
A Examples of algorithmic agents in prior work

We can unify existing ad-hoc examples that use algorithmic agents to perform use case grounded
evaluations under our framework. We group existing algorithmic evaluations into two categories:
Heuristic-Based and Learning-Based.

A.1 Heuristic-Based Evaluations.

These algorithmic agents were not trained, and instead were defined using hand-designed heuristics.
In contrast, our agent is trained on observations and use case labels.

Expo [33]: The use case studied is whether an explanation can be used to determine how to modify
features of an instance to achieve a target prediction. There is no agent training process: the agent uses
a randomized greedy heuristic (which involves picking the largest feature). The agent is evaluated by
the number of modifications that it makes to reach the target prediction.

Influence functions [23] / RPS [45]: The use case studied is whether explanations can be used to
identify mislabeled examples in a dataset. The agent is also heuristic-based, flagging points with
the largest influences to be inspected for potentially being mislabeled. The agent is evaluated by the
number of correct points it selects for inspection.

Anchors [38]: The use case studied is whether explanations can help a user make accurate predictions
on unseen instances. The authors specify a heuristic that they use to compare Anchors with LIME.
The heuristic for Anchors is simply to check whether the conditions are satisfied. The heuristic for
LIME is to use the linear approximation directly (while additionally checking whether the point of
prediction is near the approximation point). The agent is evaluated using its precision when used to
predict labels on unseen instances.

A.2 Learning-Based Evaluations.

Student-teacher Models [36]: The use case studied is whether explanations can help a student model
learn to simulate a teacher model for a sentiment analysis task and question answering task. The
authors quantify the benefit of an explanation as the improvement in simulation accuracy when the
agent has access to explanations during the training process versus when the agent does not. One
important distinction from our approach is that it is noted in [36] that their algorithmic evaluation
does not attempt to replicate the evaluation protocols used in a human subject study. This point is
affirmed by the significant difference between the results of the authors’ human subject study vs. their
algorithmic evaluation. In contrast, our approach is designed with a human subject study in mind: we
explicitly do attempt to construct the agent’s observations in a way that reflects the information that
would be presented to a human subject.

Other work [13, 42] similar to [36] that evaluates explanations without a human in the loop typically
examines how explanations can improve the model training process. In contrast, our work focuses on
use cases where explanations are intended to be shown to and used by humans.

A.3 Distinction from prior work

In Table A.3, we summarize prior work along two main axes: their algorithmic evaluation of
explanations (if they conducted them) and their human evaluation of explanations (if they conducted
them). On the algorithmic evaluation front, no prior work allows their agent to learn how to use
explanations (i.e., a researcher does not need to specify a heuristic for how the explanation will be
used) and provides a general framework that encompasses many use cases. Furthermore, no prior
work extensively verifies their evaluation framework with human evaluation to show the comparability
between algorithmic and human performance, whereas our work evaluates as many explanations as
many user studies.

B Use Case Algorithms

We provide more detailed algorithms to describe how the dataset is generated for the forward
simulation and counterfactual reasoning use cases.

13

Algorithmic Evaluation Human Evaluation
Learning-based?
(i.e.,no heuristic

required).

Does framework
generalize?

Conducts a
user study?

Agent matches
human?

Num. explanations
(baselines) evaluated

Expo No No Yes No 1 (1)
IF/RPS No No No – –
S-T Models Yes No Yes No 2 (1)
Anchors No No Yes Yes 2 (0)
User studies – – Yes – ⇠2-4 (1-2)
Ours
(SimEvals) Yes Yes Yes Yes 4 (2)

B.1 Forward simulation

• Given base dataset D, split into train/test/validation
• Train model f on the train set
• Let NT be size of desired training dataset and NV be size of the desired validation dataset
• Sample NT points from the train set and for each point xi 2 Dtrain generate an explanation

of f at that point, add the tuple (xi, E(xi, f)) to the training dataset.
• Repeat process for NV points but from the validation set

Note the baseline condition would be generated in the same way, but excluding the explanation.

B.2 Counterfactual Reasoning

• Given base model family F , desired dataset size N

• For i = 1, ..., N :
– Sample saddle-point function gi as detailed in Appendix D.2
– Train fi on gi as detailed in Appendix D.2
– Sample new point xi from gi
– Get prediction fi(xi)
– Generate E(xi, fi) of fi at xi

• Set the ith observation to be: (xi, fi(xi), E(xi, fi))

B.3 Data Bugs

Algorithm 1 generates a dataset of N observations for the data bug use case.
1: Given base dataset D, base model family F and bug specification B
2: Let N be the size of desired dataset,

S be the observation set size
3: for i in 1...N do
4: Subsample Di from D
5: With probability 0.5, apply B to Di

6: Train fi on Di

7: for j in 1...S do
8: Sample x(j)

i from Di

9: Get prediction fi(x
(j)
i)

10: Generate E(x(j)
i , fi) of fi at x(j)

i
11: end for
12: Set the ith observation to be:

{(x(j)
i , fi(x

(j)
i), E(x(j)

i , fi))}Sj=1
13: end for

14

C Summary of prior user studies

We discuss the findings from the prior user studies that we recreate results from.

Forward Simulation from [16]. The authors evaluate 5 explanations in this paper: 2 (LIME,
Anchors) are well-known, open-source explanations and 3 (Prototype, DB, and Composite) are
bespoke explanations. In the tabular setting, the authors find that LIME outperforms all other
explanations (change of 11.25% in user accuracy compared to Anchors 5.01%, Prototype 1.68%,
5.27%, 0.33%). The base accuracy before explanations was 70.74%. Since none of the bespoke
explanations outperformed the open-source explanations, we chose not to re-implement them in our
study.

