
Few-Shot Parameter-Efficient Fine-Tuning is Better
and Cheaper than In-Context Learning

Haokun Liu∗ Derek Tam∗ Mohammed Muqeeth∗

Jay Mohta Tenghao Huang Mohit Bansal Colin Raffel
Department of Computer Science

University of North Carolina at Chapel Hill
{haokunl,dtredsox,muqeeth,craffel}@cs.unc.edu

Abstract

Few-shot in-context learning (ICL) enables pre-trained language models to per-
form a previously-unseen task without any gradient-based training by feeding a
small number of training examples as part of the input. ICL incurs substantial
computational, memory, and storage costs because it involves processing all of the
training examples every time a prediction is made. Parameter-efficient fine-tuning
(PEFT) (e.g. adapter modules, prompt tuning, sparse update methods, etc.) offers
an alternative paradigm where a small set of parameters are trained to enable a
model to perform the new task. In this paper, we rigorously compare few-shot
ICL and PEFT and demonstrate that the latter offers better accuracy as well as
dramatically lower computational costs. Along the way, we introduce a new PEFT
method called (IA)3 that scales activations by learned vectors, attaining stronger
performance while only introducing a relatively tiny amount of new parameters.
We also propose a simple recipe based on the T0 model [1] called T-Few that
can be applied to new tasks without task-specific tuning or modifications. We
validate the effectiveness of T-Few on completely unseen tasks by applying it to
the RAFT benchmark [2], attaining super-human performance for the first time
and outperforming the state-of-the-art by 6% absolute. All of the code used in our
experiments is publicly available.1

1 Introduction

Pre-trained language models have become a cornerstone of natural language processing, thanks
to the fact that they can dramatically improve data efficiency on tasks of interest – i.e., using a
pre-trained language model for initialization often produces better results with less labeled data. A
historically common approach has been gradient-based fine-tuning on a downstream task of interest
with pre-trained parameters as the initialization. While fine-tuning has produced many state-of-the-art
results [1], it results in a model specialized for a single task with an entirely new set of parameter
values, which can become impractical when fine-tuning on many downstream tasks.

An alternative approach popularized by [3, 4] is in-context learning (ICL), which induces a model
to perform a downstream task by inputting prompted examples. Few-shot prompting converts a
small collection of input-target pairs into (typically) human-understandable instructions and examples
[3, 4], along with a single unlabeled example for which a prediction is desired. Notably, ICL requires
no gradient-based training and therefore allows a single model to immediately perform a wide variety
of tasks. Performing ICL therefore solely relies on the capabilities that a model learned during
pre-training. These characteristics have led to a great deal of recent interest in ICL methods [5–10].

∗Equal contribution.
1 https://github.com/r-three/t-few

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/r-three/t-few

V K Q

softmax

Dense

Nonlinearity

Dense

T0
Susie loves her grandma's
banana bread. Susie called

her grandma and asked her to
send some. Grandma lived

very far away. A week passed
and grandma surprised Susie
by coming to visit. What is
a possible continuation for

the story?

Susie was so happy.

Susie was upset.

(IA)3 Losses used in T-Few

Figure 1: Diagram of (IA)3 and the loss terms used in the T-Few recipe. Left: (IA)3 introduces the
learned vectors lk, lv, and lff which respectively rescale (via element-wise multiplication, visualized as
⊙) the keys and values in attention mechanisms and the inner activations in position-wise feed-forward
networks. Right: In addition to a standard cross-entropy loss LLM, we introduce an unlikelihood loss
LUL that lowers the probability of incorrect outputs and a length-normalized loss LLN that applies a
standard softmax cross-entropy loss to length-normalized log-probabilities of all output choices.

Despite the practical benefits of ICL, it has several major drawbacks. First, processing all prompted
input-target pairs every time the model makes a prediction incurs significant compute costs. Second,
ICL typically produces inferior performance compared to fine-tuning [4]. Finally, the exact formatting
of the prompt (including the wording [11] and ordering of examples [12]) can have significant and
unpredictable impact on the model’s performance, far beyond inter-run variation of fine-tuning.
Recent work has also demonstrated that ICL can perform well even when provided with incorrect
labels, raising questions as to how much learning is taking place at all [9].

An additional paradigm for enabling a model to perform a new task with minimal updates is parameter-
efficient fine-tuning (PEFT), where a pre-trained model is fine-tuned by only updating a small number
of added or selected parameters. Recent methods have matched the performance of fine-tuning the
full model while only updating or adding a small fraction (e.g. 0.01%) of the full model’s parameters
[13, 14]. Furthermore, certain PEFT methods allow mixed-task batches where different examples in
a batch are processed differently [14], making both PEFT and ICL viable for multitask models.

While the benefits of PEFT address some shortcomings of fine-tuning (when compared to ICL), there
has been relatively little focus on whether PEFT methods work well when very little labeled data
is available. Our primary goal in this paper is to close this gap by proposing a recipe – i.e., a model, a
PEFT method, and a fixed set of hyperparameters – that attains strong performance on novel, unseen
tasks while only updating a tiny fraction of the model’s parameters. Specifically, we base our approach
on the T0 model [1], a variant of T5 [15] fine-tuned on a multitask mixture of prompted datasets.
To improve performance on classification and multiple-choice tasks, we add unlikelihood [16, 17]
and length normalization-based [4] loss terms. In addition, we develop (IA)3, a PEFT method
that multiplies intermediate activations by learned vectors. (IA)3 attains stronger performance than
full-model fine-tuning while updating up to 10,000× fewer parameters. Finally, we demonstrate
the benefits of pre-training the (IA)3 parameters before fine-tuning [18, 19]. Our overall recipe,
which we dub “T-Few”, performs significantly better than ICL (even against 16× larger models)
and outperforms humans for the first time on the real-world few-shot learning benchmark RAFT [2]
while requiring dramatically less compute and allowing for mixed-task batches during inference. To
facilitate the use of T-Few on new problems and future research on PEFT, we release our code.1

After providing background on ICL and PEFT in the following section, we discuss the design of
T-Few in section 3. In section 4, we present experiments comparing T-Few to strong ICL baselines.
Finally, we discuss related work in section 5 and conclude in section 6.

2 Background

In this section, we provide am verview of ICL and PEFT with a focus on characterizing the com-
putation, memory, and on-disk storage costs of making a prediction. Real-world costs depend on
implementation and hardware, so we report costs in terms of FLOPs for computation and bytes for
memory and storage, respectively. Additional related work is discussed in section 5.

