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Abstract

Machine learning models are often personalized by using group attributes that
encode personal characteristics (e.g., sex, age group, HIV status). In such settings,
individuals expect to receive more accurate predictions in return for disclosing
group attributes to the personalized model. We study when we can tell that a
personalized model upholds this principle for every group who provides personal
data. We introduce a metric called the benefit of personalization (BoP) to measure
the smallest gain in accuracy that any group expects to receive from a personalized
model. We describe how the BoP can be used to carry out basic routines to audit
a personalized model, including: (i) hypothesis tests to check that a personalized
model improves performance for every group; (ii) estimation procedures to bound
the minimum gain in personalization. We characterize the reliability of these rou-
tines in a finite-sample regime and present minimax bounds on both the probability
of error for BoP hypothesis tests and the mean-squared error of BoP estimates. Our
results show that we can only claim that personalization improves performance
for each group who provides data when we explicitly limit the number of group
attributes used by a personalized model. In particular, we show that it is impossible
to reliably verify that a personalized classifier with k ≥ 19 binary group attributes
will benefit every group who provides personal data using a dataset of n = 8× 109

samples – one for each person in the world.

1 Introduction

Machine learning models often assign predictions on the basis of group attributes that denote personal
characteristics. In medicine, for example, clinical prediction models account for characteristics that
may be protected (e.g., sex), sensitive (e.g., HIV status), or costly to acquire (e.g., presence of a
malignant tumor as determined via a biopsy) [3, 32]. Unlike lending or hiring, models that use
personal characteristics in such applications are not subject to scrutiny due to an assumption that
everyone would benefit from a more accurate model [7, 31, 33]. In an effort to develop models
that are as accurate as possible, practitioners use every piece of information to maximize predictive
accuracy over a heterogeneous population.

The prevalence of machine learning models that use personal characteristics reflects a belief that
personalization will produce a uniform gain in performance across all groups. In effect, individuals
who provide personal data to models expect more accurate predictions in return. In practice, however,
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TRAINING DATA AUDITING DATA

Group n R̂(hp) R̂(h0) R̂(h0)− R̂(hp) n R̂(hp) R̂(h0) R̂(h0)− R̂(hp)

Female, W, NR 4,989 15.6% 15.4% -0.2% 5,072 15.0% 14.7% -0.3%
Female, W, NR 986 10.2% 10.9% 0.6% 945 10.7% 10.3% -0.4%
Male, W, NR 1,331 21.2% 20.2% -1.0% 1,292 20.7% 20.2% -0.5%
Female, W, R 409 16.1% 15.6% -0.5% 399 16.0% 15.3% -0.8%

Female, NW, R 265 21.1% 22.3% 1.1% 248 20.6% 19.4% -1.2%
Male, NW, R 587 25.0% 23.0% -2.0% 667 24.4% 21.6% −2.8%∗

Male, W, NR 15,012 21.7% 22.0% 0.2% 14,939 21.1% 21.5% 0.4%
Male, W, R 1,141 20.9% 23.0% 2.1% 1.158 19.3% 22.1% 2.8%

Total 24,720 20.0% 20.1% 0.1% 24,720 19.3% 19.5% 0.2%

Table 1: Personalized models may not assign more accurate predictions for every group who provides personal
data. Here, we show this effect for a personalized classification task on the UCI Adult dataset [19] with three
group attributes: Sex× Race× ImmigrationStatus ∈ {Female,Male} × {White,NonWhite} ×
{Resident,NonResident}. We fit a personalized logistic regression model with a one-hot encoding of the
group attributes hp. We then measure the gains to personalization with respect to a logistic regression model
trained on a dataset without group attributes – i.e., the generic model h0. Here, R̂(hp) and R̂(h0) are the error
rates of hp and h0 and R̂(h0) − R̂(hp) is the gain from personalization. As shown, the personalized model
hp improves overall accuracy but assigns less accurate predictions for specific groups (highlighted in orange).
Moreover, these effects arise on the training dataset and the auditing dataset [see 31, for other examples]. Our
proposed metric – the benefit of personalization – flags these instances by measuring the worst-case gain attain
by any group (i.e., -2.8% for the group Male, NW, R).

models trained with personal data do not necessarily assign more accurate predictions to all those
who provide it. Standard techniques for empirical risk minimization use personal characteristics to
improve performance at a population level. However, these gains are not uniformly distributed across
the groups who provide personal data. As shown in Table 1, personalization can improve performance
for some groups while reducing performance for others. These instances of “worsenalization" violate
the implicit promise of personalization: namely, that each group who provides personal data will
receive a tailored performance improvement in return. In practice, they are prevalent, hard to detect,
and hard to avoid – underscoring the need to measure the gains of personalization [31].

