
A Datasets

We evaluate Okapi using three datasets – iWildCam, PovertyMap, and CivilComments – taken from
the WILDS 2.0 benchmark [63]. These datasets were chosen specifically due to the poor performance
reported by [63] for semi-supervised and domain adaptation methods across the board, in relation
to the ERM baselines. For PovertyMap in particular, ERM was found to vastly outperform any
competing methods utilising the unlabelled data and/or domain labels.

iWildCam-WILDS is an extension of the iWildCam 2020 Competition Dataset [8]. The task is multi-
class species classification of animals in camera trap images. The dataset contains 1022K images of
animals annotated with the domain, s, that identifies the camera trap that captured it. The target label,
y, is one of 182 different animal species and it is provided solely for the 203K labelled data. The
labelled training set contains 130K images taken by 243 camera traps. The out-of-distribution (OOD)
validation and target sets include images from 32 and 48 different camera traps which are disjoint
from the 243 training domains. Additionally, 819K unlabelled images from 3215 new domains
are available. Different cameras trap differ in characteristics such as illumination, background and
relative animal frequency, models trained on the source domains might fail to generalise to images
taken from new locations.

PovertyMap-WILDS is a variation of the dataset introduced in [76]. The task is to predict the wealth
index, y, from multispectral satellite images of 23 African countries. The country the image was
taken in as well as whether it was taken in a rural or urban area represent the domain s. The dataset
contains 5 cross-validation (CV) folds of roughly equal size, each one dividing the 23 countries
differently across the source, OOD validation and OOD target splits. In each fold, the labelled training
set contains 11K images from 14 different countries. The OOD validation and target sets include
images from 5 different countries not represented in the source data. The dataset also includes 261K
unlabelled images from the same 23 countries.

CivilComments-WILDS is an online-comment dataset adapted from [12], comprising 448K online
comments annotated with both a binary indicator of toxicity ({toxic, not toxic}) – serving as the
target label, y – and the demographic identities mentioned within them – serving as the domain s.
Here, s ∈ {0, 1}8 is a binary vector rather than a scalar, with dimensions indicating membership
(non-exclusively) to 8 demographic groups, spanning different genders, religions and ethnicities. For
the WILDS 2.0 variant of the dataset, [63] introduce an additional corpus of 1551K comments acting
as the unlabelled training data belonging to extra domains. While the comments are completely
unlabelled, w.r.t. both y and s and thus are not domain-separable at the sample level, the majority
(92%) of the comments are known to be sourced from the same documents as those comments
comprising the (OOD) labelled test data. As noted in [63], CivilComments-WILDS exhibits label
imbalance w.r.t. y; this is amended both therein and herein (as appertains all methods) through
the use of class-balanced sampling, though with the minor distinction that for our experiments we
ensure each batch is exactly balanced rather by sampling equally from each class, in contrast to [63]
who sample hierarchically – sampling yi uniformly from {0, . . . , |Yl|} and then uniformly from Dl,
conditioned on yi – such that balance is achieved only in expectation.

B Relation to Algorithmic Fairness

DG and Algorithmic Fairness overlap in their objective to train a model that yields predictions that
are statistically independent of (and thus robust to variations in) domain, when for the latter the
domain is taken to be some protected characteristic, such as age or gender, and fairness is measured
according to invariance-driven notions of group fairness such as Demographic Parity [26] and Equal
Opportunity [32]. Indeed, methods that focus on equalising the empirical risk across subgroups –
such as by importance weighting [36, 66] – have featured extensively in both DG [4, 19, 43, 62]
and fairness [1, 22, 37] and many approaches to fair representation learning [18, 38, 50, 53, 55]
have roots in the former [52] and in the closely-related field of domain adaptation [27]. Beyond
this more general equivalence, our work also has ties to notions of individual fairness pioneered by
[25] – broadly prescribing that similar individuals be treated similarly – in that our unsupervised
loss involves maximising the similarity between inter-domain samples within representation space.
This is reminiscent of the operationalisation of individual fairness proposed by [44] that enforces
similarity between a given representation and the representations of its neighbouring – in both the
input space and according to a between-group (cross-domain) quantile graph – samples.

