
A Extended experimental results

Here we present extended versions of the D4RL experiments. We use the same setup as in Section
6, but run each of the algorithms on three different datasets in each environment. Explicitly we
show results on ANTMAZE-UMAZE, ANTMAZE-MEDIUM-PLAY, and ANTMAZE-LARGE-PLAY in
Figure 5. Then we show results on HALFCHEETAH-MEDIUM, HALFCHEETAH-MEDIUM-REPLAY,
and HALFCHEETAH-MEDIUM-EXPERT in Figure 6. Finally we show results on PEN-HUMAN, PEN-
CLONED, and PEN-EXPERT in Figure 7.
These experiments corroborate the story from the main text. Without return coverage (as in the larger
antmaze tasks), RCSL can fail dramatically. But in the case with return coverage but poor state
coverage (as in the pen human dataset that only has 25 trajectories), RCSL can beat DP. However
we see that with larger datasets that yield more coverage, DP recovers it’s performance (as in pen
expert which has 5000 trajectories, or 200x the amount of data as in the human dataset).

Figure 5: Experimental results on antmaze datasets.

Figure 6: Experimental results on halfcheetah datasets.

Figure 7: Experimental results on pen datasets.

B Trajectory stitching

B.1 Theory

A common goal from the offline RL literature is to be able to stitch together previously collected
trajectories to outperform the behavior policy. This is in general not possible with RCSL. The
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Figure 8: An example where RCSL fails to stitch trajectories.

main issue here is that RCSL is using trajectory level information during training, which precludes
combining information across trajectories. In this example we show that even with infinite data,
when attempting to combine two datastreams using standard approaches to conditioning RCSL can
fail to recover the optimal policy.
Consider the MDP illustrated in Figure 8 with three states s0, s1, s2 and horizon H = 2. All
transitions and rewards are deterministic as shown. We consider the case where data has been
collected by two different processes. One process (illustrated in red) consists of episodes that always
start at s0 and chooses the first action uniformly but chooses the bad action a0 deterministically
from s2. The other process (illustrated in blue) consists of trajectories that always start at s1 and
deterministically go towards the good action, receiving reward of 1. We will consider what happens
to RCSL at test time when initialized at s0.
The data does not contain any trajectories that begin in s0 and select a1 to transition to s2 followed
by a1, which is the optimal decision. But, the data does have enough information to stitch together
the optimal trajectory from s0, and it is clear to see that DP-based approaches would easily find the
optimal policy.
For RCSL, if we condition on optimal return g = 1, we get that ⇡(·|s1, g = 1) is undefined since
we only observe trajectories with g = 0 that originate at s0. To get a well-defined policy, we must
set f(s0) = 0, but then ⇡(a1|s1, g = 0) = 0.5. Thus, ⇡ will never choose the optimal path with
probability larger than 0.5, for any conditioning function f . Moreover, the conditioning function
that does lead to success is non-standard: f(s0) = 0, f(s2) = 1. For the standard approach to
conditioning of setting the initial value and decreasing over time with observed rewards, RCSL will
never achieve non-zero reward from s0.
Note that DT-style learning where we condition on the entire history of states rather than just the
current state can perform even worse since Pdata(a1|s0, a0, s2, g = 1) = 0, i.e. even using the
non-standard conditioning function described above will not fix things. Also, it is worth mentioning
that it is possible that conditioning on the out-of-distribution return g = 1 from s0 could work due
to extrapolation of a neural network policy. However, as we will see in the experiments section, this
does not happen empirically in controlled settings.

B.2 Experiments

The above example does not take into account the possibility of generalization out of distribution
(i.e. when conditioning on returns that were not observed in the data). To test whether generalization
could lead to stitching we construct two datasets: stitch-easy and stitch-hard. Both datasets use the
same simple point-mass environment with sparse rewards as before, but now we introduce a wall
into the environment to limit the paths to the goal. The stitch-easy dataset contains two types of
trajectories: some beginning from the initial state region and moving upwards (with added Gaussian
noise in the actions) and some beginning from the left side of the environment and moving towards
the goal (with added Gaussian noise in the actions). This is “easy” since just following the behavior
policy for the first half of the trajectory leads to states where the dataset indicates how to reach the
goal. We also create the stitch-hard dataset which includes a third type of trajectory that begins
from the initial state and goes to the right (mirroring the tabular example). This is “hard” since the
dominant action from the behavior in the initial state is now to go right rather than to move towards
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the goal-reaching trajectories. This acts as a distraction for methods that are biased towards the
behavior. Datasets and results are illustrated in Figure 9.