Practitioners must measure the gains of personalization whenever they train a personalized model. As
shown in Table 1, one only needs to estimate performance gains relative to a generic model trained
without group attributes, then report these gains for each group who provides personal data. Even as
this audit is easy to carry out, it may not always produce clear recommendations. The estimated gains
of personalization for a specific group can change drastically if we have too few samples for that
group. In fact, it is not possible to detect if personalization helps or hurts at the group level – and by
how much – without accounting for uncertainty. In practice, estimating the gains in personalization
requires sufficient samples per group. When lacking, the reported gain may be just an illusion,
a justification to collect personal information and use the personalized classifier that stems from
statistical fluctuations due to limited samples per group or, equivalently, the use of too many features
that encode personal characteristics.

In this paper, we study when we can verify if personalization works as it should – i.e., when a model
that uses group attributes improves expected performance for every group who provides personal
data. We derive information-theoretic bounds to characterize the reliability of testing and estimation
routines in this setting. We then use these bounds to identify epistemic limits in personalization – i.e.,
conditions under which all testing and estimation routines are too unreliable to tell if personalization
improves or worsens performance for each group who provides personal data. Our results can serve
as rules of thumb to inform a range of stakeholders – be it model developers who wish to build
models that reliably benefits all groups, to auditors who wish to verify that this is indeed the case.

The main contributions of this work include:

1. We introduce a metric – called the benefit of personalization (BoP) – to evaluate the quality
of personalization in a model with group attributes. The BoP represents the minimum gain in
accuracy that any group can expect from personalization. Measuring the BoP can flag instances
where a personalized model aligns with our basic expectations of personalization. A positive BoP
indicates that each group can expect to receive more accurate predictions in exchange for their
personal information. In contrast, a negative BoP indicates that some groups who provide personal
information can expect to receive worse predictions in return.
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2. We design a hypothesis test to audit if a personalized model violates fair use. We pair our test with
an information-theoretic limit on the error probability that holds for any hypothesis test that audits
a model for fair use. A rule of thumb is that the number of samples per group should exceed the
number of groups for testing error to be small.

3. We characterize the statistical limits on the Mean Squared Error (MSE) of any estimate of BoP.
Our results show that we cannot reliably estimate the benefit of personalization across groups for
models that use more than 25 group attributes without further assumptions on the data distribution.

Related Work We study the performance of machine learning models that assign predictions on the
basis of personalized characteristics. Our goal is to flag personalized models that assign unnecessarily
inaccurate predictions to groups who provide personal data. This differs from the underlying goal
of existing measures of individual fairness [i.e., “treat similar individuals similarly"; 8] and group
fairness [i.e., equalize performance across groups; 9, 13], which can be broadly viewed as measures to
achieve parity [i.e., in that they seek to equalize predictions across individuals or equalize performance
across groups 34]. Although parity is an appropriate notion of fairness in applications like lending
and hiring, it is less suitable for applications with different ethical principles. For example, in
medicine, the relevant principles are beneficence and non-maleficence [2]. In such settings, imposing
parity may reduce performance for groups for whom the model performs well, rather than improving
performance for groups for whom the model performs poorly [15, 22, 24, 25, 28]. In contrast,
measuring and reporting the benefit of personalization can ensure that we use personal data in ways
that improve performance for all groups without inflicting harm on specific groups.