1

Table 3: An extended comparison between Okapi and different baselines on two benchmark image
datasets. We include both the results of our re-run of the baselines and those of [63]. Both ID and
OOD performances are reported. For iWildCam we average over results from 3 different seeds, for
PovertyMap we do so over the 5 pre-defined CV folds. Standard deviations are shown in parentheses.
The additions relative to Table 1 include results with an offline variant of Okapi – where the matches
are generated prior to training from the features of the trained ERM model and then fixed for the
course of training – and with the ResNet backbones employed by [63].

Method iWildCam PovertyMap
macro F1 ↑ worst U/R corr. ↑ worst U/R MSE ↓

ID OOD ID OOD ID OOD
ERM [63] 47.0 (1.4) 32.2 (1.2) 0.66 (0.04) 0.49 (0.06) - -
FixMatch [63] 46.3 (0.50) 31.0 (1.3) 0.54 (0.10) 0.30 (0.11) - -

ERM (ConvNeXt) 48.6 (1.1) 33.3 (0.3) 0.72 (0.03) 0.53 (0.09) 0.23 (0.03) 0.35 (0.12)
FixMatch (ConvNeXt) 51.1 (1.0) 35.2 (0.7) 0.50 (0.13) 0.34 (0.12) 0.59 (0.42) 0.88 (0.61)
Okapi (ours; ConvNeXt) 50.6 (0.7) 36.1 (0.9) 0.72 (0.02) 0.55 (0.10) 0.22 (0.02) 0.33 (0.10)
Okapi (offline; ConvNeXt) 48.8 (0.8) 31.7 (0.2) 0.68 (0.02) 0.53 (0.07) 0.26 (0.02) 0.37 (0.13)
Okapi (no calipers; ConvNeXt) - - 0.72 (0.02) 0.54 (0.12) 0.22 (0.02) 0.36 (0.14)

ERM (ResNet) 46.5 (0.8) 29.7 (1.0) 0.69 (0.03) 0.53 (0.08) 0.24 (0.04) 0.34 (0.11)
FixMatch (ResNet) 43.0 (2.5) 25.5 (1.4) 0.70 (0.02) 0.53 (0.08) 0.24 (0.02) 0.35 (0.10)
Okapi (ResNet) 46.1 (0.7) 27.8 (0.3) 0.70 (0.04) 0.52 (0.07) 0.23 (0.02) 0.33 (0.10)

C Extended Results

We tabulate in Table 3 an extended version of the results presented in the main text. This includes
additional results with the ResNet backbones per [63] (justifying our decision to adopt a ConvNext
backbone for our main set of image-dataset results) as well as those for an ’offline’ version of Okapi
(Okapi (offline)) where the matches are generated prior to training using features of the respective
ERM baseline for each dataset. Since the target encoder is necessitated by the need for online
match-retrieval, only a single encoder is involved in Okapi (offline); in binary cases, the algorithm is
then identical to the one proposed by [57] with the exception that consistency is still enforced via
distance in encoding space rather than with a JSD loss on the predictive distributions which fails to
generalise to regression tasks such as PovertyMap.

D Implementation details

Data Augmentation We follow [63] when defining the augmentations for the the WILDS datasets.
In the case of PovertyMap-WILDS we corroborate the original finding that data-augmentation
adversely affects performance, and, in light of this, elect only to use data-augmentation for FixMatch
where it is needed to generate the weak and strong views used in computing the consistency loss. Since
Okapi uses an NN-based approach for generating these views, it is decoupled from the augmentation
strategy and problems that can arise from its misspecification.

Architecture For our image experiments, contrary to [63], we opt to use the recently proposed
ConvNeXt architecture [47], finding this change to provide large performance gains and to be crucial
in enabling semi-supervised methods to surpass the ERM baseline. This is in line with [39] who
similarly found that a change of architecture (combined with large-scale pre-training) could greatly
bolster performance on the iWildCam dataset. More precisely, we use the tiny variant of ConvNeXt,
pre-trained on ImageNet 1k, as the initial backbone for our models. We compose this with a single
fully-connected layer to construct the complete predictor both for the target and the propensity score.
For our CivilComments experiments, in contrast, we do not diverge from [63] in our choice of
architecture, with all models trained with a pre-trained DistilBERT [64].