(a) Stitch-easy (b) Stitch-hard

Figure 9: Results on two datasets that require stitching.

We see that on the stitch-easy dataset RvS is able to perform almost as well as the DP algorithms
and better than %BC. This indicates that it is able to follow the behavior when conditioning on an
out-of-distribution return until it reaches a state where the return directs it to the goal. In contrast,
DT totally fails on this task since it conditions on the entire history of the trajectory. Since the
dataset only contains trajectories from the initial state that continue to the top of the board, DT
always reproduces such trajectories from the initial state and does not stitch together trajectories.
In the stitch-hard dataset, we see that RvS fails as well and does not outperform %BC. This in-
dicates that indeed, RvS can be distracted by the distractor trajectories from the initial state. The
conditioning itself was not what cause the stitching in the stitch-easy dataset, but rather the learned
policy simply defaults to the behavior. This can be beneficial in some problems, but prevents trajec-
tory stitching that might allow the learned policy to dramatically outperform the behavior. TD3+BC
also struggles here, likely due to some combination of instability and the BC regularization causing
issues due to the distractor actions.

C Proofs

C.1 Proof of Theorem 1

Proof. Let g(s1, a1:H) be the value of the return by rolling out the open loop sequence of actions
a1:H under the deterministic dynamics induced by T and r. Then we can write

Es1 [f(s1)]� J(⇡f ) = Es1

⇥
E⇡f |s1 [f(s1)� g1]

⇤
(12)

= Es1

⇥
Ea1:H⇠⇡f |s1 [f(s1)� g(s1, a1:H)]

⇤
(13)

+ Es1

⇥
Ea1:H⇠⇡f |s1 [g(s1, a1:H)� g1]

⇤
(14)

 Es1

⇥
Ea1:H⇠⇡f |s1 [f(s1)� g(s1, a1:H)]

⇤
+ ✏H2. (15)

where the last step follows by bounding the magnitude of the difference between g1 and g(s1, a1:H)
by H and applying a union bound over the H steps in the trajectory (using the near determinism
assumption), namely:

H · sup
s1

[

t

Pat⇠⇡f |s1(rt 6= r(st, at) or st+1 6= T (st, at))  ✏H2. (16)

Now we consider the first term from eq. (15). Again bounding the magnitude of the difference by
H we get that

Es1

⇥
Ea1:H⇠⇡f |s1 [f(s1)� g(s1, a1:H)]

⇤
 Es1

Z

a1:H

P⇡f
(a1:H |s1) [g(s1, a1:H) 6= f(s1)]H

(17)
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To bound this term, we will more carefully consider what happens under the distribution P⇡f
.

To simplify notation, let s̄t = T (s1, a1:t�1) be the result of following the deterministic dynamics
defined by T up until step t. Expanding it out, applying the near determinism, the consistency of f ,
the coverage assumption, canceling some terms, and then inducting we see that:

P⇡f
(a1:H |s1) = ⇡f (a1|s1)

Z

s2

P (s2|s1, a1)P⇡f
(a2:H |s1, s2) (18)

 ⇡f (a1|s1)P⇡f
(a2:H |s1, s̄2) + ✏ (19)

= �(a1|s1)
P�(g1 = f(s1)|s1, a1)

P�(g1 = f(s1)|s1)
P⇡f

(a2:H |s1, s̄2) + ✏ (20)

 �(a1|s1)
✏+ P�(g1 � r(s1, a1) = f(s1)� r(s1, a1)|s1, a1, s̄2)

P�(g1 = f(s1)|s1)
P⇡f

(a2:H |s1, s̄2) + ✏ (21)

= �(a1|s1)
✏+ P�(g2 = f(s̄2)|s̄2)

P�(g1 = f(s1)|s1)
P⇡f

(a2:H |s1, s̄2) + ✏ (22)

 �(a1|s1)
P�(g2 = f(s̄2)|s̄2)

P�(g1 = f(s1)|s1)
P⇡f

(a2:H |s1, s̄2) + ✏

✓
1

↵f

+ 1

◆
(23)