Data Bugs from [20]. The authors evaluate 2 explanations: SHAP and GAM. The set-up of this
study did not explicitly ask the users to answer whether the bug was present, but rather asked the
user to identify the bugs themselves (i.e., if a user could identify the existence of the bug, then the
explanation was useful). The authors find that 4 out of 11 data scientists were able to identify the
missing values bug and 3 out of 11 the redundant features bug. While the authors do not distinguish
when SHAP is helpful versus GAM. From Figure 1 of their paper, SHAP and GAM seem to have
similar visualizations and thus might equally help a user. We find similar results with our simulated
agent.

D Counterfactual Reasoning Use Case Details

D.1 Distinction from Counterfactual Explanations

There are significant differences between our use case and the desiderata for which counterfactual
explanation methods for ML models are developed.

Why existing counterfactual explanation methods do not apply: A growing body of IML
research has proposed new methods to provide counterfactual explanations for a black-box model [41,
31, 19]. These methods provide explanations that fulfill the desiderata introduced in [43], defined
formally as:
Definition D.1. Given input x, model f , and desired outcome set Y , counterfactual explanation x0 is
the closest possible point to x such that the model’s prediction on the counterfactual point is in the
desired outcome set: f(x0) 2 Y .

The real-world utility of counterfactual explanations relies on a large number of assumptions [6].
Many variants of the counterfactual problem have been proposed to account for a wide range of
real world objectives and constraints, such as the feasibility or difficulty of the proposed actions
(recourse) [41]. Despite these varying goals, however, to our knowledge prior work on counterfactual
explanations shares the general problem set-up in Definition D.1.

While this problem set-up in Definition D.1 is related to our use case, it is significantly different for a
number of reasons. Primarily, while the counterfactual explanation x0 provided by these methods is
encouraged to be “close” to the original input x, the counterfactual x0 can increase or decrease any
subset of input features within the problem’s constraints. Thus, there may be a wide range of possible
counterfactuals x0 of varying “closeness” to x that result in the desired outcome f(x0). In contrast,
the use case asks a more specific question of what happens when a specific feature i is increased and
all other features are held constant.

In a scenario where it may be possible to achieve an increased model prediction f(x0) by changing
other subsets of features excluding feature i, then the provided counterfactual x0 will give no
information relevant to the use case. Similarly, it may be possible that f(x0) may decrease when
some feature j 6= i is changed and feature i is increased, suggesting that f decreases when feature
i is increased; but if all other features j 6= i are held constant, then f increases when feature i is
increased. In these cases, the optimal counterfactual explanation x0 may give no information about
how f(x) varies with feature i.

Due to this misalignment between the goals of existing counterfactual explanation methods and our
particular use case, we exclude these counterfactual explanation methods from our evaluation. We
instead focus our evaluation on common feature attribution methods.

15

D.2 Synthetic Data

Inspired by Kumar et al. [25], we construct a 2D toy base dataset comprising of points sampled from
a saddle-point function. We construct a low-dimensional dataset to reduce the complexity of the task
given to MTurkers, as prior work [35] found that Turkers achieved higher accuracy when presented
with data that had fewer features.

Each data-point (xi : [xi,1, xi,2], yi) used to train predictive model fi is sampled from its own

saddle-point function gi with parameters chosen stochastically (detailed further in Section D.2.1
below). Because each observation is sampled from a different function, each observation also has its
own predictive model fi. Importantly, we chose to sample points from a saddle-point function (with
no noise) because saddle-point functions are either strictly concave or strictly convex with respect to
each feature xi,1, xi,2. Thus, if the predictive model fi correctly learns the saddle-point function gi,
then “ground truth” use case labels ui of whether or not the predictive model’s output increases with
feature xi,2 are available for all points.

Why each point from a separate function?: We chose to sample every observation given to the
agent from its own separate saddle-point function to increase the difficulty of the agent prediction task.
Consider for comparison an alternative naive dataset generation procedure where all observations
{(xi, f(xi)), ui}Ni=1 are sampled from the same saddle-point function g (and consequently share the
same predictive model f). Given enough observations N , because f is smooth and either strictly
concave or convex, an agent can memorize for which points (xi, f(xi)) the function f is increasing
vs. decreasing with respect to feature xi,2. Thus, the agent can effectively memorize the use case
labels without needing to use explanations. This is undesirable as our intention in training the agent
is to evaluate candidate explanation methods.

Therefore instead of using the same predictive model for all observations, we trained different
predictive models on observations sampled from different saddle-point functions to (a) prevent the
agent from learning a heuristic specific to any singular function and (b) to encourage the agent to
learn a heuristic that will generalize well on new observations from different functions.

Below, we detail how data-points and use case labels are defined for each saddle-point function
(Section D.2.1) and how the agent’s train and validation sets are constructed (Section D.2.2).

D.2.1 Saddle-Point Functions

For each observation i, we construct saddle-point function gi as follows:

First, critical points x⇤
1, x

⇤
2 are chosen uniformly at random in range [10, 15]. Second, an indicator

variable Z is sampled from a Bernoulli distribution with parameter p = 0.5.

We define saddle-point function gi as:

gi(x1, x2) = (x1 � x⇤
1)

2 � (x2 � x⇤
2)

2 (1)

To sample data-point pairs (xi : [xi,1, xi,2], yi) and their corresponding ground truth use case labels
ui from gi:

• xi,1 and xi,2 are sampled uniformly in the ranges [x⇤
1 ± 5] and [x⇤

2 ± 5] respectively.

• Generate outcomes yi as:

yi =

⇢
gi(xi,1, xi,2) + 30, if Z = 1

�gi(xi,1, xi,2) + 30, if Z = 0
(2)

• Generate use case labels ui using indicator variables (·) as:

ui =

⇢
(xi,2 x⇤

2), if Z = 1

(xi,2 > x⇤
2), if Z = 0

(3)

16

Figure 4: Scatterplot of 10, 000 points sampled from the saddle-plot function with x⇤
1 = 10, x⇤

2 = 15,
and Z = 1. This function is strictly concave with respect to feature x2.