Optimisation For optimising all models, we use the AdamW optimiser [49] coupled with a cosine
annealing schedule without warm restarts [48]. We set the initial learning to be 1× 10−4 across the
board, and forgo the use of weight decay. Models are trained for 120K, 30K, and 20K iterations for
iWildCam, PovertyMap, and CivilComments, respectively. The decay coefficient, ζ, for the target
encoder’s exponential moving average is initialised to ζstart and is linearly increased to ζend over
the course of training. For PovertyMap we set ζstart and ζend to be 0.996 and 1.0, respectively; for
iWildCam, we set ζstart and ζend to be 0.999 and 0.999, respectively, resulting in a fixed value of

2

ζ; 1.0, respectively; for CivilComments, we set ζstart and ζend to be 0.996 and 0.996, respectively,
again resulting in a fixed value of ζ. We similarly warm up the pre-factor for the consistency loss, λ,
according to a linear schedule during the first 10% of training to allow a period for the encoder to
learn meaningful relations between samples through the supervised loss before bootstrapping with
the consistency loss, with a final value of 1.

Matching In order to determine suitable hyperparameters, ξ, for CaliperNN, we perform a grid-
search in the static setting, using a fixed model. Specifically, we use the backbone of an ERM-trained
model as the encoder with which to generate the queries and keys for matching. The quality of
matching with a given instantiation of ξ is measured using two metrics commonly used in the
statistical matching literature: Variance Ratio (VR) and Standard Mean Differences (SMD) [61].
Both metrics operate on pairs of domains, but can be generalised to work when s is non-binary by
simply aggregating over all pairwise results. For a given pair of domains, VR is defined as the ratio
of the variances of the covariates between the two domains, with an ideal value of 1, while SMD
is defined as the difference in their covariate means, normalised by the standard deviation for each
covariate, and is to be minimised. While our proposed method is applicable whether S is binary or
categorical, for the experiments in this paper we take advantage of the fact that the WILDS datasets
specify splits with non-overlapping domains and match from Dl → Du and in the reverse direction
(from Du → Dl). This decision was based on preliminary experiments which found the binary variant
generally enjoyed more stable optimisation, something which future work should seek to rectify. In
the case of PovertyMap, however, the training splits themselves do not satisfy the aforementioned
requirement of being sourced from mutually exclusive sets of domains and we instead treat the OOD
validation set as Du (and treat it as being unlabelled w.r.t. y, in that it is only used for Lunsup).

E Additional Matching Examples

In
pu

t
M

at
ch

Figure 4: Examples of input (labelled) images and their 1-NN matched (unlabelled) images retrieved
using CaliperNN from the PovertyMap-WILDS dataset. Here, we match images from the labelled-
train set to images from the OOD-validation set, taking advantage the fact that their domains are
disjoint.

F Ablations

We supplement the ablation experiment on the use of calipers featured in the main text with additional
experiments concerning effect of the number of nearest neighbours (k), the relative importance of the
two (fixed and std) calipers, and the feasibility of using the online encoder as the query-generator
instead of the target encoder. The results of these experiments are tabulated in 4 with the key
takeaways being:

1. The number of neighbours used for computing the consistency loss has little impact –
according to the given level of precision – on the performance of Okapi along all axes.

2. While disabling the calipers altogether considerably harmed performance, using only the
std. caliper allows us to recover the performance of the complete algorithm, (Okapi
(k=5)), whereas the same is not true for the fixed caliper which, while aiding performance
compared to the no-caliper baseline, falls short of that benchmark. A caveat attached to these
conclusions, however, is that the selected values for ξ are likely suboptimal in the online

3

Table 4: Ablation experiments for Okapi conducted using the PovertyMap-WILDS dataset. Specif-
ically, we assess the importance of four elements of our proposed method: the number of nearest
neighbours used in computing Lunsup (k), the use (enabled/disabled) of the fixed- and std-calipers in
CaliperNN (considering these to be separate components), and which encoder (online or target) is
used to generate the queries for statistical matching (with use of the target encoder ‘TE queries’ being
the default and ‘OE queries’ denoting the alternative). Both ID and OOD performances are reported.
The results are computed by aggregating over the results for each of the 5 pre-defined cross-validation
folds. We report the average and standard deviation value across replicates of the metric of interest.

(a) CaliperNN ablations.