 �(a1|s1)�(a2|s̄2)((((((((
P�(g2 = f(s̄2)|s̄2)

P�(g1 = f(s1)|s1)
·
P�(g2 = f(s̄2)|s̄2, a2)

((((((((
P�(g2 = f(s̄2)|s̄2)

P⇡f
(a3:H |s1, s̄3)) (24)

+ 2✏

✓
1

↵f

+ 1

◆
(25)



HY

t=1

�(at|s̄t)
P�(gH = f(s̄H)|s̄H , ah)

P�(g1 = f(s1)|s1)
+H✏

✓
1

↵f

+ 1

◆
(26)

=
HY

t=1

�(at|s̄t)
[g(s1, a1:H) = f(s1)]

P�(g1 = f(s1)|s1)
+H✏

✓
1

↵f

+ 1

◆
(27)

where the last step follows from the determinism of the trajectory that determines s̄H and the con-
sistency of f . Plugging this back into eq (17) and noticing that the two indicator functions can never
both be 1, we get that:

Es1

⇥
Ea1:H⇠⇡f |s1 [f(s1)� g(s1, a1:H)]

⇤
 H2✏

✓
1

↵f

+ 1

◆
(28)

Plugging this back into eq (15) yields the result.

C.2 Proof of Corollary 1

Proof. We need to define a function f so that E[f(s1)] is approximately J(⇡⇤). To do this, note
that there exists a deterministic optimal policy ⇡⇤, and since the environment dynamics are nearly
deterministic we can set f(s1) to be the return of ⇡⇤ under the deterministic dynamics. To do this,
let T⇡

⇤
(s1, t) represent the state reached by running ⇡⇤ from s1 for t steps under the deterministic

dynamics defined by T . Then:

f(s1) =
HX

t=1

r(T⇡
⇤
(s1, t),⇡

⇤(T⇡
⇤
(s1, t))) (29)

Now we have as in the proof of Theorem 1 that the probability that g 6= f(s) is bounded by ✏H , so
that

Es1 [f(s1)]� J(⇡⇤) = Es1 [Eg⇠⇡⇤|s1 [f(s1)� g]]  Es1 [P⇡⇤(g 6= f(s1)|s1) ·H]  ✏H2 (30)

Combining this with Theorem 1 yields the result.

C.3 Proof of Theorem 2

First we prove the following Lemma. This can be seen as a finite-horizon analog to results from
Achiam et al. [1].
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Lemma 1. Let d⇡ refer to the marginal distribution of P⇡ over states only. For any two policies
⇡,⇡0 we have:

kd⇡ � d⇡0k1  2H · Es⇠d⇡
[TV (⇡(·|s)k⇡̂0(·|s))] (31)

Proof. First we will define a few useful objects. Let dh
⇡
(s) = P⇡(sh = s). Let �h = kdh

⇡
(s) �

dh
⇡0(s)k1. Let �h = 2Es⇠dh

⇡
[TV (⇡(·|s)k⇡̂0(·|s))].

Now we claim that �h  �h�1 +�h�1 for h > 1 and �1 = 0.
To see this, consider some fixed h. Note that dh

⇡
(s) =

R
s0
dh�1
⇡

(s0)
R
a0 ⇡(a0|s0)P (s|s0, a0). Then

expanding the definitions and adding and subtracting we see that

�h =

Z

s

|dh
⇡
(s)� dh

⇡0(s)| (32)



Z

s

����
Z

s0
dh�1
⇡

(s0)

Z

a0
(⇡(a0|s0)� ⇡0(a0|s0))P (s|s0, a0)

���� (33)

+

Z

s

����
Z

s0
(dh�1

⇡
(s0)� dh�1

⇡0 (s0))

Z

a0
⇡0(a0|s0)P (s|s0, a0)

���� (34)

 2E
s⇠d

h�1
⇡

[TV (⇡(·|s)k⇡̂0(·|s))] + kdh�1
⇡

� dh�1
⇡0 k1 = �h�1 +�h�1. (35)

Now applying the claim and the definition of d⇡ we get that

kd⇡ � d⇡0k1 
1

H

HX

h=1

�h 
1

H

HX

h=1

h�1X

j=1

�j  H
1

H

HX

h=1

�h = 2H · Es⇠d⇡
[TV (⇡(·|s)k⇡̂0(·|s))].

