣1d
d∑

i=1

m∏
k=1

(1 + 2ϵ)
1−ζki

2 (1− 2ϵ)
1+ζki

2 − 1

∣∣∣∣∣
]

=
1

2
E

[∣∣∣∣∣1d
d∑

i=1

m∏
k=1

(1 + 2ϵ)ζ̂
k

(1− 2ϵ)1−ζ̂k

− 1

∣∣∣∣∣
]

=
1

2
E

[∣∣∣∣∣1d
d∑

i=1

(1 + 2ϵ)
∑m

k=1 ζ̂k

(1− 2ϵ)m−
∑m

k=1 ζ̂k

− 1

∣∣∣∣∣
]

Define zi ≜
∑m

k=1 ζ̂
k
i . Then, zi is distributed as a Binomial distribution with parameter 1/2.

TV (P ||Q) =
1

2
E

[∣∣∣∣∣1d
d∑

i=1

(1 + 2ϵ)
∑m

k=1 ζ̂k

(1− 2ϵ)m−
∑m

k=1 ζ̂k

− 1

∣∣∣∣∣
]

=
1

2
E

[∣∣∣∣∣1d
d∑

i=1

(1 + 2ϵ)zi(1− 2ϵ)m−zi − 1

∣∣∣∣∣
]

≤ E

∣∣∣∣∣1d
d∑

i=1

(1 + 2ϵ)zi(1− 2ϵ)m−zi − 1

∣∣∣∣∣
2
1/2

, (by Cauchy-Schwarz)

≤ E

(1

d

d∑
i=1

(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2

− 1

1/2

= E

 1

d2

d∑
i,j=1

(1 + 2ϵ)zi(1− 2ϵ)m−zi(1 + 2ϵ)zj (1− 2ϵ)m−zj

− 1

1/2

= E

 1

d2

d∑
i=1

(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2
+

 1

d2

d∑
i,j=1

i̸=j

(1 + 2ϵ)zi(1− 2ϵ)m−zi(1 + 2ϵ)zj (1− 2ϵ)m−zj

− 1


1/2
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= E

[
1

d2

d∑
i=1

(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2
+

d(d− 1)

d2
− 1

]1/2
≤ 1√

d
E
[
|(1 + 2ϵ)z1(1− 2ϵ)m−z1 |2

]1/2
=

1√
d
(1− 2ϵ)mE

[
|(1 + 2ϵ)z1(1− 2ϵ)−z1 |2

]1/2
=

1√
d
(1− 2ϵ)m

(
MBin(1/2,m)

(
2 log

(
1 + 2ϵ

1− 2ϵ

)))1/2

=
1√
d
(1 + 4ϵ2)m/2 (10)

Consequently, combining (2) and (10)

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− TV(P ||Q)

⇒ min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1√
d
(1 + 4ϵ2)m/2.

Observation. For the sake of clarity of the proof we flip the hypothesis test in the theorem statement.
It is clear that an analogous proof holds for the case of non-flipped hypothesis test see Appendix C.4.
Intuitively, estimating γ is as hard as estimating −γ. Hence, by applying this result for −γ we get
the theorem statement in the main paper.

Direct Extension to False Positive Rate/False Negative Rate We can replace the accuracy metric
in BoP with FPR or FNR, and the proof still holds. Our proof relies on the observation that the
accuracy (of a model on a data point) can be written as a Bernoulli random variable where 1 denotes
an accurate prediction and 0 otherwise. BoP is the min difference in accuracy of the two models over
all groups, which can be modelled using the difference of two bernoullis. Then, we can characterize
the two hypotheses by the means of the resulting Categorical distributions.

Analogously, FP and FN of a model on data points can also be represented by a Bernoulli where 1
denotes an FP/FN and 0 denotes a TP/TN. The parameters would refect the different definition, but
the proof then carries out directly.

B.2 Proof of Corollary 1

Corollary 1 (Limit for Testing). With the same setup as in Theorem 1. Take n = 8× 109, and let
ϵ = 0.01. If minmaxPe ≤ 1/2 then k ≤ 19.