Method PovertyMap
worst U/R corr. ↑ worst U/R MSE ↓

ID OOD ID OOD
Okapi (k=1) 0.72 (0.02) 0.55 (0.10) 0.22 (0.02) 0.33 (0.10)
Okapi (k=5) 0.72 (0.02) 0.55 (0.10) 0.22 (0.02) 0.33 (0.10)
Okapi (k=10) 0.72 (0.02) 0.55 (0.09) 0.22 (0.02) 0.33 (0.10)
Okapi (k=5, no calipers) 0.72 (0.02) 0.54 (0.12) 0.22 (0.02) 0.36 (0.14)
Okapi (k=5, no std caliper) 0.72 (0.02) 0.54 (0.12) 0.22 (0.02) 0.35 (0.14)
Okapi (k=5, no fixed caliper) 0.72 (0.02) 0.55 (0.10) 0.22 (0.02) 0.33 (0.10)

(b) Query-generator ablation (target encoder (TE) vs. online encoder (OE)).

Method PovertyMap
worst U/R corr. ↑ worst U/R MSE ↓

ID OOD ID OOD
Okapi (TE queries) 0.72 (0.02) 0.55 (0.10) 0.22 (0.02) 0.33 (0.10)
Okapi (OE queries) 0.72 (0.02) 0.55 (0.10) 0.23 (0.02) 0.34 (0.10)

setting, given that they were optimised for the static setting: with improved selection of ξ,
either by learning it jointly with the model’s parameters (using, for instance, the perturbed
maximum method [9] to overcome the non-differentiability of the k-NN and thresholding
operations), in an amortised fashion, or optimising it on a per-iteration basis.

3. While less appealing from a conceptual standpoint, due to the mismatch between the
networks used to generate the queries and keys, from an empirical standpoint it is perfectly
feasible to use the online encoder to generate the queries for statistical matching instead the
target encoder while experiencing minimal degradation in performance. This is particularly
relevant when one wishes to perform the matching in only one direction (e.g. Dl → Dl)
due to the reduction in redundant encoding, with each encoder only encoding its respective
subset of the data (e.g. fθ only encodes samples from Dl and f ′θ only encodes samples from
Du)

G Pseudocode

We provide Pytorch-style [54] pseudocode for the CaliperNN (described in 3.2) and online-learning
(described in 3.3) algorithms in Algorithm 1 and Algorithm 2, respectively. In both cases, we
restrict the pseudocode to the special case of binary domains – practically achieved by using the
labelled/unlabelled as a proxy for domain – for ease of illustration. The CaliperNN algorithm can be
generalised freely to multiclass cases by considering pairwise interactions between the propensity
scores for each domain for applying the calipers and by computing the pairwise inequalities between
sq and sk (giving the connectivity matrix (sq · 1T) ̸= (1 · sTk), where 1 denotes the ones vector of the
same shape as its multiplicand and mediates broadcasting) for enforcing the cross-domain constraint.

4

Algorithm 1: Pytorch-style pseudocode for the CaliperNN matching algorithm for the special
case where the domain is binary. The algorithm generalises freely to arbitrary numbers of domains
however we restrict ourselves to the binary version here for illustrative purposes.

def binary_caliper_nn(
x_query, # samples to be used as the queries for matching
s_query, # binary labels indicating the domain of x_query
x_key, # samples to which the query samples may be matched to.
s_key, # binary labels indicating the domain of x_key
ps_query, # propensity scores associated with x_query
ps_key, # propensity scores associated with x_key
t_f, # threshold for the fixed caliper
t_sigma, # number of standard deviations at which to threshold
k # number of neighbours to attempt to retrieve per query

):
anchor_inds, positive_inds = [], []
for direction in (0, 1): # which domain (0 or 1) to treat as the 'anchor'

key_mask = s_key != direction
exclude samples with propensity scores outside the valid range
determined by t_f: (1 - t_f, t_f)
fc_mask = (ps_query > (1 - t_f)) & (ps_query < t_f)
anchor_mask = fc_mask & (s_query == direction)
queries_x_filtered = queries.x[anchor_mask]
ps_query_filtered = ps_query[anchor_mask]
fc_mask = (ps_key > (1 - t_f)) & (ps_key < t_f)
key_mask &= fc_mask
ps_key_filtered = ps_key[key_mask]
2-norm distance between unfiltered propensity scores
dists_ps = cdist(ps_query_filtered, ps_key_filtered, p=2)
2-norm distance between the filtered anchors and keys
dists_x = cdist(queries_x_filtered, x_key[key_mask], p=2)
compute sigma as the mean of the per-domain standard deviations
std_ps = (0.5 * (ps_query_filtered.var() + ps_key_filtered.var())).sqrt()
std_threshold = t_sigma * std_ps
filter out any samples that violate the std-caliper
dists_x[dists_ps > std_threshold] = float("inf")
nbr_dists, nbr_inds = dists_x.topk(dim=1, largest=False, k=k)
filter out queries not yielding the requisite number of matches (k)
is_matched = ~nbr_dists.isinf().any(dim=1)

anchor_inds.append(anchor_mask.nonzero()[is_matched])
positive_inds.append(key_mask.nonzero()[nbr_inds[is_matched]])

return cat(anchor_inds, dim=0), cat(positive_inds, dim=0)

