
A Quantization Functions and Implementations

In this section we introduce more details of quantization functions used in our paper. As mentioned
in Section 4.1, we use TWN [26] and LAQ [19] for 2-bit and 4-bit weight quantization, and LSQ [13]
for all activation quantization. These functions can be generally included in the form of Equation (1).

TWN Ternary weight network [26] quantizes the full-precision network parameters x 2 Rm into
three distinct values. The quantization function can be written as

x̂i =

(
s, if xi > �
0, if |xi| < �
�s, if xi < ��

(5)

where � is the positive threshold parameter. As discussed in [19], we may also re-write the quantizer
equivalently as ⇧⌦(2)(x/s) with � = s/2 and ⌦(2) = {�s, 0, s}, which is a special case to
Equation (1). Empirically, since the exact solution reuires expensive sorting operation, following
[26], � is approximately computed as �⇤ ⇡ 0.7 ·

P
i |xi|. The step-size in TWN is obtained

by s = 1
|I�|

P
i2I�

|xi|, where I� = {i
��|xi| > �} and |I�| denotes the number of elements in

the set. For the backward pass of the non-differentiable TWN operator, we use straight-through
estimator (STE) [4] with identity mapping.

LAQ In LAQ [19], the multi-bit quantization is represented as

x̂ = ↵b, where ↵ > 0,b 2 Q = {�1,�k � 1

k
, ...,�1

k
, 0,

1

k
, ...,

k � 1

k
, 1}, (6)

where ↵ and b are the full-precision scaling and quantization points respectively. Thus Equation 6 can
be equivalently converted to Equation 1 by multiplying k for all quantization points in Q and divide
them back in ↵ accordingly. While analytical solutions for s and b can be computationally prohibited,
following [19], we approximate algorithms to efficiently solve for these variables. Specifically, the
approximated algorithm alternates the following updates at each training step:

↵ =
k b� d� x k1
k b� d k1

, (7)

b = ⇧Q(x/s), (8)
where d represents the approximated diagonal Hessian matrices. In our experiments, we found ten
iterations are enough for convergence. Besides, we also find the substitution of d with 1 brings nearly
no degradation but accelerates the training process. For the backward pass, we use the same STE rule
as TWN.

LSQ In LSQ [13], the quantization function is defined as
x̄ = bclip(x/s),�QN , QP e, x̂ = x̄ · s, (9)

where b·e rounds the element to the nearest integer, and QN and QP represent the number of
negative and positive quantization levels. Thus Equation (9) can be viewed as projecting x/s onto
⌦(b) = {�2b�1 + 1, ..., 0, ..., 2b�1 � 1}. The symmetric uniform quantization also implies that
QN = 2b�1 and QP = 2b�1 � 1. Therefore, Equation (9) can be also included in Equation (1).

For the implementation of LSQ, we strictly follow the original paper [13]. The step-sizes s of
activations a are initialized to 2ā/

p
QP based on the first batch of calibration data, where ā represents

the mean of the absolute value |a|. In the backward pass of LSQ quantizer, we similarly adopt STE
for non-differentiability, and further scale the gradients of s by 1/

p
NFQP for activations with NF

elements and QP quantization levels. The learning rate of s is set to 1e-4 with no weight decay for
all experiments. The activation of each linear layer has a distinct step size s.

B Additional Experiments

B.1 Baseline Implementation

For baselines, we mainly compare with QAT and REM, where the former measures how much PTQ
can get close to QAT, and the latter studies the effect of objective granularity in PTQ training. We

15

Table 6: Results of our proposed MREM-S and MREM-P against QAT and REM on the development
set of SQuAD v2.0. “ ” denotes results with two gradient accumulation steps under the same total
batch size due to memory constraint.

#Bits
(W-E-A)

Quant
Method

BERT-base BERT-large
Time

(min)#
Mem
(GB)#

Data
(K)# EM (%)" F1 (%)" Time

(min)#
Mem
(GB)#

Data
(K)# EM (%)" F1 (%)"