Our results are related to a growing stream of work on auditing machine learning models [see e.g.,
6, 18, 26, 27, 29, 30]. We consider a setting where we estimate the performance of a personalized
model for a large number of intersectional groups known a priori [see e.g., 5, 10]. We characterize
the reliability of this task when increasing the degree of personalization in a finite sample regime.
Reliable verification becomes increasingly challenging in this setting. Given that number of groups
grows exponentially with each additional group attribute, one needs exponentially more samples to
reliably estimate the gains of personalization for each group. This is, of course, expected – and the
motivation behind Hebert-Johnson et al. [14], Kearns et al. [17] who characterize the computational
limits when auditing models with respect to parity-based metrics like equal opportunity and statistical
parity under worst-case distributional assumptions. Here, we study the phenomenon in a setting
where the number of samples is finite – e.g., because we are working with a dataset that is given [see
e.g., 1, 16, 19]. In this way, we can delineate fundamental limits on how many group attributes can be
used for personalization before testing and estimation become too unreliable (see e.g., Corollary 1 and
Figure 1). What is surprising about our results is that, given finite sample, the information-theoretic
maximum of group attributes that can be collected and still used to verify for a gain in personalization
is, in fact, small: with more than 19 binary attributes, it is statistically impossible to test a personalized
model for a gain in accuracy without further assumptions on the data distribution.

2 Measuring the Benefit of Personalization

In this section, we introduce formal definitions of fair use and the benefit of personalization.

2.1 Preliminaries

We start with an auditing dataset D ≜ {(xi,gi, yi)}ni=1 of i.i.d. samples from a data distribution
PX,G,Y . Each sample consists of a vector of features xi ∈ X (e.g. height, weight), a vector of
group attributes gi ∈ G (e.g. sex, HIV status), and a class label yi ∈ Y (e.g. incidence of stroke).
Group attributes partition the dataset into groups of individuals with the same personal characteristics
gi = g. We use g to denote a group, and use Pg ≜ PX,Y |G=g ∀g ∈ G to denote its conditional data
distribution.

Assume that we are given a personalized classifier that uses group attributes hp : X × G → Y and a
generic classifier h0 : X → Y that does not. We assume that these models are trained on a training
dataset that is independent of the auditing dataset D. The group risk (or loss) of the classifiers for
group g with respect to the loss function ℓ : Y × Y → R is defined as:

R(h,g) ≜

{
E [ℓ(h(X), Y ) | G = g] if h : X → Y,

E [ℓ(h(X,g), Y ) | G = g] if h : X × G → Y,
(1)
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The empirical risk R̂(h,g) for each group is defined as:

R̂(h,g) ≜

{
1
ng

∑
i:gi=g ℓ(h(xi), yi) if h : X → Y,

1
ng

∑
i:gi=g ℓ(h(xi,g), yi) if h : X × G → Y.

(2)

where ng refers to the number of samples in group g.

Individuals who provide their personal characteristics to a personalized classifier expect to receive
a tailored gain in performance in return. In Definition 1, we frame these expectation in terms of
collective preference guarantees that ensure fair use of group attributes [see 31, 33]

Definition 1 (Fair Use of Group Attributes). The personalized classifier hp : X × G → Y ensures
the fair use of group attributes for group g ∈ G with respect to the loss function ℓ : Y × Y → R if

R(hp,g) ≤ R(h0,g), (3)

E [ℓ (hp(X,g), Y ) | G = g] ≤ E [ℓ (hp(X,g′), Y ) | G = g] ∀g, g′ ∈ G. (4)

Here, conditions in (3) and (4) reflect the collective preference guarantees of rationality and envy-
freeness, respectively. These conditions capture the minimal expectations of a group from a personal-
ized model in applications where groups prefer more accurate models. Given a personalized classifier
that satisfies the rationality condition (3), the average person in group g would prefer the predictions
from a personalized classifier hp to those generic classifier h0. Moreover, given a personalized
classifier that satisfies the envy-freeness condition (4), the average person in group g would prefer
the predictions personalized for their group over predictions personalized for any other group g′ ̸= g.
The paper focuses on ensuring the rationality condition as it reflects minimal conditions for personal
characteristics to be used in a classification task.

The generic classifier h0 ∈ H can be the empirical risk minimizer over a training dataset Dtrain, i.e.,

h0 ∈ argmin
h∈H

∑
(x,g,y)∈Dtrain

ℓ(h(x), y),

where H is a family of classification models (e.g., linear classifiers, random forests). Equivalently,
hp ∈ H can represent the personalized model that minimizes empirical risk over a training dataset
that includes group attributes. In this case, the auditing dataset D (independent of Dtrain) can be used
to empirically test whether (h0, hp) guarantees fair use.

