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Abstract

We propose Okapi, a simple, efficient, and general method for robust semi-
supervised learning based on online statistical matching. Our method uses a
nearest-neighbours-based matching procedure to generate cross-domain views for
a consistency loss, while eliminating statistical outliers. In order to perform the
online matching in a runtime- and memory-efficient way, we draw upon the self-
supervised literature and combine a memory bank with a slow-moving momentum
encoder. The consistency loss is applied within the feature space, rather than
on the predictive distribution, making the method agnostic to both the modality
and the task in question. We experiment on the WILDS 2.0 datasets [63], which
significantly expands the range of modalities, applications, and shifts available for
studying and benchmarking real-world unsupervised adaptation. Contrary to [63],
we show that it is in fact possible to leverage additional unlabelled data to improve
upon empirical risk minimisation (ERM) results with the right method. Our method
outperforms the baseline methods in terms of out-of-distribution (OOD) generalisa-
tion on the iWildCam (a multi-class classification task) and PovertyMap (a regres-
sion task) image datasets as well as the CivilComments (a binary classification task)
text dataset. Furthermore, from a qualitative perspective, we show the matches
obtained from the learned encoder are strongly semantically related. Code for our
paper is publicly available at https://github.com/wearepal/okapi/.

1 Introduction

Machine learning models have been deployed for safety-critical applications such as disease diagnosis
[73] and self-driving cars [77], and in socially important contexts such as the allocation of healthcare,
education, and credit (e.g. [23, 35]). Many machine learning algorithms, however, rely on supervision
from a large amount of labelled data, and are typically trained to exploit complex relationships and
distant correlations present in the training dataset. This strategy has proven to be effective in the
setting when we have training (source) and test (target) data that are i.i.d.

In reality, machine learning models are often deployed on target data whose distribution is different
from the source distribution they were trained on. For example, in the task of classifying animal
species in a camera trap image, one aims to learn a model that can generalise to new camera
trap locations despite variations in illumination, background, and label frequencies, given training
examples from a limited set of camera trap locations. Exploiting correlations that only hold in these
limited locations but not in the new locations can hurt out-of-distribution (OOD) generalisation.
While we only have a small subset of camera traps that have their images labelled, we have a large
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amount of unlabelled data from the other camera traps that capture diverse operating conditions. In
general, unlabelled data is much more readily available than labelled data and can often be obtained
from distributions beyond the source distribution. Taking advantage of these unlabelled data during
training is a key element to build robust models that have good OOD performance without sacrificing
in-distribution (ID) performance.

Our work is a direct response to the empirical conclusion of [63] for the WILDS 2.0 dataset that
existing semi-supervised methods – leveraging the unlabelled data provided in this extended version
of the WILDS benchmark [41] – fail to provide consistent benefit over the combination of judicious
data-augmentation and standard empirical risk minimisation (ERM). We show that with the right
method, however, it is in fact possible to make effective use of large volumes of unlabelled data
as supplement to a smaller set of labelled data, from a limited set of domains, to achieve strong
generalisation to data from domains outside the training distribution. To develop this method, we
turn to a statistical matching (SM) framework [57, 59, 60], a model-based approach for providing
joint information on variables and indicators collected through multiple sources. SM has been widely
utilised to assess the effect of interventions in numerous fields, such as education, medical and
community policies (e.g. [10, 17]). In SM, intervened units are paired with control units and those
units without a sufficiently-good match according to a given statistical criteria are excluded when
estimating the treatment effect. In the running example of animal-species classification, intervened
units may correspond to the limited set of camera trap locations that are fully-annotated, while
control units refer to the many more camera trap locations that are only partially annotated. Pairing is
beneficial for capturing diverse operating conditions, yet the ability to drop unpaired units is crucial
for mitigating the risk of statistically-poor matches corrupting the training signal.

In designing an online method for statistically matching samples from different domains (camera-trap
locations) and using this to define a consistency loss, we arrive at our proposed semi-supervised
method, Okapi. This consistency loss is predicated on the simple idea of pulling together similar
samples from different domains within the latent space of the encoder, and using this to bootstrap said
encoder such that the distributions become progressively more aligned over the course of training.
Since matching samples using the full dataset at each step of training is computationally infeasible,
we instead approximate it using a combination of momentum-encoding and a memory-bank that
has been well-proven in self-supervised learning [33, 42]. Compared with other consistency-based
methods such as FixMatch [67], Okapi has the advantage of being agnostic to both the task and the
modality, in addition to being distributionally robust. Contrary, to Sagawa et al. [63], we show that
the supplementary unlabelled data and domain information can be leveraged by Okapi to improve
upon standard ERM on datasets from the WILDS 2.0 benchmark.