H Matching for PACS dataset

In this section we perform some initial experiments on PACS dataset [45] (using features extracted
for a pre-trained CLIP [56] model) to show how the temperature scaling can be used to smooth
the propensity score distribution to better control how many sample are discarded during matching.
There are 1,670 photo, 2,048 art painting, 2,344 cartoon, and 3,929 sketch in the dataset. Here will
evaluate the results of matching across the two domains photo and art painting as well as across
photo and sketch. In Fig. 5 and Fig. 6 we compare the shape of the estimated propensity score with
its scaled version using a temperature value of 10. As we can see, in the case of a distribution with
extremely heavy tails (photo, sketch), the effect of smoothing the distribution is that when a fixed
caliper is applied most of the samples are retained. On the other hand, when the initial distribution is

5

smoother, a temperature of 10 is extreme, having the effect of transforming the bimodal distribution
to a unimodal one. Additionally, we tabulate in Table 5 the number of matched pairs retrieved when
matching across the two domains photo and sketch; here we can see that by increasing the temperature
we smooth the estimated propensity score distribution and thereby retain more samples. Similarly, we
can retrieve more pairs by reducing the fixed caliper threshold. We also analyse the case of matching
across the two domains photo and art painting. Using a fixed caliper defined defined by a threshold
tf = 0.1 and no temperature scaling (i.e. τ = 1) the algorithm retrieves 1,142 pairs matching in the
direction photo → art and 1,501 in the direction art → photo.

In Fig. 7 and Fig. 8 we show examples of matching pairs found using our CaliperNN algorithm.
Although the features were not fine-tuned on PACS, we can see a few examples of intraclass matching.
For the photo-art painting application we can see preservation in colour and background; while in the
photo-sketch case shape and pose.

(a) No temperature scaling (τ = 1). (b) Temperature scaling, with τ = 10.

Figure 5: Estimated propensity score distribution of photo and art painting on the PACS dataset. We
compare (a) the original distribution (τ = 1) and (b) the temperature-scaled distribution (τ = 10).
Here, the large temperature has the effect of transforming a bimodal distribution into a unimodal one.

(a) No temperature scaling (τ = 1). (b) Temperature scaling, with τ = 10.

Figure 6: Estimated propensity score distribution of photo and sketch on the PACS dataset. We
compare (a) the original distribution (τ = 1) and (b) the temperature-scaled distribution (τ = 10).
Here, the large temperature has the effect of smoothing the distribution.

I Energy and Carbon Footprint Estimates

To highlight the efficiency of Okapi, we provide estimates in 6 of the carbon footprint associated with
the running of it and of the ERM and FixMatch baselines on the iWildCam dataset, using the same
hyperparameter configuration used to generate the results in the main text. The runs were conducted
in a controlled fashion, using the computing infrastructure and device count in all cases.

6

In
pu

t
M

at
ch

Figure 7: Examples of input (photo) images and their 1-NN matched (art paint) images retrieved
using CaliperNN from the PACS dataset.

In
pu

t
M

at
ch

Figure 8: Examples of input (photo) images and their 1-NN matched (sketch) images retrieved using
CaliperNN from the PACS dataset.