Example. Consider a classification task where the goal is to predict if a patient suffering from
cancer will experience a remission. In this setting, a generic classifier h0 may only use features that
are readily available in a electronic health record. A personalized classifier hp may use these same
features along with the group attributes G = TumorType ∈ {A, B, C}. Here, a personalized model
that violates the rationality condition for a group, e.g. g = (B), would mean that patients may obtain
more accurate predictions without undergoing an invasive procedure. In this case, patients should
be informed of this fact when weighing the decision to provide more data. Moreover, a doctor may
choose to only perform such invasive procedure when it is expected to produce a more accurate
diagnosis regardless of the result of the biopsy.

2.2 The Benefit of Personalization

The rationality condition that fair use enshrines is not necessarily met when models are trained
using empirical risk minimization. When rationality is violated, personalization may improve
performance across all groups, yet reduce performance for specific groups [see Table 1 and 31]).
Ideally, personalization lead to a gain – or at least not a loss – in performance regardless of the value
of the group attribute g. When this is not the case, stakeholders must be informed that providing
more personal information may not necessarily lead to (average) accuracy gains.

To quantify the gain in performance across all groups, we introduce a mathematical definition for
the benefit of personalization (BoP). This metric is a function of the personalized classifier hp, the
generic classifier h0, and the data distribution. The BoP captures the minimum change in loss from
using a personalized classifier across all intersectional groups defined by g ∈ G. Equivalently, the
BoP quantifies the potential violation of the Rationality constraint in Definition 1.
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Definition 2 (Benefit of Personalization). Given a fixed data distribution PX,G,Y and generic model
h0, the benefit of personalization of a personalized model hp relative to generic model h0 is:

γ(h0, hp) ≜ min
g∈G

R(h0,g)−R(hp,g) (5)

We refer to R(h0,g)−R(hp,g) as the the per-group benefit for group g, and write γ = γ(h0, hp)
when the parameters are clear from context.

When the benefit of personalization is positive but small, individuals may prefer to receive predictions
from a generic model h0 rather than a personalized model hp. This would reflect settings where the
expected gain in personalization would be insufficient to warrant the cost of collecting or disclosing
personal information (e.g., when the information is costly or sensitive). Testing for the benefit of
personalization (e.g., if γ > ϵ) is, on its own, insufficient: stakeholders must be made aware of
the estimated gain in accuracy from reporting personal data and only provide their personal data
when it leads to a sufficient gain in accuracy [31, 33]. However, calculating the BoP exactly requires
knowledge of the data distribution (see Def. 2) – a condition rarely met in practice. Therefore, it
is critical to understand how to estimate the BoP given an auditing dataset D, as well as when this
estimation may be infeasible given a limited sample size or a large number of group attributes.

2.3 Assumptions

In the remainder of this work, we restrict our attention to classification tasks with a binary outcome
Y = {0, 1}, and k binary group attributes Gi ∈ G ≜ {0, 1}k that specify d ≜ |G|= 2k groups. We
assume that we work with an auditing dataset D that contains m ≜ ⌊n/d⌋ samples per group. This
reflects an optimistic assumption in settings without prior knowledge of the data distribution PX,G,Y .
In effect, measuring the benefit of personalization is more unreliable in tasks with a disparate number
of samples per group (see Appendix C.3).

We consider a setting where the benefit of personalization measures the minimum gain in accuracy
between a personalized classifier and its generic counterpart. This corresponds to selecting the 0-1
loss function ℓ(y, h(x,g)) ≜ 1[y ̸= h(x,g)] in (2). The resulting quantity can be expressed as
follows:

γ(h0, hp) = min
g∈G

Pr(Y = hp(X,g) | G = g)− Pr(Y = h0(X) | G = g),

where Pr(Y = hp(X,g) | G = g)− Pr(Y = h0(X) | G = g) is the gain in accuracy for group g.
Our results can be generalized to settings where the BoP measures the minimum gain using other
performance metrics, such as the false positive rate or false negative rate (see Supplementary Material
Section B.1).

Naturally, one would expect the personalized classifier hp and its generic counterpart h0 to be trained
in “good faith,” i.e., they are not designed to underperform on a specific group. The BoP would
not capture, for example, the case where both the personalized classifier and the generic classifier
underperform on a specific group – it only reflects the relative gain in accuracy for each group by
switching to a personalized classifier. In this regard, the BoP complements existing group fairness
metrics.

3 Testing with the Benefit of Personalization

In this section, we describe a hypothesis testing framework to check that a personalized model
produces a sufficiently large gain in performance for all groups. We then present an information-
theoretic bound on the reliability of this procedure for all hypothesis tests.