(36)

Now we can prove the Theorem.

Proof. Applying the definition of J and Lemma 1, we get

J(⇡f )� J(⇡̂f ) = H(EP⇡
f
[r(s, a)]� EP⇡̂

f

[r(s, a)]) (37)

 Hkd⇡f
� d⇡̂f

k1 (38)

 2 · Es⇠d⇡
f
[TV (⇡f (·|s)k⇡̂f (·|s))]H

2 (39)

Expanding definitions, using the multiply and divide trick, and applying the assumptions:

2 · Es⇠d⇡
f
[TV (⇡f (·|s)k⇡̂f (·|s))] = Es⇠d⇡

f

Z

a

|P�(a|s, f(s))� ⇡̂(a|s, f(s))|

�
(40)

= Es⇠d⇡
f


P�(f(s)|s)

P�(f(s)|s)

Z

a

|P�(a|s, f(s))� ⇡̂(a|s, f(s))|

�

(41)


Cf

↵f

Es⇠d�


P�(f(s)|s)

Z

a

|P�(a|s, f(s))� ⇡̂(a|s, f(s))|

�

(42)


Cf

↵f

Es⇠d�

Z

g

P�(g|s)

Z

a

|P�(a|s, g)� ⇡̂(a|s, g)|

�
(43)

= 2
Cf

↵f

Es⇠d⇡
f
,g⇠P� |s[TV (P�(·|s, g)k⇡̂(·|s, g))] (44)


Cf

↵f

p
2L(⇡̂) (45)

where the last step comes from Pinsker’s inequality. Combining with the above bound on the differ-
ence in expected values yields the result.
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C.4 Proof of Corollary 3

Proof. We may write L(⇡) = L̄(⇡)�H� , where H� = �E(s,a,g)⇠P�
[logP�(a|s, g)] and

L̄(⇡) := �E(s,a,g)⇠P�
[log ⇡(a|s, g)]

is the cross-entropy loss. Denoting ⇡†
2 argmin⇡2⇧ L(⇡), we have

L(⇡̂) = L(⇡̂)� L(⇡†) + L(⇡†)  L̄(⇡̂)� L̄(⇡†) + ✏approx.

Denoting L̂ the empirical cross-entropy loss that is minimized by ⇡̂, we may further decompose

L̄(⇡̂)� L̄(⇡†) = L̄(⇡̂)� L̂(⇡̂) + L̂(⇡̂)� L̂(⇡†) + L̂(⇡†)� L̄(⇡†)

 2 sup
⇡2⇧

|L̄(⇡)� L̂(⇡)|

Under the assumptions on bounded loss differences, we may bound this, e.g., using McDiarmid’s
inequality and a union bound on ⇧ to obtain the final result.

C.5 Top-% BC

Theorem 3 (Alignment with respect to quantile). Let g⇢ be the 1 � ⇢ quantile of the return distri-
bution induced by � over all initial states. Let ⇡⇢ = P�(a|s, g � g⇢). Assume the following:

1. Coverage: P�(s1|g � g⇢) � ↵⇢ for all initial states s1.

2. Near determinism: P (r 6= r(s, a) or s0 6= T (s, a)|s, a)  ✏ at all s, a for some functions
T and r. Note that this does not constrain the stochasticity of the initial state at all.

Then

g⇢ � J(⇡⇢)  ✏

✓
1

↵⇢

+ 2

◆
H2. (46)

Proof. The proof essentially follows the same argument as Theorem 1 with f(s1) replaced by g⇢.
The main difference comes from the fact that

⇡⇢(a|s) = P�(a|s, g � g⇢) = �(a|s)
P�(g � g⇢|s, a)

P�(g � g⇢|s)
(47)

Explicitly, we have similar to before that:

g⇢ � J(⇡⇢) = Es1 [E⇡⇢|s1 [g⇢ � g1]] (48)

 Es1Ea1:H⇠⇡f |s1 [g⇢ � g(s1, a1:H)] + ✏H2. (49)

 Es1Ea1:H⇠⇡f |s1 [ [g(s1, a1:H) < g⇢]] ·H + ✏H2. (50)