2

2.1 Few-shot in-context learning (ICL)

ICL [3, 4] aims to induce a model to perform a task by feeding in concatenated and prompted
input-target examples (called “shots”) along with an unlabeled query example. Taking the cycled
letter task from Brown et al. [4] as an example, a 4-shot input or context would be “Please
unscramble the letters into a word, and write that word: asinoc = casino,
yfrogg = froggy, plesim = simple, iggestb = biggest, astedro =”, for which the
desired output would be “roasted”. ICL induces an autoregressive language model to perform
this task by feeding in the context and sampling from the model. For classification tasks, each
label is associated with a string (e.g. “positive” and “negative” for sentiment analysis) and
a label is assigned by choosing the label string that the model assigns the highest probability to.
For multiple-choice tasks (e.g. choosing between N possible answers to a question), the model’s
prediction is similarly determined by determining which choice is assigned the highest probability.

The primary advantage of ICL is that it enables a single model to perform many tasks immediately
without fine-tuning. This also enables mixed-task batches, where different examples in a batch of data
correspond to different tasks by using different contexts in the input. ICL is also typically performed
with only a limited number of labeled examples – called few-shot learning – making it data-efficient.

Despite these advantages, ICL comes with significant practical drawbacks: First, making a prediction
is dramatically more expensive because the model needs to process all of the in-context labeled
examples. Specifically, ignoring the quadratic complexity of self-attention operations in Transformer
language models (which are typically small compared to the costs of the rest of the model [20]),
processing the k training examples for k-shot ICL increases the computational cost by approximately
k + 1 times compared to processing the unlabeled example alone. Memory costs similarly scale
approximately linearly with k, though during inference the memory costs are typically dominated by
storing the model’s parameters. Separately, there is a small amount of on-disk storage required for
storing the in-context examples for a given task. For example, storing 32 examples for a task where
the prompted input and target for each example is 512 tokens long would require about 66 kilobytes
of storage on disk (32 examples × 512 tokens × 32 bits).

Beyond the aforementioned costs, ICL also exhibits unintuitive behavior. Zhao et al. [12] showed
that the ordering of examples in the context heavily influences the model’s predictions. Min et al. [9]
showed that ICL can still perform well even if the in-context example labels are swapped (i.e. made
incorrect), which raises questions about whether ICL is really “learning” from the labeled examples.

Various approaches have been proposed to mitigate these issues. One way to decrease computational
costs is to cache the key and value vectors for in-context examples. This is possible because decoder-
only Transformer language models have a causal masking pattern, so the model’s activations for the
context do not do not depend on the unlabeled example. In an extreme case, 32-shot ICL with 512
tokens per in-context example would result in over 144 gigabytes of cached key and value vectors for
the GPT-3 model (32 examples × 512 tokens × 96 layers × 12288 dmodel × 32 bits each for the key
and value vectors). Separately, Min et al. [21] proposed ensemble ICL, where instead of using the
output probability from concatenating the k training examples, the output probabilities of the model
on each training example (i.e. 1-shot ICL for each of the k examples) are multiplied together. This
lowers the non-parameter memory cost by a factor of k/2 but increases the computational cost by
a factor of 2. In terms of task performance, Min et al. [21] find that ensemble ICL outperforms the
standard concatenative variant.

2.2 Parameter-efficient fine-tuning

While standard fine-tuning updates all parameters of the pre-trained model, it has been demonstrated
that it is possible to instead update or add a relatively small number of parameters. Early methods
proposed adding adapters [22–24], which are small trainable feed-forward networks inserted between
the layers in the fixed pre-trained model. Since then, various sophisticated PEFT methods have been
proposed, including methods that choose a sparse subset of parameters to train [25, 26], produce
low-rank updates [13], perform optimization in a lower-dimensional subspace [27], add low-rank
adapters using hypercomplex multiplication [28], and more. Relatedly, prompt tuning [14] and prefix
tuning [29] concatenate learned continuous embeddings to the model’s input or activations to induce
it to perform a task; this can be seen as a PEFT method [30]. State-of-the-art PEFT methods can

3

match the performance of fine-tuning all of the model’s parameters while updating only a tiny fraction
(e.g. 0.01%) of the model’s parameters.

PEFT drastically reduces the memory and storage requirements for training and saving the model. In
addition, certain PEFT methods straightforwardly allow mixed-task batches – for example, prompt
tuning enables a single model to perform many tasks simply by concatenating different prompt
embeddings to each example in the batch [14]. On the other hand, PEFT methods that re-parameterize
the model (e.g. [27, 13]) are costly or onerous for mixed-task batches. Separately, different PEFT
methods increase the computation and memory required to perform inference by different amounts.
For example, adapters effectively add additional (small) layers to the model, resulting in small but
non-negligible increases in computational costs and memory. An additional cost incurred by PEFT
is the cost of fine-tuning itself, which must be performed once and is then amortized as the model
is used for inference. However, we will show that PEFT can be dramatically more computationally
efficient when considering both fine-tuning and inference while achieving better accuracy than ICL.

3 Designing the T-Few Recipe

Given that PEFT allows a model to be adapted to a new task with relatively small storage requirements
and computational cost, we argue that PEFT presents a promising alternative to ICL. Our goal
is therefore to develop a recipe that allows a model to attain high accuracy on new tasks with
limited labeled examples while allowing mixed-task batches during inference and incurring minimal
computational and storage costs. By recipe, we mean a specific model and hyperparameter setting
that provides strong performance on any new task without manual tuning or per-task adjustments.
In this way, we can ensure that our approach is a realistic option in few-shot settings where limited
labeled data is available for evaluation [31, 32].

3.1 Model and Datasets

As a first step, we must choose a pre-trained model. Ideally, the model should attain high performance
on new tasks after fine-tuning on a limited number of labeled examples. In preliminary experiments
applying PEFT methods to different pre-trained models, we attained the best performance with T0
[1]. T0 is based on T5 [15], an encoder-decoder Transformer model [33] that was pre-trained via a
masked language modeling objective [34] on a large corpus of unlabeled text data. T0 was created by
fine-tuning T5 on a multitask mixture of datasets in order to enable zero-shot generalization, i.e. the
ability to perform tasks without any additional gradient-based training. Examples in the datasets used
to train T0 were prompted by applying the prompt templates from the Public Pool of Prompts (P3
[35]), which convert each example in each dataset to a prompted text-to-text format where each label
corresponds to a different string. For brevity, we omit a detailed description of T0 and T5; interested
readers can refer to Sanh et al. [1] and Raffel et al. [15]. T0 was released in three billion and eleven
billion parameter variants, referred to as “T0-3B” and simply “T0” respectively. In this section (where
our goal is to design the T-Few recipe through extensive experimentation), we use T0-3B to reduce
computational costs. For all models and experiments, we use Hugging Face Transformers [36].