Proof. If minΨ maxD Pe ≤ 1/2 then:

1− 1√
d
(1 + 4ϵ2)m/2 ≤ min

Ψ
max

P0∈H0
P1∈H1

Pe ≤ 1/2.

Given d = 2k, m = n/d, n = 8× 109, and ϵ = 0.01, then

ϕ(k) = 1− 1

2k/2
(1 + 0.0004)

8×109

2k+1 ≤ 1/2.

Then ϕ is a increasing function in k, and ϕ(18) ≈ 0.12 < 1/2, ϕ(19) ≈ 0.97 > 1/2. Hence, there
exists a phase transition in the minimax error probability between k = 18 and k = 19, i.e., for k ≤ 18
minΨ maxPe ≤ 1/5 and, for only one more group attribute (k ≥ 19) minΨ maxPe ≈ 1.
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B.3 Proof of Lemma 1

The original Le Cam Lemma (Le Cam, 1973) states that (11) holds when θ1, θ2 are elements of Θ.
We generalize this lemma for the case where θ1, θ2 are elements of Θ chosen at random.

Lemma 1 (Generalized Le Cam). Let {Λ, d} be a metric space, and D be a dataset. Let P be a
family of probability distributions with parameter θ ∈ Θ. Suppose that f is a statistics with image in
Λ (f(θ) for θ ∈ Θ means the statistics calculated for Pθ), and that there exists Λ1, Λ2 subsets of Λ
that are 2δ-separated. Also, suppose that Θ1 and Θ2 are subsets of Θ such that f(θ) ∈ Λ1 for all
θ ∈ Θ1 and f(θ) ∈ Λ2 for all θ ∈ Λ2. Then we have that:

min
f∗∈σ(D)

max
θ∈Θ

E [d(f(θ), f∗)] ≥ δ(1− TV(Pθ1 ||Pθ2)), (11)

where θi ∈ σ(Λ) with image in Θi, and Pθi indicates a probability distribution in P with parameter
θi for i ∈ [2].

Proof. First, we write the minimax error in the set Θ as a minimax in the σ-algebra generated by
Θ (σ(Θ)). To do that, take π ∈ σ(Θ) and θ ∼ π. The mean is smaller or equal to the maximum, if
f∗ ∈ σ(Θ) then the following inequality holds:

max
θ∈Θ

E [d(f(θ), f∗)] = max
Pθ∈P

E [d(f(θ), f∗)] ≥ EPθ; θ∼π [d(f(θ), f
∗)] . (12)

Eq. (12) holds for all π ∈ σ(Θ), then:

max
θ∈Θ

E [d(f(θ), θ∗)] ≥ max
π∈σ(Θ)

EPθ
[d(f(θ), f∗)] = max

Pθ;θ∈σ(Θ),P∈P
EPθ; θ∼π [d(f(θ), f

∗)] (13)

By using the Le Cam Lemma in Le Cam (1973) with the statistic being f , θi ∈ σ(Θ) with image in
Θi, the metric space being {Λ, d}, and the 2δ-separated sets being Λ1, Λ2 where f(P i

θ) ∈ Λi for all
i ∈ [2], we conclude that:.

max
θ∈Θ

E [d(f(θ), θ∗)] ≥ max
Pθ;θ∈σ(Θ),P∈P

EPθ; θ∼π [d(f(θ), f
∗)] ≥ δ(1− TV(Pθ1 ||Pθ2)) (14)

Hence, combining (12), (13), and (14) together, then

min
θ∗∈σ(D)

max
θ∈Θ

E [d(f(θ), θ∗)] ≥ min
θ∗∈σ(D)

max
π∈σ(Θ)

Eθ∼π [d(f(θ), θ
∗)] ≥ δ(1− TV(Pθ1 ||Pθ2)) (15)

B.4 Proof of Theorem 2

Theorem 2 (Minimax bounds for the Estimation MSE). Given a dataset D, constants d,m ∈ N such
that d ≥ 4, d ≤ 2m+2, a group-blind, and a personalized classifier, the minimax estimation error for
the benefit of personalization in (2) is bounded as

log(d)

16m
− log(4)

16m
≤ inf

γ∗∈σ(D)
sup

PX,G,Y

E
[
(γ − γ∗)2

]
≤ log(d)

m
+

log(m)

m
+

2 + log(2)

m
, (16)

Proof. Lower Bound. From Definition 2 the BoP is given by:

γ(h0, hg, PD) = min
g∈G

Pj(Y = hg(X,S))− Pj (Y = h0(X))

= min
g∈G

Pr(Y = hg(X,S) | S = j)− Pr (Y = h0(X) | S = j) .