Figure 4 shows the 2D toy dataset generated using critical points x⇤
1 = 10, x⇤

2 = 15 and Z = 1.
Notice that because y = gi(x1, x2) + 30 is strictly concave with respect to feature x2, the function’s
output increases as x2 increases for all points where x2 x⇤

2. At the critical point of x⇤
2, the use case

labels u switch from 1 to 0: for points where x2 > x⇤
2, then the function’s output decreases as x2

increases.

In contrast, when Z = 0, then data-points y = �gi(x1, x2) + 30 are generated from a function that
is the negation of Figure 4 that is strictly convex with respect to feature x2. Thus the use case labels
are the negation of the use case labels for Z = 1: they are now 1 when x2 > x⇤

2.

D.2.2 Running the Simulated Evaluation

Below we detail how predictive models fi and the agent’s train and validation sets are constructed.

Training predictive models fi. For each observation i, we generate N = 5000 data-points in range
[x⇤

1 ± 5, x⇤
2 ± 5] following Section D.2.1 and train the Light-GBM Regressor fi. We validate by

visual inspection that the learned models fi are “smooth”, i.e. that the use case labels ui derived
using the definition in Section D.2.1 are correct by visualizing the model’s output fi(xi) over the
domain xi 2 [x⇤

1 ± 5, x⇤
2 ± 5].

Sampling observations (xi, fi(xi), ui) to give to the agent. After a predictive model fi has been
trained, we sample a single point xi from the fixed range [11.25, 13.75] to construct observation i for
the agent. While this range is a subset of the range in which the critical points x⇤

1, x
⇤
2 and the training

data points were sampled, we intentionally sample the input points xi in a more narrow range to
increase the difficulty of the agent prediction task. Specifically, for the chosen range, the probability
that the randomly selected critical point x⇤

2 lies outside of this range is 50%, making it difficult for
the agent to easily infer the use case label from the model prediction fi(xi) and covariates xi alone.

Repeating this process several times, we construct a dataset of 10, 000 different observations (e.g. we
train 10, 000 different models fi corresponding to 10, 000 different saddle-point functions gi). For
the 4 different explanation settings, we use each observation’s respective trained predictive model fi
to generate explanations. To train the agent, we split these 10, 000 observations into a train, test, and
validation set.

D.3 Limitations & Future Work

We note that there are a few limitations to our use case definition and evaluation. First, our use case
definition does not account for the feasibility or cost of increasing the specific feature under study,
which may be of practical importance in a real-world application. Second, we note that it may be
difficult or subjective to derive ground-truth use case labels of whether or not a predictive model’s
outcome will increase locally if a feature is increased for a non-convex prediction model f . The
naive approach of taking the gradient of f at point x may not be representative of the behavior of
function f in a region around x [40]. In practice, we recommend that ground-truth use case labels

17

are defined empirically by averaging the model’s predictions in a local region around input x using
expert knowledge to define a meaningful and representative local region. Third, we note that to our
knowledge, there is no explanation method that is explicitly developed to address this use case, which
is an open direction for future work.

E Explanation Encoding

E.1 Global vs. Local

The number of data-points included in each observation can vary depending on the explanation type

(global vs. local explanations) and problem type (global vs. local problems). Table 4 summarizes
how we recommend constructing each observation for each combination of problem and explanation
type. We elaborate on several of our choices below.

Table 4: Describes how to construct each observation i using global and local explanations for
both global and local problems. Notation: S is the size of the observation set; D denotes the base
dataset; f denotes the base model; xi denotes a point sampled from the base dataset. Note that each
observation i for global problems by definition must use a different dataset Di and model fi; vs.
local explanations may use the same model f and dataset D (elaborated on below).

Global Problem Local Problem
Global exp E(fi,Di) E(f,D)

Local exp {E(x(j)
i , fi)}Sj=1 for x(j)

i in Di E(xi, f)

• Global Problem + Global Explanation: As discussed in Section 3, global problems
require that each observation uses a different base predictive model fi because the use case
ui labels are a property of the model (and thus would be the same for all observations if they
all shared the same model). Therefore each observation i contains the global explanation for
that model fi.

• Global Problem + Local Explanation: Global problems require that each observation
uses a different predictive model, but local explanations only explain the model’s prediction
on a single data-point. A single data-point may not contain enough information to infer a
global property of predictive model fi. To address this problem, the agent can take multiple

(e.g. a set of S) data-points and explanations per observation.
• Local Problem + Global Explanation: A local problem defines a different use-case label

for each individual data-point xi. However, each base model f and base dataset D only
has 1 global explanation E(f,D). As such, if the same model f and dataset D are used for
all observations i (as in the Forward Simulation use case introduced in the main text, then
the global explanation E(f,D) will be constant across all observations i. We note that a
researcher can choose to vary the predictive model fi and dataset Di across observations i
(as in the Counterfactual Reasoning use case introduced in the main text; in this case the
global explanation E(fi,Di) will vary across observations.

• Local Problem + Local Explanation: Like the previous example, the predictive base
model can vary or be held constant across different observations i. Each observation contains
the base model’s explanation on sampled point xi.

E.2 Encoding explanations in our experiments

The explanations we consider in our experiment are LIME, SHAP, Anchors, and GAM:

• LIME and SHAP are both local explanations that return an importance score for each
feature. We encode each explanation as a vector of length d if x 2 Rd and concatenate
the explanation to the data-point to create an observation vector of length 2d. Note that in
Forward Simulation, to recreate the original setting, we extend the vector of length d with
additional information from the LIME package as discussed in Appendix G.1.

• To get the GAM explanation, we used method explain_local out-of-the-box from the
InterpretML package [32].