While T0 was designed for zero-shot generalization, we will demonstrate that it also attains strong
performance after fine-tuning with only a few labeled examples. To test T0’s generalization, Sanh et al.
[1] chose a set of tasks (and corresponding datasets) to hold out from the multitask training mixture
– specifically, sentence completion (COPA [37], H-SWAG [38], and Story Cloze [39] datasets),
natural language inference (ANLI [40], CB [41], and RTE [42]), coreference resolution (WSC [43]
and Winogrande [44]), and word sense disambiguation (WiC [45]). Evaluation of generalization
capabilities can then be straightforwardly done by measuring performance on these held-out datasets.
We also will later test T-Few’s abilities in the RAFT benchmark [2] in section 4.3, a collection of
unseen “real-world” few-shot tasks with no validation set and a held-out test set. ANLI, WiC, WSC
is licensed under a Creative Commons License. Winogrande is licensed under an Apache license.
COPA is under a BSD-2 Clause license. We could not find the license of RTE and CB but they are
part of SuperGLUE which mentions the datasets are allowed for use in research context.

To ease comparison, we use the same number of few-shot training examples for each dataset as Brown
et al. [4], which varies from 20 to 70. Unfortunately, the few-shot dataset subsets used by Brown
et al. [4] have not been publicly disclosed. To allow for a more robust comparison, we therefore
constructed five few-shot datasets by sampling subsets with different seeds and report the median and

4

interquartile range. We prompt examples using a randomly-sampled prompt template from P3 Bach
et al. [35] for each example at each step. Unless otherwise stated, we train our model for 1K steps
with a batch size of 8 and report performance at the end of training.

For evaluation, we use “rank classification”, where the model’s log-probabilities for all possible label
strings are ranked and the model’s prediction is considered correct if the highest-ranked choice is the
correct answer. Rank classification evaluation is compatible with both classification and multiple-
choice tasks. Since model performance can vary significantly depending on the prompt template used,
we report the median accuracy across all prompt templates from P3 and across few-shot data subsets
for each dataset. For all datasets, we report the accuracy on the test set or validation set when the test
labels are not public (e.g. SuperGLUE datasets). In the main text, we report median accuracy across
the nine datasets mentioned above. Detailed results on each dataset are provided in the appendices.

3.2 Unlikelihood Training and Length Normalization

Before investigating PEFT methods, we first explore two additional loss terms to improve the
performance of few-shot fine-tuning of language models. Language models are normally trained
with cross-entropy loss LLM = − 1

T

∑
t log p(yt|x, y<t) where the model is trained to increase the

probability of the correct target sequence y = (y1, y2, . . . , yT) given the input sequence x.

For evaluation, we use rank classification (described in section 3.1) which depends on both the
probabilities that the model assigns to the correct choice as well as the incorrect choices. To account
for this during training, we add an unlikelihood loss [16, 17]:

LUL = −
∑N

n=1

∑T (n)

t=1 log(1− p(ŷ
(n)
i |x, ŷ(n)<t))∑N

n=1 T
(n)

(1)

which discourages the model from predicting tokens from incorrect target sequences, where ŷ(n) =
(ŷ1, ŷ2, . . . , ŷT (n)) is the n-th of N incorrect target sequences. We hypothesize that adding LUL will
improve results on rank classification because the model will be trained to assign lower probabilities
to incorrect choices, thereby improving the chance that the correct choice is ranked highest.

The possible target sequences for a given training example can have significantly different lengths,
especially in multiple-choice tasks. Ranking each choice based on probability can therefore “favor”
shorter choices because the model’s assigned probability to each token is ≤ 1. To rectify this,
we consider using length normalization when performing rank classification, which divides the
model’s score on each possible answer choice by the number of tokens in the choice (as used in
GPT-3 [4]). When using length normalization during evaluation, we introduce an additional loss
term during training that more closely reflects length-normalized evaluation. First, we compute the
length-normalized log probability of a given output sequence β(x,y) = 1

T

∑T
t=1 log p(yt|x, y<t).

Then, we maximize the length-normalized log probability of the correct answer choice by minimizing
the softmax cross-entropy loss:

LLN = − log
exp(β(x,y))

exp(β(x,y)) +
∑N

n=1 exp(β(x, ŷ
(n)))

(2)

When training a model with LLM, LUL, and LLN, we simply sum them. This avoids introducing any
hyperparameters that would be problematic to tune in the few-shot setting (where realistically-sized
validation sets are tiny by necessity [31, 32]).

We report the results of fine-tuning all of T0-3B’s parameters with and without length normalization
on all datasets in appendix B. We find that adding LLN improves the accuracy from 60.7% to 62.71%
and including both LUL and LLN provides a further improvement to 63.3%. Since these loss terms
improve performance without introducing any additional hyperparameters, we include them in our
recipe and use them in all following experiments.

3.3 Parameter-efficient fine-tuning with (IA)3

In order to compare favorably to few-shot ICL, we need a PEFT method that has the following
properties: First, it must add or update as few parameters as possible to avoid incurring storage
and memory costs. Second, it should achieve strong accuracy after few-shot training on new tasks.

5

Finally, it must allow for mixed-task batches, since that is a capability of ICL. In order to easily
enable mixed-task batches, a PEFT method should ideally not modify the model itself. Otherwise,
each example in a batch would effectively need to be processed by a different model or computational
graph. A more convenient alternative is provided by methods that directly modify the activations of
the model since this can be done independently and cheaply to each example in the batch according
to which task the example corresponds to. Prompt tuning and prefix tuning methods [14, 29] work by
concatenating learned vectors to activation or embedding sequences and are therefore examples of
activation-modifying PEFT methods that allow for mixed-task batches. However, as we will discuss
later, we were unable to attain reasonable accuracy with prompt tuning and found that the more
performant PEFT methods did not allow for mixed-task batches. We therefore developed a new PEFT
method that meets our desiderata.