SQ
uA

D
v2

.0

full-prec. - 255 11.7 130 74.5 77.7 730 30.4 130 77.7 81.0

4-4-8

QAT 662 18.4 130 74.4 77.5 2, 820 28.3 130 77.4 80.5
REM 60 3.1 4 53.1±0.4 53.6±0.4 175 7.3 4 58.2±0.2 61.4±0.3

MREM-S 76 6.4 4 73.0±0.1 76.3±0.1 200 14.5 4 76.4±0.1 79.7±0.1

MREM-P 19 5.5⇥4 4 72.6±0.2 75.9±0.2 50 12.3⇥4 4 76.3±0.1 79.6±0.1

2-2-8

QAT 508 17.5 130 73.0 76.2 1, 680 28.3 130 76.7 80.0
REM 60 3.1 4 51.5±0.2 51.8±0.2 160 7.3 4 56.3±0.2 59.5±0.2

MREM-S 60 6.4 4 71.4±0.2 74.8±0.2 156 14.5 4 75.4±0.2 78.7±0.1

MREM-P 15 5.5⇥4 4 70.8±0.4 74.3±0.4 39 12.3⇥4 4 75.3±0.3 78.6±0.3

2-2-4

QAT 505 17.5 130 71.4 74.6 1, 655 28.3 130 75.4 78.9
REM 60 3.1 4 39.3±1.5 41.4±1.3 160 7.3 4 42.9±0.8 44.2±0.7

MREM-S 60 6.4 4 67.2±0.3 70.6±0.2 156 14.5 4 71.3±0.3 74.8±0.2

MREM-P 15 5.5⇥4 4 66.1±0.5 69.8±0.5 39 12.3⇥4 4 71.5±0.3 75.0±0.3

(a) Module-1 (250 Steps). (b) Module-2 (250 Steps). (c) Module-3 (250 Steps). (d) Module-4 (250 Steps).

(e) Module-1 (2000 Steps).(f) Module-2 (2000 Steps). (g) Module-3 (2000 Steps).(h) Module-4 (2000 Steps).

Figure 6: The training loss curves with and without teacher forcing (TF) in MREM-P. The red area
denotes teacher forcing in the first 40% training steps. (a), (b), (c) and (d) in the first row are the four
modules trained for 250 steps, and (e), (f), (g) and (h) in the second row are trained for 2,000 steps.

conduct QAT following the state-of-the-art training pipeline [56], i.e., intermediate-layer distillation
followed by prediction-layer distillation, which takes 6 training epochs in total. Detailed hyperparam-
eter settings can be found in [56]. In terms of REM, we follow the practice in [33, 23] to minimize
the reconstruction error after each matrix multiplication, as introduced in Section 2.1. The learning
rate and weight decay of REM are consistent with MREM.

B.2 Results on SQuAD v2.0

In Table 6 we show the results of MREM-S and MREM-P against QAT and REM on the SQuAD
v2.0 dataset. The observations are consistent with those discussed in Section 4.2 in general, and our
approaches demonstrat superiority in balancing the training time, memory overhead, data accessibility
as well as the quantized performance.

B.3 Further Comparison with REM.

Here we provide further discussions with REM on the training efficiency. Note that both REM and
MREM-S follow the sequential training procedure, where the output from the previous objective
is cached for the next objective. However, as there are many matrix multiplications in each Trans-
former layer, it can be time-consuming for REM to repeat this procedure recursively. According to
Section 4.2, while REM and MREM take roughly the same time, REM is only iterated for 250 steps
on MNLI and 500 steps on SQuAD, while MREM takes 2, 000 steps and 4, 000 steps respectively.

16

Table 7: Ablation studies of teacher forcing at different training steps over MNLI-m.

#Bits
(W-E-A)

Quant
Method # Steps Time

(min)#
Mem
(GB)#

Acc
m(%)"

Acc
mm(%)"

4-4-8
REM 200 36 2.5 73.3±0.3 74.9±0.2

REM 2, 000 319 2.5 81.8±0.2 82.5±0.1

MREM-S 2, 000 36 4.6 83.5±0.1 83.9±0.1

2-2-8
REM 200 24 2.5 71.6±0.4 73.4±0.4

REM 2, 000 213 2.5 78.7±0.2 79.2±0.2

MREM-S 2, 000 24 4.6 82.7±0.2 82.7±0.2

2-2-4
REM 200 24 2.5 58.3±0.5 60.6±0.6

REM 2, 000 213 2.5 73.0±0.3 74.4±0.4

MREM-S 2, 000 24 4.6 81.1±0.2 81.5±0.2

Table 8: Comparisons between our MREM-P and data-parallel QAT over 4 GPUs on SQuAD v1.1.

#Bits
(W-E-A)

Quant
Method

Total
Batch Size

Mem
(GB#) # Steps Time

(min#) EM(%)" F1(%)"

4-4-8
QAT 4 (1⇥ 4) 6.4⇥4 3000 15.5 74.7±0.2 83.4±0.1

QAT 12 (3⇥ 4) 9.2⇥4 2600 15.0 77.9±0.1 85.7±0.1

MREM-P 12 5.5⇥4 4000 15.0 79.6±0.1 87.3±0.1

2-2-8
QAT 4 (1⇥ 4) 6.4⇥4 3000 15.5 71.5±0.3 80.9±0.2

QAT 12 (3⇥ 4) 9.2⇥4 2600 15.0 74.4±0.3 83.2±0.2

MREM-P 12 5.5⇥4 4000 15.0 77.7±0.2 85.9±0.2

2-2-4
QAT 4 (1⇥ 4) 6.4⇥4 3000 15.5 65.9±0.4 76.6±0.3

QAT 12 (3⇥ 4) 9.2⇥4 2600 15.0 69.4±0.3 79.4±0.2

MREM-P 12 5.5⇥4 4000 15.0 73.0±0.3 82.7±0.2

We also provide results when REM takes the same amount of training steps with MREM-S in
Table 7. It can be found that even with 2, 000 iterations, REM is still inferior to MREM-S across all
quantization bit-widths. Meanwhile, REM nearly takes around 9⇥ more training time than MREM.
Therefore, the module-wise granularity in MREM not only improves the quantization performance
with more layer-wise dependencies considered, but also makes the training pipeline efficient with
fewer stages to cache intermediate results.