Define θgj ≜ Pr(Y = hg(X,S) | S = j) and θ0j ≜ Pr (Y = h0(X) | S = j). Let Θ ≜ (Θg,Θ0) ≜

(θg1 , ..., θ
g
d, θ

0
1, ..., θ

0
d), and define γ(Θ) ≜ ming∈G Pr(Ber(θg0) = 1) − Pr

(
Ber(θ0j ) = 1

)
. Then

γ(h0, hg, PD) = γ(Θ).
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Hence:

inf
γ∗∈σ(D)

sup
PX,G,Y

E
[
(γ − γ∗)2

]
= inf

γ∗∈σ(D)
sup

Θg∈[0,1]d

Θ0∈[0,1]d

E
[
(γ(Θ)− γ∗)2

]

By Lemma 1 we can lower bound the minimax of the MSE by:

inf
γ∗∈σ(D)

sup
Θg∈[0,1]d

Θ0∈[0,1]d

E
[
(γ(Θ)− γ∗)2

]
≥ ||γ(θ1)− γ(θ2)||22

2
(1− TV(Pγ(θ1)||Pγ(θ2)))

≥ ||γ(θ1)− γ(θ2)||22
2

(1− TV(Pθ1 ||Pθ2).

Where the last inequality comes from the data processing inequality.

Note that, as in Theorem 1, we can take a categorical distribution mixture. This follows from
the fact that given Cp ∼ Ber(θgj ), C

0 ∼ Ber(θ0j ), and Cj = Cp − C0 ∼ Cat(θ−1,j , θ1,j) then
θgj − θ0j = θ1,j − θ−1,j . Hence, the BoP can be rewritten as minj θ1,j − θ−1,j .

By the proof of Theorem 1, and the above observation, we can choose Pθ1 and Pθ2 as in (3) and (4),
respectively. Hence, we have that:

• ||γ(θ1)− γ(θ2)||22= ϵ2

• (1− TV(Pθ1 ||Pθ2) ≥ 1− 1√
d
(1 + 4ϵ2)m/2

Then:

inf
γ∗∈σ(D)

sup
PX,G,Y

E
[
(γ − γ∗)2

]
≥ ϵ2

2
(1− 1√

d
(1 + 4ϵ2)m/2). (17)

Take ϵ2 =
(
(d/4)

1/m − 1
)
/4. Note that, once 4 < d < 2m+2 then 0 < ϵ2 < 1/4 and ϵ < 1/2.

Hence, by plugging in ϵ2:

inf
γ∗∈σ(D)

sup
PX,G,Y

E
[
(γ − γ∗)2

]
≥

(
(d/4)

1/m − 1
)

16

≥
log
(
(d/4)

1/m
)

16

=
log(d)

16m
− log(4)

16m

Similar to Theorem 1, the proof of the lower bound using FPR and FNR as benchmark metrics
follows directly.

Upper Bound. Let the empirical estimator be γ̂ to be the minj θ
∗(g)
j − θ

∗(0)
j where:

θ
∗(g)
j =

∑m
i=1 1hg(xi,j)=yi|si=j

m

θ
∗(0)
j =

∑m
i=1 1h0(xi)=yi|si=j

m

Then:

inf
γ∗

sup
Θ∈[0,1]2d

E
[
(γ(Θ)− γ∗)2

]
≤ sup

Θ∈[0,1]2d
E
[
(γ(Θ)− γ̂)2

]
= sup

Θ∈[0,1]2d
E
[
(min
g∈G

(Θ
(p)
j −Θ

(0)
j )−min

g∈G
(θ

∗(p)
j − θ

∗(0)
j ))2

]
(18)
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From the fact the if aj , bj ∈ R then |minj aj −minj bj |≤ maxj |aj − bj |, the term in (18) is upper
bounded by