18

• To get the Anchors explanation, we call the Anchors implementation [38] which returns a
set of anchors for a given data-point. For categorical features, the anchor is one of the values
that the feature can take on. For continuous features, the anchor can take the form of a lower
and upper bound. We include both the upper and lower bound for each continuous feature in
the observation. For a data-point x with dcat categorical and dcont continuous features, the
final observation has dimension at most 2dcat + 3dcont.

E.3 Encoding other kinds of explanations

There are other types of explanations that we do not consider in this work, but could also be studied
using our proposed framework. We discuss some potential ways to encode these other types of
explanations:

• Saliency maps: These types of explanations provide a “heat map" over an image input,
where larger values signify a larger contribution of that pixel to the model’s prediction.
Suppose the dimensions of the input image are d⇥ d⇥ c and the dimensions of the saliency
map are d⇥ d⇥ k, one could define the observation as a d⇥ d⇥ c+ k input and instantiate
the agent as a convolutional network. In Appendix I, we use this set up to replicate results
for an image user study. Note that these types of explanations will most likely require a
neural network-based agent architecture.

• Counterfactual explanations: These types of explanations provide the closest possible point
that achieves the desired outcome for a given point. Suppose the data-points come from Rd,
then one possible encoding of the input observation is concatenating the two points into a
2d vector.

• Decision Sets: Suppose we are trying to encode an interpretable decision set [28], where
each rule is written in if-else form and the data-points come from Rd. One possible encoding
of each rule is via a 2d vector where each feature has 2 slots (one for the equivalence
operator and one for the value) and the slots would be filled in accordingly if the feature
appeared in the rule. This way, if the interpretable decision set consists of k rules, then the
final encoding would be of the size k ⇥ 3d.

F Experimental Details

F.1 Dataset preprocessing

For forward simulation and data bugs, we used the UCI Adult (“adult”) dataset as done in [20, 16]
(which is linked: here [12]). The data was extracted by Barry Becker from the 1994 Census database.
The citizens of the United States consent to having their data included in the Census. According
to the U.S. Census Bureau, the United States/Commerce grants users a royalty-free, nonexclusive
license to use, copy, and create derivative works of the Software. In the adult dataset, we dropped the
finalweight feature. For all datasets, we one-hot encoded the categorical features and MinMax
scaled all features.

For counterfactual reasoning, we construct a 2D synthetic regression dataset inspired by Kumar et
al. [25]. We define the use case label as 1 if increasing a data-point’s specific feature x2 increases
the regression model prediction f(x) (holding the other feature x1 constant), 0 otherwise. The data
generation and other use case details are described extensively in Appendix D. In the baseline setting,
the agent/human receives no explanation. We evaluate the same local explanations as previous use
cases (Section 5). We use a Light-GBM Regressor [21] as the base prediction model class for all
explanation settings except GAM, in which the GAM is the base model.

F.2 Agent architecture

We use the same Deepset architecture [46] for all three use cases (though, note that when the input is
of set size 1 in the forward simulation and counterfactual reasoning use cases, Deepsets is effectively
a standard feedfoward network). The Deepset architecture is characterized by two parts: (1) the
feature extractor �, which encodes each item in the set, and (2) the standard network ⇢, which takes
in a summed representation of all of the representations from �. The feature extractor � that we use

19

https://archive.ics.uci.edu/ml/datasets/Adult

has a sequence of Dense layers of sizes (m, where m is the shape of each observation; 200; 100)
respectively, where each layer is followed by an ELU activation with the exception of the last layer.
The ⇢ network is also a sequence of Dense layers of size (100, 30, 30, 10), each followed by an ELU
activation with the exception of the last layer which is followed by a Sigmoid activation.

F.3 Missing Values Adjustment

Figure 5 and Figure 6 show our attempt to recreate the original bug [20] as closely as possible. The
authors state that they apply the bug to 10% of data-points. However, we observe that the 30% bug for
both explanation methods much more closely resembles the figure that was presented in the original
paper.

Figure 5: (Left) Image taken from the user interface from Kaur et al. [20] that plots the distribution
of SHAP values for the age feature (Middle/Right) Distribution of SHAP values for 1000 points for
10% and 30% corruption.

Figure 6: (Left) Image taken from the user interface from Kaur et al. [20] that plots the distribution
of GAM values for the age feature (Middle/Right) Distribution of GAM values for 1000 points for
10% and 30% corruption.

F.4 Base Models

Following Kaur et al. [20], we evaluate both glass-box models that are designed to be interpretable
(e.g., GAMs) and post-hoc explanation methods for black-box models (e.g., LIME, SHAP, Anchors).
Since GAM is glass-box, the GAM from which local explanations are derived is the base predictive
model. On the other hand, LIME, SHAP, and Anchors are model-agnostic post-hoc explanation
techniques, so they can be used to explain any predictive base model class that is compatible with
their Python package implementations. This means that we need to additionally specify the base
model family for post-hoc explanation techniques.

Ideally, we would have used the same underlying base predictive model for all explanation settings.
When the underlying base model is controlled and held constant, then differences in the agent’s
accuracy across explanation settings can be attributed to differences in the explanation methods - the
variable we’re interested in studying - instead of differences in the underlying base models.

However, we encountered the same issue as Kaur et al. [20]: the InterpretML GAM implementation
is not supported by the SHAP Python library; thus we could not generate SHAP explanations for

20

a GAM predictive model. As a result, we also chose to use a different base predictive model class
for the 3 post-hoc explanation settings. We emphasize that the comparisons that we make between
explanation settings are particular to the base predictive model classes chosen: e.g. between the
InterpretML implementation of a GAM and the SHAP Python package used to explain a LightGBM
model.