2 Preliminaries

2.1 Problem setting

In the standard supervised setting, one is given a dataset, Dl ≜ {xi, yi}Nl
i=1, and trains a model,

parameterised by θ, to well-approximate the empirical distribution as pθ(y|x). Labelled data is
limited by the cost of annotation yet one often has access to a far larger corpus of unlabelled data,
Du ≜ {xi}Nu

i=1, which can be used to supplement Dl. Semi-supervised learning is motivated by
the idea that this additional data can often be used to improve the ID and/or OOD performance of
pθ(y|x). We can view unsupervised domain adaptation (UDA) as a special case of semi-supervised
learning, where there is assumed to be some distribution shift (adverse to a naïvely-trained predictor)
between Dl and Du. Here, Du comes from the domain on which pθ(y|x) is to be evaluated, such that
we have Du ≜ DOOD, where DOOD denotes the target domain, that is OOD w.r.t. Dl. In the most
general sense, a domain, or environment [4, 19] describes some partitioning of the data according to
its source or some secondary characteristic, such as time of day, weather, location, lighting, or the
model of the device used to collect said data; one would hope that a predictor trained under one set of
conditions (e.g. day) would perform with minimal degradation under another set of conditions (e.g.
night) when those conditions are irrelevant to the task at hand.

Assuming the data follows the conditional generative distribution x ∼ p(x|s), where s is the domain
label, one would ideally use DOOD to learn invariance to the marginal distribution, p(s), and thereby
achieve the equivalence pθ(y|x) = pθ(y|x, s). In practice, one typically does not have access to
DOOD but does have access to training data sourced from a mixture of domains which can be
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leveraged to learn a more general invariance that extends to those domains outside the training
distribution [4]. Such a learning paradigm is referred to as domain generalisation (DG). While
some DG works consider the more extreme case of s being unobserved [19], we follow the more
conventional setup [4, 43, 63] in which the domain(s) associated with each sample (labelled and
unlabelled) is indicated by the discrete label (set of labels) s. We denote the set of possible domains
for the in-distribution labelled and unlabeled data, as Sl and Su, respectively, and their union as
S ≜ Sl ∪ Su. Following the setup established in [63], Du is assumed to be unlabelled only w.r.t the
targets and not w.r.t the domain labels and thus that both Dl and Du can be augmented with the latter
to give the re-definitions Dl ≜ {xi, yi, si}Nl

i=1 and Du ≜ {xi, si}Nu
i=1.

2.2 Statistical matching

Statistical matching is a sampling strategy which aims to balance the distribution of the observed
covariates in the treated and control groups. In general terms, observed covariates x are measured
characteristics of the samples; in our work we refer to the encodings generated by a deep neural
network as covariates instead of the original characteristics. The treated and control groups are two
partitions of the data; specifically, the treated group is the set of samples having a specific value of a
variable of interest (here, the domain indicator, s) and the control group is its complement.

In this work we utilise Nearest Neighbour (NN) matching, a distance-based matching method that
pairs sample i of the treated group with the closest sample j belonging to the control group. A
distance measure is used to define how close two samples, i and j, are, with propensity score distance
(PSD) and Euclidean distance being two widely-used distances that we employ here – indirectly (as a
means of filtering) and directly, respectively.

The propensity score distance is defined as the difference between propensity scores, ei and ej , of
samples i and j, i.e. PSD(ei, ej) ≜ |ei − ej |. In causal inference, the propensity score refers to the
probability of sample i belonging to the treated group, given its covariates xi [58]; in practice, this
conditional probability is rarely known a priori and thus requires estimation, typically via logistic
regression [68]. We generalise the notion of a propensity score to categorical domains simply by
modelling the conditional probability for each domain, with ei instead a |S|-dimensional probability
vector. The Euclidean-distance approach, in contrast, computes the distance between the covariates,
xi and xj , of a given pair of samples. Despite PSD being the more prevalent of the two distances, it
is ill-suited to cases in where pairs are close in value w.r.t. all covariates and in such cases Euclidean
distance should be preferred [40]. Nevertheless, propensity scores remain a relevant component of
NN-based matching for defining calipers that can reduce the likelihood of false-positive matches.