7

Algorithm 2: Pytorch-style pseudocode for the online learning algorithm for the special case
where the labelled and unlabelled datasets are treated as the domains. The algorithm generalises
freely to arbitrary numbers of domains however we restrict ourselves to the binary version here
for illustrative purposes.

online_encoder: online encoder
predictor_head: online predictor head
propensity_scorer: online propensity scorer
target_encoder momentum encoder (frozen)
n_m: memory-bank capacity
zeta: decay rate of the EMA updates
tau: temperature-scaling parameter for the propensity scores.
t_f: fixed caliper threshold for CaliperNN
t_sigma: number of standard deviations at which to threshold in CaliperNN
l_sup: supervised loss function
k: number of matches to retrieve per query
lambda_: loss pre-factor for the unsupervised loss
D: Dimensionality of the encodings.

feature_mb = empty(n_m, D) # memory bank storing momentum-encoded features
label_mb = empty(n_m) # memory bank storing domain labels associated with feature_mb
load minibatches with B_l labelled samples and B_u unlabelled samples

for x_l, y, x_u in train_loader:
EMA update: \theta^\prime_t = \zeta \theta^\prime_{t - 1} + (1 - \zeta) \theta_t
ema_update(target_encoder, online_encoder, zeta)
features_o_l = online_encoder(x_l) # f_\theta(x_l) -> z_l
features_t = target_encoder(cat([x_l, x_u])) # f_\theta(x_l \cup x_u) -> z_q^\prime
y_hat = predictor_head(features_o_l) # g_\phi(z_l) -> \hat{y}
features_o_u = online_encoder(x_u) # f(x_u) -> z_u
features_o = cat([features_o_l, features_o_u]) # z_q := z_l \cup z_u
normalize the encodings to unit vectors.
features_o_n = normalize(features_o, p=2, dim=1)
queries = normalize(features_t, p=2, dim=1)
we treat x_l and x_u as coming from domains indexed by 0 and 1, respectively
labels_l_q = ones(len(x_l)) # ones-vector of size B_l
labels_u_q = zeros(len(x_u)) # zeros-vector of size B_u
labels_q = cat([labels_l_q, labels_u_q])
mb_mask = is_empty(label_mb) # mask indicating which elements of the MB are filled
labels_k = cat([labels_q, label_mb[mb_mask].clone()])
keys are the union of the queries and the memory-bank-stored features
keys = cat((queries, feature_mb[mb_mask].clone()), dim=0)
feature_mb.push(queries) # update the feature memory bank
label_mb.push(labels_q) # update the label memory bank
logits_ps_k = propensity_scorer(keys) # h_\psi(z_k) -> e_k
loss_ps = xent(logits_ps_k, labels_k) # (binary) cross-entropy loss
tempered logistic function: 1 / (1 + exp(-logits_ps_k / tau))
logits_ps_k = sigmoid(logits_ps_k / tau)
logits_ps_q = logits_ps_k[:len(queries)]
filter and match queries with (binary) CaliperNN
inds_a, inds_p = binary_caliper_nn(

features_t_n, labels_q, keys, labels_k,
logits_ps_q, logits_ps_k, t_f, t_sigma, k

)
compute the unsupervised loss (d(z_q, z_n)) for all matched queries
z_q, v_k = features_o[inds_a], keys[inds_p]
match_rate = len(z_q) / len(features_o)
loss_u = match_rate * (z_q.unsqueeze(1) - v_q).pow(2).sum(-1).mean()
loss = l_sup(y_hat, y) + lambda_ * loss_u + loss_ps # aggregate loss
loss.backward() # compute gradients
update(online_encoder, predictor_head, propensity_scorer) # optimizer updates

8

Table 5: Analysis of the number of the retrieved matched pairs when matching across the two domain
photo and sketch on the PACS dataset. The fixed caliper threshold and temperature scaling can be
used to smooth the propensity score distribution and effect the number of pairs.

Fixed Caliper (tf) Temperature (τ) photo → sketch sketch → photo
0.1 1 0 0
0 1 1540 3929
0.01 1 6 9
0.01 1.3 14 56
0.01 1.8 25 574
0.01 2.5 41 3082
0.01 10 1540 3929
0.1 10 298 3929

Table 6: Comparison of the estimated carbon footprint (kgCoeq) of Okapi with the ERM and
FixMatch baselines per replicate of the iWildCam dataset. For the controlled training conducted to
enable fair computation of these estimates, we used a private infrastructure with an estimated carbon
efficiency of 0.432 kgCOeq/kWh and RTX 3090 GPUs, each job being run on a single GPU, coupled
with four data-loading workers.

Method kgCOeq ↓
ERM 1.36
FixMatch 2.12
Okapi (ours) 1.97

9

	Datasets
	Relation to Algorithmic Fairness
	Extended Results
	Implementation details
	Additional Matching Examples
	Ablations
	Pseudocode
	Matching for PACS dataset
	Energy and Carbon Footprint Estimates