F.5 Framework Hyperparameters

For all use cases, we generate an observation dataset of up to size 1000 and evaluate on 250 new
observations. In our experiments we train our agent with the Adam optimizer with learning rate
10�4 for our optimizer (and weight decay 10�4 for counterfactual reasoning), weight decay of
binary cross-entropy for the loss function, and batch size of 16. We train for 350 epochs for forward
simulation and data bugs and 1000 epochs for counterfactual reasoning.

F.6 Computational Resources

In general, training an agent using the hyperparameters specified above does not require a GPU,
making SimEvals on particularly tabular datasets very accessible. When scaling up the data com-
plexity, for example considering image-based data, it may be necessary to use GPUs to train both the
prediction model and the agent model.

G Full results

We include a more complete set of experimental results for all three use cases. Average agent
validation set accuracies (percentages) and their standard error are reported over 3 train-test splits.

G.1 Forward Simulation

In Hase and Bansal [16], we noticed that the LIME explanation provided included (a) the LIME
approximation model’s weights, (b) the approximation model’s intercept, (c) the sum of the approxi-
mation model’s weights, and (d) the approximation model’s prediction on the point. We also include
results for a setting where the agent is given the LIME approximation model’s weights only. While
the agent’s accuracy in this setting is lower, it still outperforms the baseline setting.

Table 5: Error bars when varying the training observations the agent receives to perform forward
simulation.

Number of Train Set Observations
Explanation 16 32 100 1000

LIME 94.2% ± 3.3% 99.8% ± 0.2% 100.0% ± 0.0% 100.0% ± 0.0%
LIME (Weight only) 86.3% ± 5.5% 90.8% ± 1.7% 91.8% ± 1.2% 96.3% ± 0.2%
Anchors 89.2% ± 2.0% 93.5% ± 3.4% 94.7% ± 2.5% 93.7% ± 1.5%
SHAP 94.5% ± 2.6% 97.3% ± 0.3% 99.1% ± 0.6% 99.3% ± 0.5%
GAM 89.5% ± 9.6% 96.3% ± 2.3% 97.4% ± 0.2% 98.8% ± 0.3%
No explanation 82.3% ± 1.3% 83.7% ± 1.5% 85.7% ± 1.8% 88.7% ± 0.4%

We note that for forward simulation, there exist known heuristics to predict the model’s output
using some explanation methods (i.e., it is possible for a human or agent to achieve (near) perfect
accuracy). For example, SHAP feature attributions by definition sum to the model prediction [29].
With sufficient examples (N > 1000), the predictiveness of SHAP explanations for this use case is
demonstrated by the agent’s near perfect accuracy.

For completeness we provide the p-values from Hase and Bansal [16] which are: LIME (0.014) and
Anchors (0.234). Their statistical analysis only compares each explanation to the baseline of no
explanation, so the p-values provided signify whether the difference in test accuracy of the human
when given an explanation versus not is statistically significant.

21

G.2 Counterfactual Reasoning

We provide results for the counterfactual reasoning use case for SimEvals as well as our MTurk
study. We find that SimEvals performs well using the LIME explanation which is what we observe
in human performance as well.

Table 6: We vary the number of training observations the agent receives to perform counterfactual
reasoning.

Number of Train Set Observations
Explanation 4 16 64 100 1000

LIME 92.9% ± 1.7% 94.5% ± 2.9% 98.8% ± 0.1% 99.2% ± 0.8% 99.7% ± 0.1%
SHAP 56.3% ± 2.3% 52.5% ± 1.3% 55.3% ± 1.8% 57.3% ± 2.5% 64.9% ± 3.1%
GAM 56.0% ± 2.1% 53.5% ± 1.8% 56.1% ± 2.9% 57.3% ± 3.2% 63.5% ± 1.8%
Model Prediction 52.1% ± 1.6% 55.6% ± 1.7% 54.7% ± 2.7% 57.9% ± 2.4% 60.3% ± 2.9%

Table 7: The average user accuracy on 15 train and test observation along with standard error for
counterfactual reasoning use case where for each explanation setting we recruited N = 20 Turkers.

Explanation Train Test

LIME 66.6 ± 23.2% 69.4 ± 28.2%
SHAP 50.3 ± 8.9% 41.4 ± 14.0%
GAM 48.7 ± 12.1% 45.7 ± 16.4%
No Explanation 58.4 ± 15.4% 48.6 ± 12.8%

Table 8: Pairwise comparisons using Tukey’s HSD between explanation conditions for the counterfac-
tual reasoning MTurk study, showing p-values. We consider p < 0.05 to be statistically significant.

LIME SHAP GAM
LIME
SHAP 0.0017
GAM 0.0016 0.906
No Exp 0.007 0.996 0.665

G.3 Missing Values

We provide results for the missing values data bug use case for SimEvals as well as our MTurk
study. We find that SimEvals performs well using the SHAP and GAM explanation which is what
we observe in human performance as well.

Table 9: Recreating Kaur et al. [20]’s missing values setting, showing that both SHAP and GAM were
successful in finding the bug with high accuracy. We additionally vary the size of the observation set S.

Observation Set Size
Explanation 1 10 100 1000

SHAP 63.2% ± 2.4% 84.0% ± 1.2% 99.8% ± 0.2% 100.0% ± 0.0%
GAM 64.8% ± 3.1% 87.7% ± 3.1% 100.0% ± 0.0% 100.0% ± 0.0%
LIME 55.2% ± 1.4% 56.9% ± 1.3% 64.5% ± 1.5% 75.9% ± 0.8%
Model Prediction 57.5% ± 1.4% 57.4% ± 1.2% 58.2% ± 2.0% 67.3% ± 11.2%

22

Table 10: Standard errors when varying the strength of the missing values bug for a fixed observation
set size of 1000.