≤ sup
Θ∈[0,1]2d

E
[
(max
g∈G

|Θ(p)
j −Θ

(0)
j − θ

∗(p)
j + θ

∗(0)
j |)2

]
= sup

Θ∈[0,1]2d
E
[
max
g∈G

(|Θ(p)
j −Θ

(0)
j − θ

∗(p)
j + θ

∗(0)
j |)2

]
≤ sup

Θ∈[0,1]2d
2E
[
max
g∈G

|Θ(p)
j − θ

∗(p)
j |2

]
+ 2E

[
max
g∈G

|Θ(0)
j − θ

∗(0)
j |2

]

Then the minimax estimation error for the benefit of personalization is upper bounded by:

inf
γ∗

sup
Θ∈[0,1]2d

E
[
(γ(Θ)− γ∗)2

]
≤ sup

Θ∈[0,1]2d
2E
[
max
g∈G

|Θ(p)
j − θ

∗(p)
j |2

]
+ 2E

[
max
g∈G

|Θ(g)
j − θ

∗(g)
j |2

]
≤ 4 sup

Θ∈[0,1]d
E
[
max
g∈G

|Θj − θ
∗(g)
j |2

]
(19)

It is necessary to upper bound E
[
maxg∈G |Θj − θ∗j |2

]
. This can be done by using conditioning and

a concentration result:

E
[
max
g∈G

|Θj − θ∗j |2
]
= E

[
max
g∈G

|Θj − θ∗j |2| max
g∈G

|Θj − θ∗j |2≥ ϵ

]
Pr

(
max
g∈G

|Θj − θ∗j |2≥ ϵ

)
+ E

[
max
g∈G

|Θj − θ∗j |2| max
g∈G

|Θj − θ∗j |2< ϵ

]
Pr

(
max
g∈G

|Θj − θ∗j |2< ϵ

)
Since maxg∈G |Θj − θ∗j |2≤ 1, then

E
[
max
g∈G

|Θj − θ∗j |2
]
≤ Pr

(
max
g∈G

|Θj − θ∗j |2≥ ϵ

)
+ ϵ

≤ ϵ+ 1− Pr

(
max
g∈G

|Θj − θ∗j |2< ϵ

)
≤ ϵ+ 1−

d∏
j=1

Pr
(
|Θj − θ∗j |2< ϵ

)
≤ ϵ+ 1−

d∏
j=1

(1− Pr
(
|Θj − θ∗j |2≥ ϵ

)
)

≤ ϵ+ 1− (1− 2e−2nϵ)d (20)

Hence, combining (19) and (20)

inf
γ∗∈σ(D)

sup
PX,G,Y

E
[
(γ − γ∗)2

]
≤ 4

(
ϵ+ 1− (1− 2e−2nϵ)d

)
.

Take ϵ = c log(d)
2m and c = 1 + logd(2m), then we conclude that:

inf
γ∗∈σ(D)

sup
PX,G,Y

E
[
(γ − γ∗)2

]
≤ log(d)

m
+

log(m)

m
+

2 + log(2)

m

Similarly, for the upperbound proof using FPR and FNR, the only difference is the choice
of θ∗j . For FPR we define θ∗j (g) =

∑ 1hg(xi,j)=1|si=j,yi=0

m and for FNR we choose θ∗j (g) =∑ 1hg(xi,j)=0|si=j,yi=1

m .
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B.5 Proof of Corollary 2

Corollary 2 (Limits of Estimation). Given a dataset D with n data points, d ≥ 4 groups, m = n/d
data points per group, an 0 < δ < 1/16, a group-blind and a personalized classifier. If d ≤ 2m+2,
and

inf
γ∗∈σ(D)

sup
PX,G,Y

E
[
(γ − γ∗)2

]
≤ δ,

then, the number of binary group attributes (k) satisfies

(k − 2)2k ≤ 16

ln 2
nδ. (21)

Specifically, for n = 8× 109 (approximately the number of humans on the Earth) and δ = 1/400 =
(5%)2, then the maximum number of binary group attributes is 25, i.e, k ≤ 25 in order to ensure
reliable estimation.