As an alternative, we explored element-wise multiplication (i.e. rescaling) of the model’s activations
against a learned vector. Specifically, we consider adaptation of the form l ⊙ x where l ∈ Rd is a
learned task-specific vector, ⊙ represents element-wise multiplication, and x ∈ RT×d is a length-T
sequence of activations. We use “broadcasting notation” [46] so that the (i, j)th entry of l⊙x is ljxi,j .
In preliminary experiments, we found it was not necessary to introduce a learned rescaling vector
for each set of activations in the Transformer model. Instead, we found it was sufficient to introduce
rescaling vectors on the keys and values in self-attention and encoder-decoder attention mechanisms
and on the intermediate activation of the position-wise feed-forward networks. Specifically, using
the notation from Vaswani et al. [33], we introduce three learned vectors lk ∈ Rdk , lv ∈ Rdv , and
lff ∈ Rdff , which are introduced into the attention mechanisms as:

softmax

(
Q(lk ⊙KT)√

dk

)
(lv ⊙ V)

and in the position-wise feed-forward networks as (lff ⊙ γ(W1x))W2, where γ is the feed-forward
network nonlinearity. We introduce a separate set of lk, lv, and lff vectors in each Transformer layer
block. This adds a total of L(dk + dv + dff) new parameters for a L-layer-block Transformer encoder
and L(2dk + 2dv + dff) (with factors of 2 accounting for the presence of both self-attention and
encoder-decoder attention) for a L-layer-block decoder. lk, lv, and lff are all initialized with ones so
that the overall function computed by the model does not change when they are added. We call our
method (IA)3, which stands for “Infused Adapter by Inhibiting and Amplifying Inner Activations”.

(IA)3 makes mixed-task batches possible because each sequence of activations in the batch can be
separately and cheaply multiplied by its associated learned task vector. We also note that, in the
event that a model will only be used on a single task, the modifications introduced by (IA)3 can
also be applied to weight matrices permanently so that no elementwise multiplication is required and
the model’s architecture remains unchanged. This possible because element-wise multiplications
performed in (IA)3 always co-occur with a matrix multiplication, and l ⊙Wx = (l ⊙W)x. In this
case, our method incurs no additional computational cost compared to the original model.

To validate (IA)3, we compare it to a large variety of existing adaptation methods in our setting of
fine-tuning T0-3B on few-shot datasets from held-out tasks. Specifically, we compare with 9 strong
PEFT methods: BitFit [47] which updates only the bias parameters; Adapters [23] which introduce
task-specific layers after the self-attention and position-wise feed-forward networks; Compacter and
Compacter++ [28] which improve upon adapters by using low-rank matrices and hypercomplex mul-
tiplication; prompt tuning [14] which learns task-specific prompt embeddings that are concatenated to
the model’s input; FISH Mask [26] which chooses a subset of parameters to update based on their ap-
proximate Fisher information; Intrinsic SAID [27] which performs optimization in a low-dimensional
subspace; prefix-tuning [29] which learns task-specific vectors that are concatenated to the model’s
activations; and LoRA [13] which assigns low-rank updates to parameter matrices. Additionally, we
include the baselines of full-model fine-tuning and updating only the layer normalization parameters.
For certain methods that allow changing the parameter efficiency, we report results for different
budgets: 0.2% and 0.02% sparsity for FISH Mask, 10 and 100 learned prompt vectors for prompt
tuning, and 20,000- or 500,000-dimensional subspaces for Intrinsic SAID.

The results are shown in fig. 2, with detailed per-dataset results in appendix C. We find that (IA)3

is the only method that attains higher accuracy than the full-model-fine-tuning baseline. While
other PEFT methods (e.g. Intrinsic SAID and prompt tuning) update or introduce fewer parameters,
(IA)3 performs considerably better. Our results and setting differ with some past work on the
PEFT methods we compare against. Mahabadi et al. [28] report that Compacter and Compacter++

6

outperform full-model fine-tuning, including in the few-shot setting. Lester et al. [14] found that
prompt tuning could match full-model fine-tuning, and in subsequent work Wei et al. [48] found that
prompt tuning performed well when applied to a multitask fine-tuned model in the few-shot setting.
In both cases, we experimented with various hyperparameter choices to try to match past results.
We hypothesize the disagreement comes from us using a different model and different datasets. For
prompt tuning specifically, we noticed that the validation set performance could fluctuate wildly over
the course of training, hinting at possible optimization issues.

0.001% 0.01% 0.1%
% of parameters updated

50

55

60

65

Ac
cu

ra
cy

All parameters

(IA)³
LoRA
BitFit
Layer Norm
Compacter
Compacter++

Prompt Tuning
Prefix Tuning
Adapter
FISH Mask
Intrinsic SAID

Figure 2: Accuracy of PEFT methods with LUL

and LLN when applied to T0-3B. Methods that
with variable parameter budgets are represented
with larger and smaller markers for more or less
parameters.

1012 1013 1014 1015

FLOPs per example

50

55

60

65

70

Ac
cu

ra
cy

T-Few
T0
T5+LM

GPT-3 6.7B
GPT-3 13B
GPT-3 175B

Figure 3: Accuracy of different few-shot learning
methods. T-Few uses (IA)3 for PEFT methods
of T0, T0 uses zero-shot learning, and T5+LM
and the GPT-3 variants use few-shot ICL. The
x-axis corresponds to inference costs; details are
provided in section 4.2.

3.4 Pre-training (IA)3

In recent work, Gu et al. [18], Vu et al. [19] showed that pre-training the prompt embeddings in
prompt tuning can improve performance when fine-tuning on downstream few-shot tasks. For pre-
training, Gu et al. [18] use a suite of self-supervised tasks applied to unlabeled text data, and Vu
et al. [19] consider using embeddings from a separate task or multitask mixture. We follow Vu et al.
[19] and simply pre-train the new parameters introduced by (IA)3 on the same multitask mixture
used to train T0. We pre-train for 100,000 steps with a batch size of 16 before fine-tuning the (IA)3

parameters on each individual downstream dataset. A full comparison of accuracy with and without
pre-training (IA)3 is detailed in appendix D. We find that pre-training improves fine-tuned accuracy
from 64.6 to 65.8 and therefore add it to our recipe.