Bug Strength
Explanation 5% 10% 20% 30%

SHAP 81.25% ± 3.6% 82.3% ± 28.0% 100.0% ± 0.0% 100.0% ± 0.0%
GAM 58.7% ± 0.8% 75.2% ± 21.6% 100.0% ± 0.0% 100.0% ± 0.0%
LIME 60.9% ± 2.4% 61.8% ± 0.4% 60.2% ± 4.7% 68.7% ± 11.9%
Model Prediction 54.4% ± 2.0% 56.1% ± 2.6% 56.6% ± 2.9% 65.0% ± 12.4%

Table 11: The average user accuracy on 15 train and test observation along with standard error for
data bugs (missing values) use case where for each explanation setting we recruited N = 20 Turkers.

Explanation Train Test

SHAP 60.7% ± 19.4% 67.4% ± 27.1%
GAM 58.1% ± 16.2% 64.4 ± 15.6%
LIME 53.3% ± 11.2% 48.0% ± 12.3%
Model Prediction 46.7% ± 13.7% 40.7% ± 11.9%

Table 12: Pairwise comparisons between explanation conditions for the missing values (data bugs)
MTurk study, showing p-values. We consider p < 0.05 to be statistically significant.

LIME Model Prediction SHAP
LIME
Model Prediction 0.615
SHAP 0.041 0.001
GAM 0.036 0.001 0.998

G.4 Redundant Features

To create a setting where there is no bug, we randomize the value of one of the features so there is no
correlation between the two and only one feature contains the original information. Note that, in the
original user study, the authors do not vary the strength of the bug, but we are easily able to study this
variant of the bug with our algorithmic framework. We increase the strength of the bug by increasing
the number of data-points in dataset Di that have the two correlated features.

The agent’s accuracy was near random guessing when given LIME explanations or the model
prediction baseline, suggesting that neither would be helpful for a human user.

Table 13: We vary the strength of the redundant features bug on the Adult dataset for a fixed
observation set size of 1000 and corroborate results from Kaur et al. [20].

Bug Strength
Explanation 10% 30% 50% 70% 90%

SHAP 74.7% ± 2.5% 78.3% ± 2.6% 87.5% ± 3.7% 96.8% ± 2.5% 99.7% ± 0.2%
GAM 56.5% ± 1.2% 58.9% ± 2.3% 84.0% ± 26.9% 69.8% ± 25.7% 71.9% ± 24.7%
LIME 56.7% ± 1.3% 57.3% ± 2.5% 54.5% ± 2.6% 54.8% ± 3.9% 55.3% ± 1.3%
Model Prediction 57.6% ± 3.0% 56.6% ± 2.0% 53.7% ± 2.9% 55.2% ± 0.8% 58.8% ± 2.7%

G.5 Ablation results

Single data-point observation: Counterfactual reasoning is one of the use cases where the agent is
presented with a single data-point (and explanation). In the main text, we presented results using the

23

DeepSet architecture. Here, we swap out DeepSet with a non-neural network architecture, LightGBM.
We find that the rankings of the explanations are consistent (e.g., compare Table 6 and Table 14).

Table 14: Counterfactual reasoning ablation: we switch out the DeepSet architecture for LightGBM.
We find that the rankings are still consistent with the DeepSet results.

Number of Train Set Observations
Explanation 4 16 64 100 1000

SHAP 48% 48% 47% 52% 58%
GAM 48% 48% 49% 50% 57%
LIME 48% 48% 99.6% 99.6% 99%
Model Prediction 48% 48% 48% 53% 52%

Multiple data-point observation. Data bugs is a use case where the user receives multiple data-
points as the observation. We do not include these results, but we find low accuracy when using
non-neural network models like LightGBM. However, we find similar results when ablating the
neural network architecture. For example, instead of summing the representations (as is done in
DeepSet), we instead concatenate representations. We find comparable results (with the caveat that
one might need to scale up the number of training points in the dataset). For example, for SHAP with
set size 100, one would need 4.5x larger dataset to achieve the same accuracy as the original Deepset
model (99.8%): 1x data (57.9%), 1.5x data (78.9%), 2.5x data (92.3%), 3.5x data (95.6%), 4.5x data
(99.5%). This is because concatenating representations drastically increases the model parameter
size, particularly for larger set sizes. We also find that the agent architecture is not drastically affected
by adding/removing a layer (Table 9 vs Table 3)

Table 15: Adding a layer to DeepSet, for bug strength of 30%

Observation Set Size
Explanation 10 100 1000

SHAP 85.8% 99.5% 100%
GAM 90.0% 100% 100%
LIME 53.3% 65.8% 73.5%

H MTurk Details

H.1 Participants.

A total of 80 participants were recruited to complete the task via Amazon MTurk in 4 batches (20
for each explanation setting). We controlled the quality of the Turkers by limiting participation in
our MTurk HIT adults located in an English-speaking countries (specifically the United States and
Canada) with greater than a 97% HIT approval rate for quality control. Each worker was only allowed
to complete the study 1 time. All participants were retained for final analysis. The estimated time to
complete the study was 15 minutes. The study took 21 minutes on average (however, this includes
any pauses/breaks the Turker might have taken between the two portions of the task). Each worker
was compensated 2.50 USD for an estimated hourly wage of 10 USD.

Our study was approved by the IRB (STUDY2021_00000286) for exempt Category 3 research. We
did not anticipate any potential participant risks as we described in the IRB: “The risks and discomfort
associated with participating in this study are no greater than those ordinarily encountered in daily
life or operation of a smartphone or laptop, such as boredom or fatigue due to the length of the
questionnaires or discomfort with the software.”

H.2 Study Context.

Counterfactual Reasoning. We introduce the Turkers to the use case using the context of furniture
pricing: Turkers are shown data about a furniture item (height and length measurements xi and the

24

item’s price f(xi)) and are asked to perform counterfactual reasoning by choosing whether or not
increasing the item’s length would increase its price (a screenshot of the interface is shown in Figure
8). The Turkers are instructed to set aside any prior knowledge they may have about furniture pricing
and only use the information provided during the study.