3.1 Hypothesis Testing Setup

In Definition 3, we present a one-sided hypothesis test to verify if a personalized model improves
expected accuracy for every group who provides personal data.
Definition 3 (Hypothesis Test for Fair Use). Given a personalized classifier hp, a generic classifier
h0, and auditing dataset D, we verify whether (hp, h0) yields an ϵ > 0 gain in expected accuracy for
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every group using a hypothesis test where:

H0 : γ < 0 ⇔ min
g∈G

R(h0,g)−R(hp,g) < 0

H1 : γ ≥ ϵ ⇔ min
g∈G

R(h0,g)−R(hp,g) ≥ ϵ

Here, the null hypothesis H0 holds when a personalized model hp assigns predictions that are less
accurate than those of a generic model h0 for one or more groups. In contrast, the alternative
hypothesis H1 holds when a personalized model hp assigns predictions that produce an expected
gain in accuracy of ϵ for each group.

In principle, the value of ϵ should be set as the minimal gain in expected accuracy that every group
should receive from a personalized model. Setting ϵ = 0 would flag a personalized model that assigns
unnecessarily inaccurate predictions to at least one group. Setting ϵ to a larger positive value would
flag a personalized model where at least one group experiences a gain that is too low to warrant the
cost of providing personal information.

The hypotheses can be tested using a range of procedures, including a bootstrap test [12, 23] and
a McNemar test [20]. Arguably the simplest procedure is a threshold test, which would require
estimating the BoP as shown in Table 1 and reject H0 if γ̂ > ϵ.

In what follows, we derive a bound on the reliability of the hypothesis test in Def. 3 that holds for
all procedures. For clarity of exposition, we represent the inputs and output for this hypothesis test
as a decision function Ψ : (D, hp, h0, ϵ) → {0, 1}, where Ψ(D, hp, h0, ϵ) := 1[Accept H1]. Even
as the setup above assumes that ϵ > 0, our results will apply to settings where ϵ ≤ 0. When ϵ < 0,
our results will characterize the reliability of an inverted setup with H0 : γ > 0 and H1 : γ ≤ ϵ.
The parameter ϵ is set to a value that is arbitrarily close to 0 – but not 0 – since the reliability of the
hypothesis test requires separation between the regions H0 and H1.

3.2 Impossibility Results for Reliable Testing

We characterize the reliability of hypothesis tests in terms of their probability of error, defined below.
Definition 4 (Probability of Error). Consider auditing a personalized classifier by testing the hypothe-
ses H0 and H1 in Def. 3. Given a personalized classifier hp, generic classifier h0, auditing dataset D,
and threshold gain ϵ > 0, the probability of error of a hypothesis test Pe is defined as:

Pe :=
1

2
[Pr (Ψ(D, hp, h0, ϵ) = 1 | H0 is True)︸ ︷︷ ︸

Type-I Error

+Pr (Ψ(D, hp, h0, ϵ) = 0 | H1 is True)︸ ︷︷ ︸
Type-II Error

]

The probability of error captures both the false positive rate and the false negative rate of a given
hypothesis test. If the probability of error of a hypothesis test exceeds 50%, then this means that a
hypothesis test is as reliable as the outcome of an unbiased coin toss – too unreliable to allow for
verification. The next theorem – and the main result in this section – states a lower bound on the
probability of error when testing if the BoP exceeds ϵ.
Theorem 1 (Lower Bound on Probability of Error). Consider auditing a personalized classifier
hp in comparison to a generic classifier h0 on a dataset D drawn from an (unknown) distribution
with d groups, m = ⌊n/d⌋ samples per group. Moreover, let Pe denote the probability of error
for a hypothesis test as in Def. 4 with fixed ϵ ∈ [−0.5, 0.5]. The worst-case probability of error
over all pairs of data distributions (PX,G,Y , QX,G,Y ) where one distribution satisfies H0 and the
other H1 – denoted by PX,G,Y ∈ H0 and QX,G,Y ∈ H1, respectively – and all decision functions
Ψ : (D, hp, h0, ϵ) → {0, 1} satisfies

min
Ψ

max
PX,G,Y ∈H0

QX,G,Y ∈H1

Pe ≥ 1− 1√
d

(
1 + 4ϵ2

)m/2
. (6)