Proof. Rule of thumb. If infγ∗∈σ(D) supPX,G,Y
E
[
(γ − γ∗)2

]
≤ δ then:

log(d)

16m
− log(4)

16m
≤ δ

For k binary attributes and d = 2k, m = n/d. Hence,

log(d) ≤ log(4) + δ16m

⇒ k log(2) ≤ 2 log(2) + δ16
n

2k

⇒ 2kk log(2) ≤ 2k+1 log(2) + δ16n

Then
(k − 2)2k ≤ 16n

log(2)
δ. (22)

Infeasibility result. Selecting n = 8× 109, and δ = 1/400 in (22).

(k − 2)2k ≤ 128× 109

400 log(2)

Note that (k − 2)2k is an increasing function of k when k ≥ 2. Moreover, (25− 2)225 > 128×109

400 log(2) .
Hence, k ≤ 25.

C Further Insights on Our Results

In this section, we offer further insights on the significance and usefulness of our main results and
clarify our assumptions.

C.1 the BoP Metric: Significance and Usefulness

The paper considers the problem of reliably estimating the BoP, regardless if it is positive (all groups
benefit) or negative (at least one group is harmed).

If the number of samples allows the BoP to be reliably estimated across all groups, then the next
step is to decide which groups should use a personalized model or not. However, if the BoP cannot
be precisely estimated, then the decision of deploying a personalized model becomes challenging:
even though we may estimate a gain in personalization for some groups, it can be (information-
theoretically) infeasible to tell if that gain is statistically significant, or simply a fluke due to lack of
samples or too many groups. Our bounds precisely capture the trade-off between number of groups,
sample size, and gain in personalization.

Second, the BoP is designed to empower data holders, i.e. users of the ML model. A user’s group
attribute may not be known a priori and may incur a collection cost – particularly in healthcare
applications. For example, group attribute collection can require invasive procedures (e.g., blood
draw to determine HIV status) or require that the user reveal private information to the model holder
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(e.g., substance use). In such cases, it is essential that the collection and disclosure of group attributes
ensure a gain in accuracy, regardless of what the value of the attribute is. Alternatively, the user
should be informed if there is a chance that they may not receive a prediction gain with the disclosure
of a group attribute (i.e., non-positive BoP). This information can enable the user to make an informed
decision to collect and disclose personal data (e.g., if a blood draw merits the gain in diagnostics
accruacy by a ML model). Either way, if the value of a group attribute is not known a priori, we must
reliably estimate the BoP for all groups – this is exactly what our bounds capture.

C.2 Minimax Bounds: Significance and Usefulness

We bound the minimax errors of testing and estimating the BoP in Theorem 1 and 2, respectively. We
offer more insights on what minimax errors mean and the significance and usefulness of bounding
minimax errors.

Significance. It is important to control errors in the minimax sense because the underlying dataset
distribution (defined in Section 2.1) is unknown. By considering minimax bounds, we take a
conservative stance to bound errors for the worst-case scenario.

In particular, in Section 3, we consider the problem of testing whether there is high enough Benefit of
Personalization, and, in Theorem 1, characterize the lower bound of the minimax probability of error
Pe as follows:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1√
d

(
1 + 4ϵ2

)m/2
(23)

In the inner layer of the right-hand side of the inequality above, we are maximizing Pe over the space
of distributions of (X,Y, S) as defined in Section 2.1. Effectively, we are picking the data distribution
D that maximizes the probability of error Pe of distinguishing between the two hypotheses. In the
outer layer, as to how empirical risk minimization goes, we choose the decision function Ψ that
minimizes the error.

In section 4, we consider the problem of reliable estimation and characterize the minimax MSE as:

log(d)

16m
− log(4)

16m
≤ inf

γ∗∈σ(D)
sup

PX,G,Y

E
[
(γ − γ∗)2

]
≤ log(d)

m
+

log(m)

m
+

2 + log(2)

m
, (24)

The minimax bounds can be analyzed analogously. In the inner layer, we are maximizing the MSE
over the space of dataset distributions D. In the outer layer, we choose a BoP estimator γ∗ that
minimizes the MSE for this worst-case distribution.