Data Bugs. We introduce the Turkers to the use case using the context of identifying “bugs” or
problems in an Artificial Intelligence system which is used to make predictions about individual
incomes. Turkers are shown scatter plots that follow the presentation from the original user study
conducted by Kaur et al. [20], reflecting how the system is making predictions along each attribute.
The user is provided a demo showing that, for example, as the amount of education a person receives
increases, the system deems that attribute to be more important to income prediction. The participants
are then asked to determine whether the system contains a “bugs” and learn from the feedback. A
screenshot of the interface is shown in Figure 10.

H.3 Study Interface.

Participants were first presented with brief information about the study and an informed consent form.
To complete the HIT, participants were instructed to finish both parts (corresponding to a “Train” and
“Test” phase) of the HIT via external URLs to Qualtrics surveys. Both phases of the MTurk evaluation
task described in the main text were conducted entirely on Qualtrics.

In both phases of the study, participants are presented with a series of furniture items, and are
instructed to answer survey questions where they predict if increasing the item’s length will increase
its price. Figure 8 illustrates how the information shown to the user varies across different explanation
settings.

After opening the Train survey, participants are presented with instructions about the counterfactual
reasoning task (Figure 7). After reading the instructions, participants begin the Train phase of the
study, where they receive feedback after submitting their responses (Figure 9). Participants then
complete the Test phase of the study, where they are not given any feedback after submitting their
responses (but are presented with an otherwise identical interface to the Train phase).

For each question, we recorded the participants’ response and the time the participant took to respond.
At the end of the Test phase, we asked participants to describe the strategy that they used to answer
the questions. We also included an attention question where we asked the Turkers to list the two
measurements provided. We found that all Turkers either fully answered this question correctly (by
saying Height and Length) or gave a response that was reasonable (by saying Price and Length).

25

Figure 7: Instructions given to participants in the setting where explanations are provided upon
opening the Qualtrics survey for the Train phase. The instructions (a) introduce the furniture pricing
task and terminology used in the study, (b) show and explain how to interpret an example observation,
(c) instruct the Turkers to complete the task by learning from feedback given (and to not use their
prior knowledge), and (d) describe the two-phase format of the study. Note that the instructions
given to participants in the baseline setting where explanations are not provided is the same as the
above except that the example observation does not have an importance score column and the term
“importance score” is also never defined.

26

- -

Figure 8: The information provided to participants varies for the Baseline, No Explanation (Top) and
the LIME (Bottom) explanation settings. For the LIME, SHAP, and GAM explanation settings, the
participant is given the explanation’s assigned importance score for each feature in the “Imp” column.
Participants are not provided with feature importance scores in the Baseline, No Explanation setting.
Each participant is assigned to 1 explanation setting for the entirety of the study, and so will only
ever see 1 of these possible interfaces.

27

Figure 9: In the Train phase only, participants are provided with feedback on their responses for each
furniture item. After submitting their responses, participants learn if their response is correct (Top
Example) or incorrect (Bottom Example). Participants may only submit 1 response per furniture
item (e.g. they cannot modify their response after it has been submitted), and receive feedback after
submitting responses for all 5 observations on each page.

28

Figure 10: For the data bugs user study, we followed a similar introduction to the task as in the
counterfactual reasoning set-up, but instead of a furniture task we tell the Turkers they are finding
problems/bugs in an Artificial Intelligence system.

29

Figure 11: Following the visualizations presented in Kaur et al. [20], we aggregated the explanations
of set size S = 1000 along each attribute. Specifically, we subset the explanation score for each
attribute and plot it against the attribute’s values.

H.4 Pilot Studies

We conducted several pilot human subject studies that informed the design of our final MTurk study.
Our pilot studies showed that subjects struggled to complete the counterfactual reasoning task when
presented with data x with a 3 or more features, likely due to information overload [35]. Thus we
chose to construct a 2D dataset for our final study.

Our pilot studies also showed that instructions presented to subjects influenced the strategy that they
used to respond to the questions. Particularly, we noticed that the way we defined importance scores

influenced how participants used the scores when answering each question. In an initial trial, we
provided participants with the following more detailed definition of importance scores:

• A positive importance score means that the measurement’s value
contributes to the furniture item having a high price.

• A negative importance score means that the measurement’s value
contributes to the furniture item having a low price.

• An importance score with a large magnitude (absolute value)
means that the measurement’s value has a larger contribution to
determining the item’s price.

However when we reviewed the participants’ self-reported descriptions of the strategy they used,
several participants reported that they “used the strategy provided by the instructions” rather than
learn from the feedback given during the Train phase. While the given instructions do not directly
state a strategy for how the importance scores should be used for the task when literally interpreted,
the instructions can be misinterpreted to mean that a positive length importance score implies that
the item’s price will increase when its length is increased. Indeed, this is the strategy that many
participants used when given the above instructions. As such, we decided to provide a more minimal
description of importance scores in the final study (shown in Figure 7) to encourage participants to

30

learn their own strategy using the information provided as opposed to simply following the given
instructions.

I Image Experiment

We also conducted SimEvals for a user study which evaluated saliency maps for model debugging [2].
We provide this example primarily to illustrate how to perform SimEvals on saliency maps and
chose not to include these experiments in the main text because there were no positive results for
saliency maps (e.g., providing the model prediction alone was enough to detect the bug). The base
dataset for this user study was a dog breed dataset (the image label is the breed of the dog). The
authors conducted a user study on 4 different bugs: out-of-distribution input, label errors, spurious
correlations, and top layer randomization. The authors find that for all of the use cases except
for spurious correlations, users relied on the model prediction to detect the bug as opposed to the
explanation. Unfortunately, due to the lack of available code, we were unable to recreate the same
spurious correlations that were studied in the paper.