The minimax lower bound on the probability of error in Theorem 1 represents the worst-case
performance of any hypothesis test without further assumptions on the data distribution. The minimax
lower bound implies that for every decision function Ψ, there exists a pair of distributions – one
satisfying H0 and the other H1 – such that the probability of error for the hypothesis test will exceed
the right-hand side of (6).
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Figure 1: Epistemic limits of personalization for binary classification tasks with group attributes. We identify
limits on the number of group attributes (left) and number of groups (right) to reliably test if a personalized
classifier provides an expected gain of accuracy greater than ϵ gain for every group using a dataset with n points.
The limits correspond to largest values needed to ensure that minmax Pe ≤ 1/2 under Theorem 1, and are
computed using the same technique as Corollary 1 (see Appendix B.2).

Proof Sketch. The proof of Theorem 1 constructs the lower bound for the probability of error for
any decision function Ψ by bounding the total variation distance of two distributions (belonging to
different hypotheses) that are “difficult” to distinguish. We provide the full proof in the supplementary
material Section B.1.

Theorem 1 characterizes the relationship between probability of error and the number of group
attributes for personalization in settings with a finite number of samples. Intuitively, as the number of
groups becomes larger, we have fewer samples per group, and the likelihood of erring in the hypothesis
test increases. Using the minimax lower bound in Theorem 1, we can delineate a fundamental limit on
the maximum number of group attributes that we can include in a personalized model to test if every
group benefits from personalization without making further assumptions on the data distribution. In
Corollary 1, we highlight this limit for an idealized scenario where the dataset D contains a sample
for each person on Earth. In Figure 1 we highlight the maximum number of binary group attributes
(left) and groups (right) for multiple dataset sizes and threshold gains.

Corollary 1 (Epistemic Limit in Number of Group Attributes). Consider auditing a personalized
classifier hp to test if it provides a gain of at least ϵ = 0.01 to each group on an auditing dataset
D with n = 8 × 109 samples – i.e., one for each person on Earth. If the personalized classifier
uses more than k ≥ 19 binary group attributes, then for any hypothesis test there will exist a pair
of probability distributions PX,G,Y ∈ H0, QX,G,Y ∈ H1 for which the test attains a probability of
error that exceeds 50%, i.e.,

k ≥ 19 =⇒ min
Ψ

max
PX,G,Y ∈H0

QX,G,Y ∈H1

Pe ≥
1

2
.

Phase Transition Theorem 1 characterizes the relationship between the minimax probability of
error in testing Pe in terms of the threshold gain ϵ, the number of groups d, and data points per group
m. This relationship highlights a phase transition in the reliability of testing. In particular, we find
that probability of error exceeds 1/2 whenever the number of samples per group exceeds the number
of groups (see Figure 2). In the auditing setup in Corollary 1, the minimax lower bound on Pe jumps
from 13% to 97% as we increase the number of binary group attributes from k = 18 to k = 19. These
phenomena highlight an informative rule of thumb – i.e., that testing is fundamentally unreliable in
settings where the number of groups exceeds the number of samples per group.

Epistemic Limits. In Corollary 1 we have shown that for a fixed dataset size
(
n = 8× 109

)
and

a threshold gain (ϵ = 0.01) there is a a limit on the number of binary group attributes to achieve
reliable testing. In Figure 1 (left), we generalize this result and show how the maximum number of
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Figure 2: Minimax lower bound for the probability of error in hypothesis test. Illustration of the minimax lower
bound of probability of error in Theorem 1 (left). For a fixed number of groups d = 141 and ϵ = 0.01, when the
number of samples per group decreases the probability of error in hypothesis test goes to 100%. We have, in the
y-axis, max(0, lower bound in 6). Illustration of the minimax lower bound of probability of error in Theorem 1
(right). For a fixed sample size n = 8× 109 (one sample per person in the world) and varying the number of
binary attributes (k), there is a phase transition for the minimax error probability in a hypothesis test in k = 19
(orange line) as predicted in Corollary 1.

binary attributes for reliable testing changes with the dataset size and threshold gain. Remarkably,
without any further assumption, for a dataset with at most 50k samples (usual in domains such as
medicine) and ϵ = 0.01 (just 1% accuracy gain in personalization), at most 3 binary group attributes
can be used in order to ensure reliable auditing for the BoP for any data distribution. The limits in
Figure 1 are violated by many algorithms used in medicine (e.g, [4, 11] ). In Figure 1 (right) we drop
the assumption of binary group attributes and show the maximum number of groups to ensure reliable
testing. Note that, in general, the number of groups when we drop the binary attributes assumption is
bigger than the number of groups generated by the binary group attributes. This is an effect from
rounding – i.e., when 2kmax+1 > dmax but 2kmax < dmax, where kmax is the maximum number
binary group attributes and dmax is the maximum number of groups to ensure reliable testing.