3.5 Combining the ingredients

In summary, the T-Few recipe is defined as follows: We use the T0 model as a backbone. We add
(IA)3 for downstream task adaptation and use parameters initialized from pre-training (IA)3 on the
same multitask mixture for T0. As an objective, we use the sum of a standard language modeling
loss LLM, an unlikelihood loss LUL for incorrect choices, and a length-normalized loss LLN. We
train for 1,000 steps with a batch size of 8 sequences using the Adafactor optimizer [49] with a
learning rate of 3e−3 and a linear decay schedule with a 60-step warmup. We apply prompt templates
to downstream datasets during training and inference to convert each example into an instructive
text-to-text format. Importantly, we apply this recipe to every downstream dataset in exactly the same
way without per-dataset hyperparameter tuning or modifications. This makes the recipe a realistic
option for few-shot learning settings where validation sets are tiny by definition [31, 32].

7

4 Outperforming ICL with T-Few

Having designed and established the T-Few recipe on T0-3B, we now apply it to T0 (with 11 billion
parameters) and compare performance to strong few-shot ICL baselines. From this point onwards,
we use exactly the same recipe and hyperparameters across all tasks.

4.1 Performance on T0 tasks

First, we evaluate T-Few on the datasets that were held out from T0’s training mixture. We compare
against zero-shot learning with T0 [1] (since we found few-shot ICL to performed worse than zero-
shot for T0, see appendix E); few-shot ICL with T5+LM [14] (the next-step-prediction language
model upon which T0 is based); and few-shot ICL with the 6.7, 13, and 175 billion parameter variants
of GPT-3. See appendix E for more details on these baselines. The accuracy on the held-out T0
datasets (described in section 3.1) is shown in table 1 and fig. 3, with per-dataset results reported
in appendix E. We find that T-Few outperforms all other methods by a substantial margin. Notably,
T-Few achieves a 6% higher accuracy than few-shot ICL with GPT-3 175B despite being about 16×
smaller and outperforms the smaller GPT-3 variants by an even larger margin. T-Few also attains
significantly higher accuracy than both zero-shot learning with T0 and few-shot ICL with T5+LM.

Method
Inference
FLOPs

Training
FLOPs

Disk
space Acc.

T-Few 1.1e12 2.7e16 4.2 MB 72.4%
T0 [1] 1.1e12 0 0 B 66.9%
T5+LM [14] 4.5e13 0 16 kB 49.6%
GPT-3 6.7B [4] 5.4e13 0 16 kB 57.2%
GPT-3 13B [4] 1.0e14 0 16 kB 60.3%
GPT-3 175B [4] 1.4e15 0 16 kB 66.6%

Table 1: Accuracy on held-out T0 tasks and computational costs
for different few-shot learning methods and models. T-Few
attains the highest accuracy with 1,000× lower computational
cost than ICL with GPT-3 175B. Fine-tuning with T-Few costs
about as much as ICL on 20 examples with GPT-3 175B.

Method Acc.

T-Few 75.8%
Human baseline [2] 73.5%
PET [50] 69.6%
SetFit [51] 66.9%
GPT-3 [4] 62.7%

Table 2: Top-5 best methods on
RAFT as of writing. T-Few is
the first method to outperform the
human baseline and achieves over
6% higher accuracy than the next-
best method.

4.2 Comparing computational costs

Having established that T-Few significantly outperforms ICL-based models, we now compare the
relative costs of each few-shot learning approach. For simplicity, we use the FLOPs-per-token
estimates for Transformer-based language models introduced by Kaplan et al. [20]. Specifically, we
estimate that a decoder-only Transformer (e.g. the GPT series) with N parameters uses 2N FLOPs
per token for inference and 6N FLOPs per token for training. Encoder-decoder models like T0 and
T5 (where the encoder and decoder have the same number of layers and layer sizes) only process
each token with either the encoder or decoder (each having roughly half the parameters of the full
model), so the FLOPs per token estimates are halved to N and 3N FLOPs per token for inference and
training. We note that FLOPs are not a direct measurement of real-world computational cost because
latency, power usage, and other costs can vary significantly depending on hardware and other factors
[52]. However, we focus on FLOPs because it is a hardware-independent metric that closely with
real-world costs the hardware setup used for running the different methods we consider would likely
vary significantly across methods. We summarize the costs in table 1 and discuss them below. For all
estimates, we use the median number of shots (41) across the datasets we consider. Rank evaluation
and our unlikelihood loss both require processing every possible output choice to attain a prediction
for an unlabeled example. The median combined tokenized sequence length for the input and all
possible targets is 103 for the datasets we consider. For in-context examples processed for few-shot
ICL, only the correct target is required, producing a median sequence length of 98. Assuming that
key and value vectors are cached, processing a single example with ICL therefore involves processing
41× 98 + 103 tokens. A summary of our cost estimates is provided in table 1.

Inference cost. Beyond improved accuracy, the primary advantage of avoiding few-shot ICL is
dramatically lower inference costs. Processing a single input and all target choices with T-Few

8

requires 11e9×103 = 1.1e12 FLOPs, whereas few-shot ICL with GPT-3 175B requires 2×175e9×
(41× 98+ 103) = 1.4e15 FLOPs – more than 3 orders of magnitude more. Inference costs with ICL
using the smaller GPT-3 variants are also dramatically higher than the inference cost of T-Few. As
discussed in section 2.1, caching the key and value vectors of the in-context examples can reduce
the computational cost of ICL. However, this would only result in an approximately 41× reduction,
which is not nearly enough to make any of the GPT-3 ICL costs as low as T-Few.

Training cost. Since T-Few is the only method that involves updating parameters, it is the only
method that incurs a training cost. Training an eleven billion parameter encoder-decoder model for
1,000 steps with a batch size of 8 length-103 sequences requires approximately 3× 11e9× 1, 000×
8× 103 = 2.7e16 FLOPs. While not insignificant, this is only about 20 times larger than the FLOPs
required to process a single example with few-shot ICL using GPT-3 175B. In other words, training
T-Few costs as much as using GPT-3 175B to process 20 examples with few-shot ICL. We also
found that fine-tuning T0 with T-Few on a single dataset only takes about a half an hour on a single
NVIDIA A100 GPU. As of writing, this would cost about $2 USD using Microsoft Azure.2

Storage cost. T-Few also incurs the largest storage cost. When stored as single-precision floats, the
parameters added by (IA)3 take up 4.2 MB of space on disk. In contrast, ICL methods only require
storing the tokenized in-context examples (typically stored as 32-bit integers), resulting in a smaller
41× 98× 32 bits = 16 kB disk space requirement. However, we note that 4.2 MB is dwarfed by the
on-disk size of the model checkpoints themselves – storing the (IA)3 adaptation vectors for 10,000
tasks would take about as much space as the T0 checkpoint (41.5 GB).