In both theorems, the minimax analysis bounds errors under the worst-case distribution. Without prior
knowledge of the data distribution, we cannot rule out this worst-case scenario. Thus, the significance
of our bounds is that it holds for all decision functions and estimators and inherently consider the
worst-case distribution for each case.

Usefulness. The minimax MSE upper bound in (24) always holds. Since the upper bound holds
when we take the sup over dataset distributions the bound works for all distributions. Indeed, as we
can see in Figure 4 and Figure 5, the MSE estimations always fall below the upper bounds.

In addition, notice that the upper bound is tight in the sense that it has the same order as the lower

bound—both bounds are of the order of O
(
log(d×m)

m

)
. The ratios of the bounds and

log(d×m)

m
is bounded by a constant for large enough d and m.

In contrast, the minimax MSE lower bound in (24) does not always hold in experiments, as we can
see in Fig. 4 and Fig. 5. This is, of course, expected. Minimax bounds are conservative: they bound
the MSE of a worst-case distribution PX,G,Y that achieves the sup MSE under the best possible
estimator. The datasets in our experiments are not quite the worst-case distribution and, hence, result
in a more optimistic MSE. Nevertheless, with no prior knowledge of the dataset, the minimax lower
bound is almost the best we can achieve. Surprisingly, it does seem that the distributions derived
from real-world datasets in our experiments are not far from the worst-case one in terms of MSE.
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Furthermore, the minimax bounds guide the maximum number of group attributes we can have in
data collection. In Corollary 1 and 2, we show that to ensure reliable testing and estimation of BoP,
we cannot have more than 19 and 25 features, respectively.

C.3 Clarification on Assumptions

Same number of data points per group. In the setup (Section 2.1), we assume an equal number
of data points per group to simplify analysis. This is the best-case scenario, and otherwise, the group
with the fewest samples will dominate testing or estimation performance.

In the case of an unequal number of samples per group, the number of features we can have for
reliable testing and estimation will only shrink. Since the total number of data points are fixed, an
unequal number of samples per group means that some group has fewer samples. Consider a specific
setup in the proof of minimax lower bounds (Section B.1, B.4). The lower bound is obtained by
considering a pair of distributions P and Q that are difficult to distinguish. Specifically, no group in Q
is harmed, and only one group, chosen randomly, is harmed in P . In testing, differentiating between
the two hypotheses boils down to identifying the one group that has negative BoP. Analogously in
estimation, we need to find the group with the smallest gain of personalization and use the points in
the group to estimate the BoP. Suppose the group that is harmed is the one with fewer samples, both
the MSE and the probability of error will be larger.

Binary group attributes. We also assume in the setup (Section 2.1) that the group attributes are
binary. If a group attribute has more than two categories (e.g., race), we can simply take the one-hot
encoding of the attribute.

C.4 Alternative Formulation of Hypothesis Test

In Section 3.1, we consider the hypothesis test with a positive threshold ϵ:

• H0: γ < 0 ⇔ min
g∈G

Pj(Y = hg(X,S))− Pj (Y = h0(X)) < 0

• H1: γ ≥ ϵ ⇔ min
g∈G

Pj(Y = hg(X,S))− Pj (Y = h0(X)) ≥ ϵ

Alternatively, we can consider the formulation with a negative threshold:

• H0: γ < ϵ ⇔ min
g∈G

Pj(Y = hg(X,S))− Pj (Y = h0(X)) ≤ ϵ

• H1: γ ≥ 0 ⇔ min
g∈G

Pj(Y = hg(X,S))− Pj (Y = h0(X)) > 0

The alternative formulation takes a pessimistic stance. The null hypothesis states that the BoP is
worse than a negative threshold, while the alternative hypothesis takes BoP to be positive, equivalent
to the beneficence condition in fair use. The minimax bounds do not change with the different
formulations. As observed at the end of Section B.1, estimating γ and −γ are analogous.