We make use of two types of caliper, fixed and standard deviation. The fixed caliper [20], tf , defines
a region of common support between the estimated propensity score distribution of the two groups;
only those samples within the feasible region are admissible for matching. For binary problems, the
feasible region is symmetric such that we have {i | ei ∈ (1− tf , tf )}) whereas in the more general,
categorical case the constraint is one-sided, i.e. {i | ∥ei∥∞ < tf )}. This selection rule helps by
removing samples with extreme propensity scores. The standard deviation-based caliper (std-caliper),
on the other hand, [59] defines the maximum discrepancy permitted between paired two samples. The
discrepancy is usually expressed in terms of estimated PSD as |ei− ej | < σ · tσ , where σ denotes the
mean of the group-wise standard deviations of the propensity scores and tσ controls the percentage
bias-reduction of the covariates. In the categorical case, we can simply substitute the absolute value
for the infinity norm: ∥ei − ej∥∞ < σ · tσ. In the following section, we describe how one can
leverage this matching framework to define a consistency loss encouraging inter-domain robustness.

3 Method

Here, we introduce Okapi, a simple, efficient, and general (in the sense that it is applicable to any task
or modality) method for robust semi-supervised learning based on online statistical matching. Our
method belongs to the broad family of consistency-based methods, characterised by methods such as
FixMatch [67], where the idea is to enforce similarity between a model’s outputs for two views of an
unlabelled image. These semi-supervised approaches based on minimising the discrepancy between
two views of a given sample are closely related with self-supervised methods based on instance
discrimination [15] and self-distillation [6, 14, 30]. Many of the methods within this family, however,

3



are limited in applicability due to their dependence on modality-specific transformations and only
recently has research into self-supervision sought to redress this problem with modality-agnostic
alternatives such as MixUp [72], masking [6], and nearest-neighbours [24, 42, 71]. Approaches
such as FixMatch, AlphaMatch [28] and CSSL [46] that enforce consistency between the predictive
distributions suffer further from not being directly generalisable to tasks other than classification.
Okapi addresses both of these aforementioned issues through 1) the use of a statistical matching
procedure – that we call CaliperNN and detail in Sec. 3.2 – to generate multiple views for a given
sample; 2) enforcing consistency between encodings rather than between predictive distributions.

We show that models trained to maximise the similarity between the encoding of a given sample
and those of its CaliperNN-generated match are significantly more robust to real-world distribution
shifts than the baseline methods, while having the advantage of being both computationally efficient
and agnostic to the modality and task in question. Qualitatively speaking, we see that matches
produced with the final model are related in semantically-meaningful ways. Furthermore, since
the only constraint is that samples be from different domains, the method is applicable whether
information about the domain is coarse or fine-grained.

In the following subsections, we begin by giving a general formulation of our proposed semi-
supervised loss employing a generic cross-domain k-NN algorithm. We then explain how we can
replace this algorithm with CaliperNN in order to mitigate the risk of poorly-matched samples, and
how the loss may be computed in an online fashion to give our complete algorithm.

3.1 Enforcing consistency between cross-domain pairs

We view our predictor as being composed of an encoder (or backbone) network, fθ : X → Rd,
generating intermediary outputs (features) z ≜ fθ(x), and a prediction head, gϕ, such that the
prediction for sample x is given by ŷ ≜ gϕ ◦ fθ(x). We similarly consider the aggregate loss L as
having a two-part decomposition given by

L ≜ Lsup + λLunsup, (1)

where Lsup is the supervised component measuring the discrepancy (as computed, for example,
by the MSE loss) between ŷ and the ground-truth label y, Lunsup is the unsupervised component
based on some kind of pretext task, such as cross-view consistency, and λ is a positive pre-factor
determining the trade-off between the two components. For our method, we do not assume any
particular form for Lsup and focus solely on Lunsup.

Given a pair of datasets Dl and Du, sourced from the labelled domain Sl, and unlabelled domain
Su respectively, along with their union D ≜ Dl ∪ Du our goal is to train a predictor that is robust
(invariant) to changes in domain, including those unseen during training. To do this, we propose
to regularise z ≜ fθ(x) to be smooth (consistent) within local, cross-domain neighbourhoods. At
a high-level, for any given query sample xq sourced from domain sq, we compute Lunsup as the
mean distance between its encoding zq ≜ fθ(xq) and that of its k-nearest neighbours, Vk(zq) with
the constraint that {sq} ∩ sn = ∅, where sn is the set of domain-labels associated with Vk(zq). The
general form of this loss for a given sample can then be written as

Vk(zq) ≜ NN(zq, {fθ(x) | (x, s) ∈ D, s ̸= sq}, k), (2)

Lunsup ≜
1

k

∑
zn∈Vk(zq)

d(zq, zn) (3)

where d : Rd × Rd → R is some distance function. Here, we follow [30] and define d to be the
squared Euclidean distance between normalised encodings for our experiments. Allowing the NN
algorithm to select pairs in an unconstrained manner, given the pool of queries and keys, however,
can lead to poorly-matched pairs that are detrimental to the optimisation process. To address this, we
replace the standard NN algorithm with a propensity-score-based variant, inspired by the statistical
matching framework [58].