We reiterate that the error bounds in Theorem 1 and Corollary 1 hold in the minimax sense. These
bounds are conservative estimates that may be relaxed given further assumptions on the data distribu-
tion PX,G,Y . Moreover, the test in Def. 3 considers only two hypotheses for a pre-specified ϵ. Hence,
this testing procedure assumes a priori that the true BoP γ cannot satisfy 0 < γ < ϵ. In practice,
such prior information about the BoP may not be known, requiring γ to be estimated directly from an
auditing dataset D.

4 Estimating the Benefit of Personalization

In this section, we characterize information-theoretic limits when estimating the benefit of personal-
ization. We identify a threshold number of group attributes beyond which, in general, it is impossible
to estimate the BoP reliably.

4.1 Estimation Setup

We consider the problem of designing an estimator γ∗ for the BoP for a dataset D. Our metric
of choice is the mean-square error (MSE) E

[
(γ − γ∗)2

]
. Our goal is to characterize the minimal

MSE (MMSE) across all possible data distributions – i.e., without further assumptions on the data
distribution. In particular, corresponding bounds allow practitioners to design a dataset collection
that ensures a priori reliable estimation of the BoP. Therefore, we analyze the minimax estimation
error – i.e., the best MMSE achievable across all data distributions, defined as

∆(h0, hp) ≜ inf
γ∗∈σ(D)

sup
PX,G,Y

E
[
(γ − γ∗)2

]
, (7)

where γ∗ ∈ σ(D) denotes that γ∗ is measurable with respect to the distribution Pn
X,G,Y of D.

To further motivate the definition of ∆, suppose that there exist functions g1(d,m), g2(d,m) > 0
such that ∆ ≤ g1(d,m), and ∆ ≥ g2(d,m). Recall that d is the number of groups and m is the
number of samples per group. This implies that for every estimator γ∗, there exists a data distribution
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PX,G,Y such that g2(d,m) ≤ E
[
(γ − γ∗)2

]
≤ g1(d,m). In practice, this means that for any

estimator there is a distribution such that the MSE of the resulting BoP estimate will be bounded away
from zero by g2(d,m). The main result in this section is Theorem 2, which gives explicit expressions
for g1, g2.

For a dataset with a fixed amount of samples (n), when the number of group attributes increases,
the number of data points per group decreases. Intuitively, the estimation variance will be higher on
the “more" personalized classifier because there are fewer samples per group. Theorem 2 gives a
characterization for the order of the estimation error for the BoP.
Theorem 2 (Minimax bounds for the Estimation MSE). Given a dataset D, constants d,m ∈ N such
that 4 ≤ d ≤ 2m+2, a generic (h0) and a personalized (hp) classifier, the minimax estimation error
for the benefit of personalization in (7) is such that:

log(d)

16m
− log(4)

16m
≤ ∆(h0, hp) ≤

log(d)

m
+

log(m)

m
+

2 + log(2)

m
, (8)

Proof Sketch. The proof of Theorem 2 relies on two-point methods for minimax lower bounds.
This result uses a generalized version of Le Cam’s Lemma stated in Lemma 1 in the supplementary
material (which is of independent interest) together with standard concentration inequalities. We
provide the detailed proof in the supplementary material and discuss its implications in Section 4.2.

The bounds in Theorem 2 are illustrated in Figure 3 (right) in log scale. This figure suggests that
even though the bounds in Theorem 2 are in the minimax sense, they are close to the estimated MSE,
especially the lower bound. In addition, in Figure 3 the minimax lower bound is not a lower bound for
the MSE of the BoP estimation. This phenomenon is expected and is a consequence of the generality
o the minimax bounds that hold for all decision functions and estimators and inherently consider the
worst-case distribution for each case. Additional knowledge of the underlying data distribution may
result in a more favorable trade-off between sample size, estimation error, and the number of group
attributes.