We now define s̄t = T (s1, a1:t�1) to be the state at step t under the determinisitic dynamics and
similarly r̄t = r(s̄t, at) the reward under deterministic dynamics. Then again mirroring the proof
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above, we have that

P⇡⇢
(a1:H |s1)  ⇡⇢(a1|s1)P⇡⇢

(a2:H |s1, s̄2, r̄1) + ✏ (51)

= �(a1|s1)
P�(g1 � g⇢|s1, a1)

P�(g1 � g⇢|s1)
P⇡⇢

(a2:H |s1, s̄2, r̄1) + ✏ (52)

 �(a1|s1)
✏+ P�(g1 � g⇢|s̄2, r̄1, a1)

P�(g1 � g⇢|s1)
P⇡⇢

(a2:H |s1, s̄2, r̄1) + ✏ (53)

 �(a1|s1)
P�(g1 � g⇢|s1, a1)

P�(g1 � g⇢|s1)
P⇡⇢

(a2:H |s1, s̄2, r̄1) + ✏ (54)

 �(a1|s1)
P�(g1 � g⇢|s̄2, r̄1, a1)

P�(g1 � g⇢|s1)
P⇡⇢

(a2:H |s1, s̄2, r̄1) + ✏

✓
1

↵⇢

+ 1

◆
(55)

 �(a1|s1)�(a2|s̄2)((((((((
P�(g1 � g⇢|s̄2, r̄1)

P�(g1 � g⇢|s1)

P�(g1 � g⇢|s̄2, r̄1, a2)

((((((((
P�(g1 � g⇢|s̄2, r̄1)

P⇡⇢
(a3:H |s1, s̄3, r̄1:2) (56)

+ 2✏

✓
1

↵⇢

+ 1

◆
(57)



HY

t=1

�(at|s̄t)
P�(g1 � g⇢|s̄H , r̄1:H)

P�(g1 � g⇢|s1)
+H✏

✓
1

↵⇢

+ 1

◆
(58)

=
HY

t=1

�(at|s̄t)
[g(s1, a1:H) � g⇢]

P�(g1 � g⇢|s1)
+H✏

✓
1

↵⇢

+ 1

◆
(59)

Plugging this into Equation 50 we get the result.

Theorem 4 (Reduction of %BC to SL). Let g⇢ be the 1 � ⇢ percentile of the return distribution
induced by �. Let ⇡⇢ = P�(a|s, g � g⇢). Assume

1. Bounded mismatch: P⇡⇢
(s)

P�(s|g�g⇢)
 C⇢ for all s.

Define the expected loss as L⇢(⇡̂) = Es⇠P� |g�g⇢
[KL(⇡⇢(·|s)k⇡̂(·|s))]. Then we have that

J(⇡⇢)� J(⇡̂)  C⇢H
2
q
2L⇢(⇡̂). (60)

Proof. Recall that d⇡ refers to the marginal distribution of P⇡ over states only. Applying the defini-
tion of J and Lemma 1, we get

J(⇡⇢)� J(⇡̂) = H(EP⇡⇢
[r(s, a)]� EP⇡̂

[r(s, a)]) (61)

 Hkd⇡⇢
� d⇡̂k1 (62)

 2 · Es⇠d⇡⇢
[TV (⇡⇢(·|s)k⇡̂(·|s))]H

2 (63)

Expanding definitions, using the multiply and divide trick, and applying the assumptions:

2 · Es⇠d⇡⇢
[TV (⇡⇢(·|s)k⇡̂(·|s))]  C⇢ · 2Es⇠P�(·|g�g⇢)[TV (⇡⇢(·|s)k⇡̂(·|s))] (64)

 C⇢

p
2L(⇡̂) (65)

where the last step comes from Pinsker’s inequality. Combining with the above bound on the differ-
ence in expected values yields the result.

Corollary 5 (Sample complexity for %BC). To get finite data guarantees, add to the above as-
sumptions the assumptions that (1) the policy class ⇧ is finite, (2) | log ⇡(a|s) � log ⇡(a0|s0)|  c
for any (a, s, a0, s0) and all ⇡ 2 ⇧, and (3) the approximation error of ⇧ is bounded by ✏approx, i.e.
min⇡2⇧ L⇢(⇡)  ✏approx. Then with probability at least 1� �,

J(⇡⇢)� J(⇡̂)  O

 
C⇢H

2

 
p
c

✓
log |⇧|/�

(1� ⇢)N

◆1/4

+
p
✏approx

!
+

✏

↵⇢

H2

!
. (66)
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D Experimental details

Data. Data for point-mass tasks was sampled from the scripted policies described in the text. We
sampled 100 trajectories of length 400 for each dataset, unless otherwise indicated. Data for the
benchmark experiments was taken directly from the D4RL benchmark [10].