Memory usage. During inference, the primary memory cost is incurred by the model’s parameters.
The only model smaller than T0 (used by T-Few) is GPT-3 6.7B; otherwise, T-Few will incur a lower
memory cost during inference. Additional memory costs are incurred when training T-Few due to the
need to cache intermediate activations for backpropagation and for the gradient accumulator variables
in Adafactor. However, as mentioned above, a single 80GB A100 GPU is enough for T-Few.

4.3 Performance on Real-world Few-shot Tasks (RAFT)

So far, we have run evaluatation on a collection of datasets not explicitly designed for benchmarking
few-shot learning. To better evaluate T-Few in the real world, we took our approach to the RAFT
benchmark [2]. RAFT comprise 11 “economically valuable” tasks that mirror real-world applications.
Importantly, each RAFT datasets has only 50 training examples with no validation set and a (larger)
test set with no public labels, so it is impossible to “cheat” by tuning on an unrealistically-large
validation set or by peeking at the test set [32, 31]. We apply T-Few to RAFT by using the standard
prompts released alongside the dataset. The accuracy of the current top-5 methods is shown in table 2,
with further details in appendix G. T-Few attains a state-of-the-art accuracy of 75.8% and outperforms
the human baseline (73.5% accuracy) for the first time. The next-best model (from Schick and Schütze
[50]) achieves 6% lower accuracy and GPT-3 175B attains only 62.7%. These results validate that
T-Few can be readily applied as-is to novel real-world tasks for strong performance.

4.4 Ablation experiments

Given that our T-Few design experiments were on T0-3B, we perform an ablation of some of the
ingredients of T-Few on T0. Results are shown in appendix F. While the gains from adding each
ingredient does not always significant increase the accuracy on each individual dataset, each ingredient
consistently improves the average performance across datasets: Removing pre-training decreases
accuracy by 1.6%, removing unlikelihood training and length normalization decreases accuracy by
4.1%, and removing both pre-training and our additional loss terms reduces accuracy by 2.5%.

5 Related Work

Currently, prompt tuning is one of the most parameter-efficient methods for large language models
[29, 14, 53]. Liu et al. [54] introduce several tricks to improve prompt tuning, An et al. [55] tune

2https://docs.microsoft.com/en-us/azure/virtual-machines/ndm-a100-v4-series

9

https://docs.microsoft.com/en-us/azure/virtual-machines/ndm-a100-v4-series

prompts along with input embeddings for boost in performance, and Chen et al. [56] improve prompt
embeddings through continued pre-training. Given optimization difficulties when training prompt
embeddings, Diao et al. [57] recently used black-box optimization to train prompt embeddings
without requiring gradients. Several works have analyzed prompt tuning from the perspective of
interpretability Khashabi et al. [58] and its similarity to other PEFT methods He et al. [30]. Prompt
tuning has been applied to various applications for NLP including continual learning [59], model
robustness [60, 61], summarization [62], machine translation [63], co-training [64], probing language
models [65, 65], inverse prompting [66] and transfer learning [67]. He et al. [68] recently proposed
the use of a hypernetwork to predict prompts for new tasks (rather than training the prompt parameters
with gradient descent). Prompt tuning and other PEFT methods have also been explored outside of
the context of language models (e.g. vision [22, 69] and vision-and-language models [26]).

Separately, various studies have considered few-shot full-model fine-tuning with discrete prompts
[70]. Recent work has analyzed training with discrete prompts, demonstrating a boost in performance
with prompting when training on various numbers of examples [71], finding that models perform
similarly when trained on good and bad prompts [11], and exploring which prompts work well for
few-shot and full-shot setting [72]. There have also been efforts to develop methods that find discrete
prompts [73, 74] and training prompts using methods similar to prompt tuning [75].

There has also been a great deal of work on improving ICL. Chen et al. [5], Min et al. [6] use ICL for
meta-learning to perform few-shot learning on new tasks. Lampinen et al. [7] show ICL can improve
when explanations are provided and [8] use ICL with text retrieved from the web for open-domain
question-answering. Meanwhile, Min et al. [9] analyze how ICL works and show that ICL can still
perform well when incorrect labels are provided for the in-context examples.

With the advent of billion-parameter language models, there has been a great deal of recent interest
in PEFT methods and their compatibility in the few-shot setting. Mahabadi et al. [28] found that
PEFT outperforms standard fine-tuning in the low-resource setting. In concurrent work, Mahabadi
et al. [76] find that PEFT compares favorably in few-shot fine-tuning against discrete prompts (e.g.
PET [70]). Also concurrently, Moosavi et al. [77] propose a framework for introducing adapters
whose architecture and design vary from task to task and demonstrate improved results in few-shot
settings. Gu et al. [18] and Vu et al. [19] both explored how pre-training prompt tuning parameters
can improve when limited labeled data is available. For few-shot learning, Triantafillou et al. [78]
explore learning universal and dataset dependent parameters that can be blended for generalization.
Requeima et al. [79] use conditional neural adaptive processes and Li et al. [80] leverage distillation
from multiple feature extractors to learn new classes or domains in few-shot learning.

6 Conclusion

We introduced T-Few, a parameter-efficient few-shot learning recipe that attains higher accuracy than
few-shot ICL at a lower computational cost. T-Few uses (IA)3, a new PEFT method that rescales
inner activations with learned vectors. Using (IA)3 produces better performance than fine-tuning the
full model while introducing minimal additional parameters. T-Few also uses two additional loss
terms that encourage the model to output lower probabilities for incorrect choices and account for the
length of different answer choices. When applying T-Few as-is (with no task-specific hyperparameter
tuning or other changes) to the RAFT benchmark, we attained super-human performance for the
first time and outperformed prior submissions by a large margin. Through detailed characterization
of computational costs, we found that T-Few uses over 1,000× fewer FLOPs during inference than
few-shot ICL with GPT-3 and only requires 30 minutes to train on a single NVIDIA A100 GPU.
Since all of our experiments were on classification tasks, we are interested in applying T-Few to
generative tasks like as summarization and question answering in future work. We hope our results
provide a new perspective on how best to perform few-shot learning with large language models.