B.4 More Visualizations of Training Curves with Teacher Forcing

We show the training curves of four modules with and without teacher forcing in Figure 6. Note that
the first module exhibits the same training curves when trained with and without teacher forcing,
since the input is directly from the text instead of the input queues. The rest observations are generally
consistent with those discussions in Section 4.4.

C Comparisons with Data Parallelism and Pipeline Parallelism

C.1 Comparisons with Data Parallelism

The proposed parallel strategy (MREM-P) is superior to data parallelism [9, 27] in terms of memory
saving and training acceleration when quantizing PTMs. To see that, we implement the data-parallel
training for QAT, and see if this common approach can beat our MREM-P. We use the BERT-base
model over SQuAD 1.1 on 4 GPUs for illustration, and keep all configurations consistent with
MREM-P (e.g., 4K training samples with the learning rate of 5e-5), except for reducing the batch-size
and training steps to keep the same memory cost per GPU or training time consumption.

It can be found from Table 8 that: 1) with the same memory cost, QAT requires to load the entire
model into the memory, and thus it can only hold 1 sample per GPU to match the memory of
MREM-P, which leads to worse performance; 2) even with the same batch size, QAT consumes
additional 3.7 GB memory while it still underperforms MREM-P, since the full back-propagation is
more time-consuming and thus allows fewer training iterations within 15 minutes. MREM-P is thus
still preferred to data parallelism to quantize PTMs when multiple GPUs are available. Nevertheless,
we remark that the two parallel mechanisms are orthogonal to each other and can be readily combined
for further acceleration.

17

C.2 Comparisons with Pipeline Parallelism

Notably, our MREM-P with the stale synchronous update is different from the pipeline parallelism,
such as G-Pipe [21] and PipeDream [36]. G-Pipe [21], for instance, adopts end-to-end training
with synchronous updates between adjacent modules, which gives rise to bubble time on computing
devices. While the data batch is divided into M pipelined micro-batches, it still has the bubble time
of O(N�1

N+M�1) under N partitions. On the one hand, a larger N or smaller M would increase the
bubble time. On the other hand, a larger M leads to smaller batches that still cannot fully exploit the
computing power, which again affects the acceleration rate. PipeDream [36] optimizes the module
partition to minimize the communication cost, but the resulting strategy still highly depends on the
model architecture. Differently, our parallel strategy conducts local training with stale synchronous
updates of the module. Hence there is negligible bubble time as long as the straggler is faster than the
staleness threshold t0, which can be easily satisfied with balanced module partitions or larger t0.

D Broader Impact and Limitations

The primary goal of this research is to develop an efficient PTQ method w.r.t. training time, memory
overhead and data accessibility to quantize pre-trained language models. These factors are always of
high priority in developing modern machine learning algorithms. On the one hand, it is expensive
and energy-consuming for the training of huge PTMs. Therefore, it is of necessity to develop
environmentally-friendly learning algorithms that are both efficient and lightweight. While the
proposed PTQ method significantly reduces the training cost compared with QAT, there are still
more computing devices in demand if further training speed-up is desired. On the other hand, data
privacy is another important issue in PTQ research. Our approach constructs of the calibration set
with thousands of data samples. This may still incur data security issues in some domains, where
data privacy is of high priority or only few data samples are available. Thus it is also a promising
direction to continually improve the data-efficient PTQ research. Finally, there are also challenges
when applying MREM to PLMs at larger scale, when more module partitions are produced and the
performance could be sub-optimal due to the blocked gradients between adjacent modules.

18

	Introduction
	Motivation
	Quantization Background
	Quantizing Pre-trained Language Models: QAT or PTQ?

	Methodology
	Module-wise Reconstruction Error Minimization
	Accelerated Parallel Training
	Annealed Teaching Forcing

	Experiments
	Experimental Setup
	Main Results: Comparison with QAT and REM
	Main Results: Comparison with Existing Methods
	Discussions

	Related Work
	Conclusion
	Quantization Functions and Implementations
	Additional Experiments
	Baseline Implementation
	Results on SQuAD v2.0
	Further Comparison with REM.
	More Visualizations of Training Curves with Teacher Forcing

	Comparisons with Data Parallelism and Pipeline Parallelism
	Comparisons with Data Parallelism
	Comparisons with Pipeline Parallelism

	Broader Impact and Limitations