We trained SimEvals on the label error bug. We followed a similar data generation process as in
the Data Bugs use cases described in the main text and introduced label errors by randomizing the
labels before the prediction model was trained and attempt to recreate the prediction model described
in the paper. We instantiated the agent architecture using a convolutional Deepset architecture by
modifying the � network to be a series of convolutions.

The architecture for the agent that is provided with saliency maps: For both the saliency map and the
original image, we pass each through a ResNet50 model as a feature extractor, flatten, dropout with
probability 0.5, Linear layer with 128 nodes and ReLU non-linearity. We concatenate the two vectors
and then pass through another Linear layer with 100 nodes and ReLU non-linearity, and finally a
Linear layer with 1 output and Sigmoid non-linearity.

The architecture for the agent that is provided with only the model prediction: For the original image,
we pass each through a ResNet50 model as a feature extractor, flatten, dropout with probability 0.5,
Linear layer with 128 nodes and ReLU non-linearity. The model prediction is encoded as a one-hot
vector and is passed through a Linear layer with 100 nodes and ReLU non-linearity. We concatenate
the two vectors and then pass through another Linear layer with 100 nodes and ReLU non-linearity,
and finally a Linear layer with 1 output and Sigmoid non-linearity.

We use batch size of 16, Adam optimizer with learning rate 0.001, binary cross entropy loss, and
train for 10 epochs.

Findings: We find that the agent is able to achieve > 95% accuracy when provided with the model
prediction. This makes sense because provided that the model has a reasonable mental model of
classifying which breed a dog is, then it is easy to tell whether the image is correctly classified or not.
However, when provided with saliency maps (e.g., Gradient, Integrated Gradient), the agent accuracy
is 50 � 65%, despite attempts to ablate the CNN architecture. After visual inspection (similar to
Figure 13 of their paper) of the saliency map for both cases, it is not particularly evident why it would
be helpful in distinguishing when there is a label error.

J Discussion: The Agent-Human Gap

J.1 Human Factors

We describe several human factors that should be considered when researchers are designing
SimEvals and interpreting a SimEval agent’s accuracy. We also discuss how we considered these
factors when designing our own MTurk study.

Proxy Metrics. Since SimEvals is agnostic to whether a provided explanation is faithful or not
to the model that it is explaining. A researcher using SimEvals to select candidate explanation
methods should be careful to check that the explanations under consideration also satisfy desirable
proxy metrics. This way one would not select explanations that may inadvertently mislead the users.
Important proxy metrics include faithfulness to the model [37, 34] and stability over runs [4, 3, 15].
In our user study, we computed explanations using well known, open-source explanation methods

31

and ensured not to “adversarially” select explanations which would mislead the humans but enable
the agent to achieve high accuracy.

Complexity of Explanation. A well-studied human factor is that more complex explanations will
negatively impact a human’s ability to use the explanation [35, 26]. Provided with enough data,
the algorithmic agent may in some cases perform better with more complex explanations (if the
additional dimensions of complexity also contain more predictive information). When designing
SimEvals and interpreting agent accuracy, one should factor in the complexity of the explanations
that are being evaluated. If the explanation is complex and high-dimensional, then one might discount
the agent’s accuracy as a measure of informing human performance. In our user study, we limited
the dataset to 2 dimensions to control explanation complexity and reduce the likelihood that the user
experiences cognitive overload.

User Interfaces. The way information is presented to the user through the user study interface or
visualization of the explanations can also affect a human’s ability to make decisions [39]. In our user
study, we control these factors by designing a simple MTurk interface using Qualtrics (a widely-used
survey platform).

J.2 Future Work

It is evident that ML models and humans learn and reason differently. While we found overall that
the accuracy of an algorithmic agent can be interpreted as a measure of an explanation’s utility for
humans, we observe in our MTurk Study that there is a gap. Our proposed framework does not intend
to measure potential cognitive factors that may affect the ability of humans to use explanations. An
interesting and challenging direction for future work would attempt to (a) understand what such
factors are, and (b) measure the extent to which a factor is present in the set of candidate explanations.
A better understanding of such factors could also inform development of new explanation methods
that meet these desiderata.

It’s also worth noting that there are many domains/types of data where humans are still much better
at learning than machines. In these settings, an algorithmic agent would also fail to measure the
utility of the explanation to a human. Future work may include bringing a human in the loop to define
human strategies or behaviors that the agent should follow as to make the agent’s reasoning more
similar to a human’s.

32

	Introduction
	Related Work
	General Framework
	Instantiating SimEvals
	Comparing Simulation and Humans
	User study details
	Forward Simulation
	Counterfactual reasoning
	Data bugs

	Discussion
	Conclusion
	Acknowledgements
	Examples of algorithmic agents in prior work
	Heuristic-Based Evaluations.
	Learning-Based Evaluations.
	Distinction from prior work

	Use Case Algorithms
	Forward simulation
	Counterfactual Reasoning
	Data Bugs

	Summary of prior user studies
	Counterfactual Reasoning Use Case Details
	Distinction from Counterfactual Explanations
	Synthetic Data
	Saddle-Point Functions
	Running the Simulated Evaluation

	Limitations & Future Work

	Explanation Encoding
	Global vs. Local
	Encoding explanations in our experiments
	Encoding other kinds of explanations

	Experimental Details
	Dataset preprocessing
	Agent architecture
	Missing Values Adjustment
	Base Models
	Framework Hyperparameters
	Computational Resources

	Full results
	Forward Simulation
	Counterfactual Reasoning
	Missing Values
	Redundant Features
	Ablation results

	MTurk Details
	Participants.
	Study Context.
	Study Interface.
	Pilot Studies

	Image Experiment
	Discussion: The Agent-Human Gap
	Human Factors
	Future Work