Acknowledgments and Disclosure of Funding

We thank Brian Lester and Noah Constant for helpful discussion on debugging prompt tuning and
Rabeeh Karimi Mahabadi for help with Compacter and Intrinsic SAID. We also thank Stella Biderman
and the Google TPU Research Cloud who provided valuable computational resources to support this
work. This work was supported by NSF-AI Engage Institute DRL-2112635.

10

References
[1] Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,

Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

[2] Neel Alex, Eli Lifland, Lewis Tunstall, Abhishek Thakur, Pegah Maham, C Jess Riedel, Emmie
Hine, Carolyn Ashurst, Paul Sedille, Alexis Carlier, et al. RAFT: A real-world few-shot text
classification benchmark. arXiv preprint arXiv:2109.14076, 2021.

[3] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI blog, 2019.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[5] Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning via language
model in-context tuning. arXiv preprint arXiv:2110.07814, 2021.

[6] Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to
learn in context. arXiv preprint arXiv:2110.15943, 2021.

[7] Andrew Kyle Lampinen, Ishita Dasgupta, Stephanie C. Y. Chan, Kory Matthewson,
Michael Henry Tessler, Antonia Creswell, James L. McClelland, Jane X. Wang, and Felix
Hill. Can language models learn from explanations in context? ArXiv, abs/2204.02329, 2022.

[8] Angeliki Lazaridou, Elena Gribovskaya, Wojciech Stokowiec, and Nikolai Grigorev. Internet-
augmented language models through few-shot prompting for open-domain question answering.
arXiv preprint arXiv:2203.05115, 2022.

[9] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning
work? arXiv preprint arXiv:2202.12837, 2022.

[10] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al.
Benchmarking generalization via in-context instructions on 1,600+ language tasks. arXiv
preprint arXiv:2204.07705, 2022.

[11] Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of
their prompts? arXiv preprint arXiv:2109.01247, 2021.

[12] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:
Improving few-shot performance of language models. arXiv preprint arXiv:2102.09690, 2021.

[13] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. ArXiv, abs/2106.09685,
2021.

[14] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[15] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. ArXiv, abs/1910.10683, 2020.

[16] Derek Tam, Rakesh R Menon, Mohit Bansal, Shashank Srivastava, and Colin Raffel. Improving
and simplifying pattern exploiting training. arXiv preprint arXiv:2103.11955, 2021.

[17] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. arXiv preprint arXiv:1908.04319, 2019.

[18] Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. PPT: Pre-trained prompt tuning for
few-shot learning. arXiv preprint arXiv:2109.04332, 2021.

11

[19] Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. SPoT: Better frozen model
adaptation through soft prompt transfer. arXiv preprint arXiv:2110.07904, 2021.

[20] Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

[21] Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Noisy channel language
model prompting for few-shot text classification. arXiv preprint arXiv:2108.04106, 2021.

[22] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains
with residual adapters. Advances in neural information processing systems, 30, 2017.

[23] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. arXiv preprint arXiv:1902.00751, 2019.

[24] Ankur Bapna, Naveen Arivazhagan, and Orhan Firat. Simple, scalable adaptation for neural
machine translation. arXiv preprint arXiv:1909.08478, 2019.

[25] Demi Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with diff
pruning. arXiv preprint arXiv:2012.07463, 2020.

[26] Yi-Lin Sung, Varun Nair, and Colin Raffel. Training neural networks with fixed sparse masks.
arXiv preprint arXiv:2111.09839, 2021.

[27] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

[28] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient
low-rank hypercomplex adapter layers. arXiv preprint arXiv:2106.04647, 2021.

[29] Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[30] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
wards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366,
2021.

[31] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
arXiv preprint arXiv:2105.11447, 2021.

[32] Avital Oliver, Augustus Odena, Colin Raffel, Ekin Dogus Cubuk, and Ian Goodfellow. Realistic
evaluation of deep semi-supervised learning algorithms. Advances in Neural Information
Processing Systems, 2018.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 2017.

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[35] Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert Webson, Colin Raffel, Nihal V. Nayak,
Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Févry, et al. PromptSource: An
integrated development environment and repository for natural language prompts. arXiv preprint
arXiv:2202.01279, 2022.

[36] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, 2020.

12

[37] Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S. Gordon. Choice of plausible
alternatives: An evaluation of commonsense causal reasoning. 2011 AAAI Spring Symposium
Series, 2011.

[38] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[39] Rishi Sharma, James Allen, Omid Bakhshandeh, and Nasrin Mostafazadeh. Tackling the
story ending biases in the story cloze test. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 752–757, 2018.

[40] Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela.
Adversarial NLI: A new benchmark for natural language understanding. arXiv preprint
arXiv:1910.14599, 2019.

[41] Marie-Catherine de Marneffe, Mandy Simons, and Judith Tonhauser. The CommitmentBank:
Investigating projection in naturally occurring discourse. Proceedings of Sinn und Bedeutung
23, 2019.

[42] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Workshop, pages 177–190. Springer, 2005.

[43] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. Thir-
teenth International Conference on the Principles of Knowledge Representation and Reasoning,
2012.

[44] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2020.

[45] Mohammad Taher Pilehvar and Jose Camacho-Collados. WiC: the word-in-context dataset for
evaluating context-sensitive meaning representations. arXiv preprint arXiv:1808.09121, 2018.

[46] Stefan Van Der Walt, S. Chris Colbert, and Gael Varoquaux. The numpy array: a structure for
efficient numerical computation. Computing in science & engineering, 13(2), 2011.

[47] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. BitFit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. arXiv preprint arXiv:2106.10199,
2021.

[48] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652, 2021.

[49] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning. PMLR, 2018.

[50] Timo Schick and Hinrich Schütze. True few-shot learning with prompts–a real-world perspective.
arXiv preprint arXiv:2111.13440, 2021.

[51] Moshe Wasserblat. Sentence transformer fine-tuning (SetFit): Outperforming GPT-3 on few-
shot text-classification while being 1600 times smaller, 2021.

[52] Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish Vaswani, and Yi Tay. The efficiency
misnomer. arXiv preprint arXiv:2110.12894, 2021.

[53] Guanghui Qin and Jason Eisner. Learning how to ask: Querying LMs with mixtures of soft
prompts. arXiv preprint arXiv:2104.06599, 2021.

[54] Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-Tuning v2:
Prompt tuning can be comparable to fine-tuning universally across scales and tasks. arXiv
preprint arXiv:2110.07602, 2021.