Hypothesis tests with a negative threshold display phase transition prominently when the true BoP is
negative. As shown in the heat maps (Figure 2 and Figure 3), phase transition, i.e., drastic rise in
probability of error, occurs when the threshold drops below -0.1 in both HSLS and COMPAS dataset.
From Table 3, the estimated true BoP is -1.1 and -0.9, respectively, which is why we observe phase
transition around a threshold of -0.1.

D Additional Experiments & Discussions

This section provides details on the experiments, explains how to reproduce the plots, and discusses
how the plots illustrate our theoretical results. We conduct experiments to test and estimate the Benefit
of Personalization (BoP) on three datasets: Adult (in the main paper), High School Longitudinal
Study of 2009 (HSLS), and COMPAS. Our implementation (attached to the Supplementary Material
with datasets) serve as an example of how to test and estimate BoP in practice.
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Table 2: Datasets, group features, and prediction task.

Dataset Group Features Prediction Task

Adult working class, education, marital status, occupation,
relationship, race, sex, and country.

Is income higher
than $50k

HSLS sex, race, parent’s current employment status,
and family income (in categories).

Is math grade higher
than the median

COMPAS race and gender. Recidivism
in two years

D.1 Dataset

We use three datasets (Adult, HSLS, and COMPAS) for all the experiments in this paper. For each
dataset, we separate the features into two classes, group features and non-group features. We also
define for each dataset the label to be predicted. This information is summarized in Table 2.

Because the number of data points per group varies with the group, to approximate the actual dataset
distribution, we sample with replacement from it to create new datasets with an equal number of data
points per group. We call this new data set a Semi-Synthetic dataset. Next, we discuss in more detail
how the semi-synthetic data was generated.

Semi-Synthetic data. For each dataset, we select all intersectional groups (e.g., single women from
South America working in a c-level job) with more than a certain number of data points – we call that
significant groups. After that, we choose m, the number of data points per group. Then, we sample
m data points with replacement for each significant group. Finally, we define the semi-synthetic
dataset as the dataset generated by the collection of all m data points for all significant groups.

More specifically, for HSLS, significant groups have more than 50 data points, generating d = 87
significant groups. For COMPAS, significant groups have more than 20 data points, generating d = 9
significant groups. We only use the semi-synthetic dataset for testing; we train models in the original
train dataset.

D.2 Classifiers

For all three datasets, we train personalized and group blind classifiers. We use the same model for
the group blind and personalized; the only difference is that the personalized classifier uses the group
attributes described in Table 2, while the group bling does not.

For the COMPAS datasets, we train classifiers using logistic regression. For HSLS, we train classifiers
using random forest. For all classifiers, we use the default hyperparameters from Scikitlearn v1.0.2
Pedregosa et al. (2011). Also, for training the classifiers, we split the dataset into 50% for training
and 50% for the test. Finally, we use the test dataset to produce semi-synthetic datasets and calculate
the probability of error and the MSE.

D.3 Estimation and Test

Benefit of Personalization. Since we do not have access to the dataset distribution, we define the
ground truth BoP as the BoP given by the semi-synthetic testing dataset with 1000 samples per group.
The values of BoP for all models are given in Table 3. For all models, the BoP is negative, so there
exists a group being harmed. Indeed, for the HSLS dataset, this harm is 11%, i.e., there exists a group
where the group blind classifier performs way better (11%) than the personalized one.

Testing. For the hypothesis test, we use a threshold test featured in Section 3 and Appendix C. In
Figures 2, and 3 Left we show the probability of error in a hypothesis test (threshold test). For the
HSLS, we detect a phase transition on the error probability when the number of data points per group
is equal to the number of groups. For COMPAS, the phase transition happens when the number of
data points per group equals 20. When the number of data points per group is equal to the number of
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Table 3: Estimation of the BoP and the corresponding subgroup that produces the BoP using semi-synthetic
dataset.