Hyperparameters. Below we list all of the hyperparameters used across the various agorithms.
We train each algorithm on 90% of the trajectories in the dataset, using the remaining 10% as
validation. All algorithms are trained with the Adam optimizer [18]. We evaluate each algorithm
for 100 episodes in the environment per seed and hyperparameter configuration and report the best
performance for each algorithm for it’s relevant hyperparameter (All algorithms were tuned across
3 values of the hyperparameter except for DT on pointmass where we tried more values, but still got
poor results). Error bars are reported across seeds, as explained in the text.

Table 1: Shared hyperparameters for all non-DT algorithms
Hyperparameter Value
Training steps 5e5
Batch size 256
MLP width 256
MLP depth 2

Table 2: Algorithm-specific hyperparameters for all non-DT algorithms
Algorithm Hyperparameter Value(s)
%BC fraction ⇢ [0.02, 0.10, 0.5]

learning rate 1e-3
RvS fraction of max return for conditioning [0.8, 1.0, 1.2]

learning rate 1e-3
TD3+BC ↵ [1.0, 2.5, 5.0]

learning rate (actor and critic) 3e-4
discount 0.99

⌧ for target EWMA 0.005
target update period 2

IQL expectile [0.5, 0.7, 0.9]
learning rate (actor, value, and critic) 3e-4

discount 0.99
⌧ for target EWMA 0.005

temperature 10.0

Table 3: Hypereparameters for DT (exactly as in [8])
Hyperparameter Value
Training steps 1e5
Batch size 64
Learning rate 1e-4
Weight decay 1e-4
K 20
Embed dimension 128
Layers 3
Heads 1
Dropout 0.1

Compute. All experiments were run on CPU on an internal cluster. Each of the non-DT algorithms
takes less than 1 hour per run (i.e. set of hyperparameters and seed) and the DT algorithm takes 5-10
hours per run.
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Table 4: Environment-specific reward targets for DT
Environment Values
Point-mass [300, 200, 100, 50, 10, 0]
Antmaze [1.0, 0.75, 0.5]
Half-cheetah [12000, 9000, 6000]
Pen [3000, 2000, 1000]

Asset licenses. For completeness, we also report the licenses of the assets that we used in the
paper: JAX [6]: Apache-2.0, Flax [14]: Apache-2.0, jaxrl [19]: MIT, Decision Transformer [8]:
MIT, Deepmind control suite [28]: Apache-2.0, mujoco [29]: Apache-2.0, D4RL [10]: Apache-2.0.

Code. The code for our implementations can be found at https://github.com/
davidbrandfonbrener/rcsl-paper.

E Potential negative societal impact

This paper follows a line work aiming at a better understanding of Offline RL algorithms. Even
though it does not directly contribute to any specific application, it promotes the development and
dissemination of the Offline RL technology, which, as any technology, can be used for harmful
purposes. Moreover, we acknowledge that Offline RL has been proved in the past to lack robustness,
and RL and even machine learning in general to potentially reproduce and amplify bias.
We note that this specific work attempts at better understanding the conditions for RCSL algorithms
to work, and where it should not be used. In that spirit, it has the potential benefit of dissuading
practitioners from using such algorithms in settings where. they may fail in socially undesirable
ways.

21

https://github.com/davidbrandfonbrener/rcsl-paper
https://github.com/davidbrandfonbrener/rcsl-paper

	Introduction
	Preliminaries
	Setup
	The RCSL policy
	Related work

	When does RCSL find the optimal policy?
	Sample complexity of RCSL
	Comparing RCSL with bounds for alternative methods
	Comparison to dynamic programming.
	Comparison to top-% behavior cloning.

	Experiments
	Point-mass datasets
	Benchmark data

	Discussion
	Extended experimental results
	Trajectory stitching
	Theory
	Experiments

	Proofs
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Corollary 3
	Top-% BC

	Experimental details
	Potential negative societal impact