13

[55] Shengnan An, Yifei Li, Zeqi Lin, Qian Liu, Bei Chen, Qiang Fu, Weizhu Chen, Nanning Zheng,
and Jian-Guang Lou. Input-Tuning: Adapting unfamiliar inputs to frozen pretrained models.
arXiv preprint arXiv:2203.03131, 2022.

[56] Yulong Chen, Yang Liu, Li Dong, Shuohang Wang, Chenguang Zhu, Michael Zeng, and
Yue Zhang. AdaPrompt: Adaptive model training for prompt-based NLP. arXiv preprint
arXiv:2202.04824, 2022.

[57] Shizhe Diao, Xuechun Li, Yong Lin, Zhichao Huang, and Tong Zhang. Black-box prompt
learning for pre-trained language models. arXiv preprint arXiv:2201.08531, 2022.

[58] Daniel Khashabi, Shane Lyu, Sewon Min, Lianhui Qin, Kyle Richardson, Sameer Singh,
Sean Welleck, Hannaneh Hajishirzi, Tushar Khot, Ashish Sabharwal, et al. Prompt wayward-
ness: The curious case of discretized interpretation of continuous prompts. arXiv preprint
arXiv:2112.08348, 2021.

[59] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su,
Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. arXiv
preprint arXiv:2112.08654, 2021.

[60] Zonghan Yang and Yang Liu. On robust prefix-tuning for text classification. arXiv preprint
arXiv:2203.10378, 2022.

[61] Yuting Yang, Pei Huang, Juan Cao, Jintao Li, Yun Lin, Jin Song Dong, Feifei Ma, and Jian Zhang.
A prompting-based approach for adversarial example generation and robustness enhancement.
arXiv preprint arXiv:2203.10714, 2022.

[62] Xiaochen Liu, Yu Bai, Jiawei Li, Yinan Hu, and Yang Gao. PSP: Pre-trained soft prompts for
few-shot abstractive summarization. arXiv preprint arXiv:2204.04413, 2022.

[63] Xavier Garcia and Orhan Firat. Using natural language prompts for machine translation. arXiv
preprint arXiv:2202.11822, 2022.

[64] Hunter Lang, Monica Agrawal, Yoon Kim, and David Sontag. Co-training improves prompt-
based learning for large language models. arXiv preprint arXiv:2202.00828, 2022.

[65] Boshi Wang, Xiang Deng, and Huan Sun. Shepherd pre-trained language models to develop a
train of thought: An iterative prompting approach. arXiv preprint arXiv:2203.08383, 2022.

[66] Xu Zou, Da Yin, Qingyang Zhong, Hongxia Yang, Zhilin Yang, and Jie Tang. Controllable gener-
ation from pre-trained language models via inverse prompting. arXiv preprint arXiv:2103.10685,
2021.

[67] Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Zhiyuan Liu, Peng Li,
Juanzi Li, Lei Hou, Maosong Sun, et al. On transferability of prompt tuning for natural language
understanding. arXiv preprint arXiv:2111.06719, 2021.

[68] Yun He, Huaixiu Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao, YaGuang
Li, Zhao Chen, Donald Metzler, et al. HyperPrompt: Prompt-based task-conditioning of
transformers. arXiv preprint arXiv:2203.00759, 2022.

[69] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
and Ser-Nam Lim. Visual prompt tuning. arXiv preprint arXiv:2203.12119, 2022.

[70] Timo Schick and Hinrich Schütze. Exploiting cloze questions for few shot text classification
and natural language inference. arXiv preprint arXiv:2001.07676, 2020.

[71] Teven Le Scao and Alexander M. Rush. How many data points is a prompt worth? arXiv
preprint arXiv:2103.08493, 2021.

[72] Sen Yang, Yunchen Zhang, Leyang Cui, and Yue Zhang. Do prompts solve NLP tasks using
natural language? arXiv preprint arXiv:2203.00902, 2022.

14

[73] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Auto-
Prompt: Eliciting knowledge from language models with automatically generated prompts.
arXiv preprint arXiv:2010.15980, 2020.

[74] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723, 2020.

[75] Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi Tan, Fei Huang,
and Huajun Chen. Differentiable prompt makes pre-trained language models better few-shot
learners. arXiv preprint arXiv:2108.13161, 2021.

[76] Rabeeh Karimi Mahabadi, Luke Zettlemoyer, James Henderson, Marzieh Saeidi, Lambert
Mathias, Veselin Stoyanov, and Majid Yazdani. PERFECT: Prompt-free and efficient few-shot
learning with language models. arXiv preprint arXiv:2204.01172, 2022.

[77] Nafise Sadat Moosavi, Quentin Delfosse, Kristian Kersting, and Iryna Gurevych. Adaptable
adapters. arXiv preprint arXiv:2205.01549, 2022.

[78] Eleni Triantafillou, Hugo Larochelle, Richard Zemel, and Vincent Dumoulin. Learning a
universal template for few-shot dataset generalization. arXiv preprint arXiv:/2105.07029, 2021.

[79] James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and Richard E. Turner.
Fast and flexible multi-task classification using conditional neural adaptive processes. arXiv
preprint arXiv:1906.07697, 2019.

[80] Wei-Hong Li, Xialei Liu, and Hakan Bilen. Universal representation learning from multiple
domains for few-shot classification. Proceedings of the IEEE/CVF International Conference on
Computer Vision., 2021.

[81] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
model evaluation, September 2021. URL https://doi.org/10.5281/zenodo.5371628.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We compare different PEFT methods in Figure 2 and
demonstate PEFT outperforms ICL in section 4.

(b) Did you describe the limitations of your work? [Yes] Section 5
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Included code
with README

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Section 3.1, Section 3.5, Appendix D, H

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Appendix C, D, E, F, G

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Appendix A

15

https://doi.org/10.5281/zenodo.5371628

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Section 3.1, Section

4.3
(b) Did you mention the license of the assets? [Yes] Section 3.1
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

16

	Introduction
	Background
	Few-shot in-context learning (ICL)
	Parameter-efficient fine-tuning

	Designing the T-Few Recipe
	Model and Datasets
	Unlikelihood Training and Length Normalization
	Parameter-efficient fine-tuning with (IA)3
	Pre-training (IA)3
	Combining the ingredients

	Outperforming ICL with T-Few
	Performance on T0 tasks
	Comparing computational costs
	Performance on Real-world Few-shot Tasks (RAFT)
	Ablation experiments

	Related Work
	Conclusion