Dataset Benefit of Personalization Group Most Harmed

Adult -10%

(’Private’, ’HS-grad’,
’Married-civ-spouse’, ’Tech-support’,

’Husband’, ’White’,
’Male’, ’United-States’)

HSLS -11% (’X1SEX’:’1.0’, ’X1RACE’:’2.0’,
’P1JOBNOW1’:’1.0’, ’X1FAMINCOME’:’3.0’)

COMPAS -9% ’Asian’, ’Male’)
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Figure 1: Maximum of 0 and lower bound in (1) for ϵ = 0.1 is in the y-axis, and m is in the x-axis. The orange
line represents when the number of data points per group is equal to the number of groups. Left: This shows
the minimax probability of error for the parameters of the HSLS dataset, i.e., (d = 87). Right: his shows the
minimax probability of error for the parameters of the Compas dataset, i.e., (d = 9).

groups, the probability of error is more than 60%. Then, in both cases, the practitioner should, at the
very minimum, ensure that the number of points per group is bigger than the number of groups.

Phase transition. In Figure 1, we plot the minimax error probability in Theorem 1 for HSLS Left
and COMPAS Right. Note that the minimax probability of error predicts when the probability of
error is higher than 50%. Figure 1 Left shows that for the HSLS dataset, when the number of data
points per group is smaller than 87 the probability of error is bigger then 50% that agrees with the
numerical experiment in Figure 2 Left. Figure 1 Right shows that for the COMPAS dataset, when
the number of data points per group is smaller than 20 the probability of error is greater than 50%
and agrees with the numerical experiment in Figure 3 Left.

We also show in Figures 2, and 3 Right a heat map showing how the probability of error in hypothesis
test behaves for different values of threshold and data points per group. From those figures, we
conclude that when the threshold is way bigger than the true BoP value, the probability of error
decreases, adding more "tolerance" to the test.

Estimation. Throughout this paper, we use the empirical estimator for the BoP, i.e., for each group
g ∈ G we calculate the empirical probability of hg(X, j) = Y and h0(X) = Y . We define the BoP
as the minimum difference of those estimated values.

The behavior of our bounds for the minimax MSE is illustrated in Fig. 4, and 5. Again, as seen in
the experiments using the Adult dataset, even knowing that our bounds are minimax, for a given
distribution – HSLS and COMPAS dataset distribution – they are also sharp. Hence, they can – and
should – be used to guide a practitioner on how many groups features to collect.
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Figure 2: Plots generated using the semi-synthetic data generated using HSLS dataset Ingels et al. (2011).
For each value m of data points per group in the x-axis, we create a semi-synthetic dataset with m data points
per group. Then, we run 100 Monte Carlo simulations to estimate the BoP using the empirical estimator and
then run the threshold test. The 95% confidence intervals were calculated via bootstrap using Seaborn v0.11.2
Waskom (2021) and the empirical probabilities of error. The group attributes are given in Table 2. Left: Error
probability, with 95% confidence interval bars, for a hypothesis test using the threshold test with ϵ = −0.15.
Right: Heat map of the probability of error in hypothesis test using the threshold test with ϵ given on the x-axis
and with the number of data points per group given on the y-axis.
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Figure 3: Plots generated using the semi-synthetic data generated using COMPAS dataset Angwin et al. (2016).
The plots were generated using the same method described in Figure 2. The group attributes are given in Table 2.
Left: Error probability, with 95% confidence interval bars, for a hypothesis test using the threshold test with
ϵ = −0.15. Right: Heat map of the probability of error in hypothesis test using the threshold test with ϵ given
on the x-axis and with the number of data points per group given on the y-axis.
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Figure 4: Plots generated using the semi-synthetic data generated using HSLS dataset. For each value m of
data points per group in the x-axis, we create a semi-synthetic dataset with m data points per group. Then, we
run 100 Monte Carlo simulations to estimate the BoP using the empirical estimator and then calculate the MSE.
The 95% confidence intervals were calculated via bootstrap using Seaborn v0.11.2 and the empirical MSE. The
group attributes are given in Table 2. Left: MSE of the BoP estimation for different values of samples per group
in log scale. Right: Also in log scale, MSE of the BoP estimation, but additionally, it shows the lower and upper
bound in Theorem 2
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Figure 5: Plots were generated using the same semi-synthetic data generated using COMPAS dataset and the
same technique as in Figure 4. Left: MSE of the BoP estimation for different values of samples per group in
log scale. Right: Also in log scale, MSE of the BoP estimation, but additionally, it shows the lower and upper
bound in Theorem 2
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