4.2 Implications of the Limits of Estimating the BoP

Theorem 2 delineates a fundamental limit on the number of group attributes to estimate the BoP
reliably. The lower (converse) bound in (8) captures the trade-off between the minimax MSE of an
estimator, the number of group attributes, and the size of the dataset. In Corollary 2, we express
this trade-off by identifying an upper bound for the number of group attributes required to achieve a
precise (in the minimax MSE sense) BoP estimate for a fixed sample size.
Corollary 2 (Limits of Reliable Estimation). Given a dataset D with n samples, d ≥ 4 groups,
m = n/d samples per group, 0 < δ < 1/16, and a generic and a personalized classifier. If
d ≤ 2m+2, and ∆(h0, hp) ≤ δ, the number of binary group attributes (k) satisfies,

(k − 2)2k ≤ 16

ln 2
nδ. (9)

Remark. For n = 8× 109 (i.e., the approximate number of people on earth) and δ = 0.052 (i.e.,
at most 5% MSE), then one can only reliably estimate the BoP for a personalized model with at most
k ≤ 25 binary group attributes.

The proof of Corollary 2 is a direct application of the Theorem 2 (see Appendix B.5 for the proof).
Setting δ = 0.052 caps the square root of the MSE to 5%. In settings where the estimator γ∗ is
unbiased, the result in Corollary 2 caps the variance of the estimator to at most 5%.

Corollary 2 gives a limit in the number of binary group attributes in order to ensure a δ-precision
for the error in BoP estimation – i.e., to guarantee that ∆(h0, hp) ≤ δ. Eq. 9 can help practitioners
decide the number of group attributes used by hp by (i) first setting a target estimation precision δ
for the BoP, where 0 < δ < 1/16, then (ii) determining the maximum number of group attributes
by computing kmax = max{k ∈ N; (k − 2)2k ≤ 16

ln 2nδ}. Note that, since our bounds are minimax,
this renders a conservative estimate on the number of attributes used for personalization.

In general, one may expect that the maximum number of group attributes for a reliable test should
exceed the maximum number of group attributes for reliable estimation. Our results in (6) and (8)
show otherwise. This is an artifact of the fact that |γ|∈ [0, 1]. Easier estimation for statistics with
norm smaller than 1 is simply an artifact of scale and follows from the Le Cam Lemma [21].
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Figure 3: Overview of estimation error for the BoP of personalized classifiers on a semi-synthetic dataset built
from the UCI Adult dataset [19]. We plot the MSE of BoP estimates as we increase the number of samples
per group, along with the minimax upper and lower bounds from Theorem 2 in log-scale. Here, we compute
each estimate using 100 Monte Carlo iterations, and show 95% confidence intervals estimated via bootstrap. As
shown, the MSE decreases exponentially as the number of samples per group increases. The minimax bounds are
close to the estimated values, especially the lower bound, which indicates that the worst-case data distribution
considered in the minimax bound is approximates the empirical data distribution. The generality of the bounds
implies that some knowledge of the underlying data distribution may result in a more favorable trade-off between
sample size, estimation error, and the number of group attributes. Here, the MSE in the BoP estimate falls below
the minimax lower bounds, suggesting that the model’s underlying distributions for each group are not quite the
worst-case scenario.

5 Concluding Remarks

Personalized models should improve performance for all individuals who provide personal data.
In this work, we introduced a measure called the benefit of personalization (BoP) to verify this
basic principle for classification models that are personalized using group attributes. Using the
BoP, we characterized the reliability of testing and estimation procedures to verify this principle in
practice. We then determined conditions under which testing and estimation were too unreliable
to guarantee gains across groups. Our results highlight fundamental limits in our ability to tell if
personalization leads to gains in finite-sample settings. In particular, we show that there is no way to
reliably determine if a personalized model with k ≥ 19 attributes benefits all groups who provide
personal data on a dataset with n = 8 × 109 samples (i.e., one per person in the world) without
making further assumptions on the data distribution. These limits can guide how to define and select
group attributes to ensure reliable testing and estimation, allowing practitioners to make informed
decisions when personalizing models with characteristics that are protected, sensitive, or costly to
acquire.

Acknowledgements. This material is based upon work supported by the National Science Founda-
tion under grants CAREER 1845852, IIS 1926925, and FAI 2040880.
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