3.2 Cross-domain matching

For the matching component of our algorithm, we propose to use a variant of k-NN which, in addition
to incorporating the above cross-domain constraint, filters the queries and keys that represent probable
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Figure 1: Illustration of our proposed statistical matching algorithm, CaliperNN. Given the anchor
image encoding z, the corresponding domain label s (we consider the binary case of labelled vs.
unlabelled for simplicity), and propensity score e, CaliperNN outputs the closest samples subject to
their being from different domains, following filtering by the fixed and std. calipers.

outliers, according to their learned propensity scores. The initial stage of filtering employs a fixed
caliper, where samples with propensity scores surpassing a fixed confidence threshold are removed;
this is followed by a second stage of filtering wherein any two samples (from different domains)
can only be matched if the Euclidean distance between their respective propensity scores is below
a pre-defined threshold (std-caliper). See Fig 3.2 for a pictorial representation of these steps and
Appendix G for reference pseudocode.

The propensity score, e, for a given sample x is estimated as p(s|z) using a linear classifier fθ,
hψ : Rd → △|S| where △|S| is the probability simplex over possible domain labels, S, induced by
the softmax function. hdψ is trained via maximum (weighted) likelihood to predict the domain label
of a given sample for all samples within the aggregate dataset D, or (typically) a subset of it, encoded
by fθ. Since we apply both calipers to the learned propensity score, the shape of this distribution can
have a significant effect on the outcome of matching. Accordingly, we apply temperature-scaling,
with scalar τ ∈ R+

⋆ , to sharpen or flatten the learned propensity-score distribution. We denote the
set of associated parameters ({ tf , tσ, τ}, as the threshold for the fixed-caliper, the threshold for the
std-caliper, and the temperature, respectively) as ξ and discuss in Appendix D how one can determine
suitable values for these in practice.

For convenience we define the set of all encodings, given by fθ, as z ≜ {fθ(x) |x ∈ D}, the set of
all associated propensity scores as e ≜ {hψ(x) | z ∈ z}, and the set of associated domain labels as s.
In the offline case, the matches for D are then computed as

MatchedSamples ≜ {(z,CaliperNNξ(z, z, e, s, k)) | z ∈ z, s ∈ s}, (4)

with CaliperNN returning the set of k-nearest neighbours according to d, subject to the aforementioned
cross-domain and caliper-based constraints. We allow for the fact that there may be no valid matches
for some samples due to these constraints; in such cases we have ∅ as the second element of their
tuples, indicating that Lunsup should be set to 0.

3.3 Scaling up with Online Learning

Re-encoding the dataset following each update of the feature-extractor, in order to recompute
MatchedSamples, is prohibitively expensive, with cost scaling linearly with N ≜ Nl +Nu. More-
over, CaliperNN requires explicit computation of the pairwise distance matrices, which can be
prohibitive memory-wise for large values of N . We address these problems using a fixed-size
memory bank, MNM

z storing only the last NM (where NM ≪ N ) encodings from a slow-moving
momentum encoder [30, 33], fθ′ , which we refer to as the target encoder, in line with [30], and
accordingly refer to fθ as the online encoder. Unlike [30], however, we make use of neither a
projector nor a predictor head (in the case of the target encoder) in order to compute the inputs to
the consistency loss and simply use the output of the backbone as is – this is possible in our setting
due to Lsup preventing representational collapse. More specifically, the target encoder’s parameters,
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θ′, are computed as a moving average of the online encoder’s, θ, with decay rate ζ ∈ (0, 1), per the
recurrence relation

θ′t = ζθ′t−1 + (1− ζ)θt, (5)

As the associated domain labels are also needed both for matching and to compute the loss for the
propensity scorer, we also store the labels associated with MNM

z in a companion memory bank
MNM

s . We initialise MNM
z and MNM

s to ∅, resulting in fewer than NM samples being used during
the initial stages of training when the memory banks are yet to be populated.

Each iteration of training, we sample a batch of size B from D consisting of inputs x and s. During
the matching phase, the inputs are passed through the target encoder to obtain z′q ≜ {fθ′(x)|x ∈ x},
serving as the queries for CaliperNN. We also experiment with a simpler variant where the online
encoder is instead used for this query-generation step, such that we instead have z′q ≜ {fθ(x)|x ∈ x},
and find this can work equally well if ζ is sufficiently high. The keys are then formed by combining the
current queries with the past queries contained in the memory bank: zk ≜ z′q ∪MNM

z . The domain
labels associated with zk are likewise formed by concatenating the domain labels in the current batch
with those stored in MNM

s : sk ≜ sq ∪MNM
s . Once the matches for the current samples have been

computed, the oldest B samples in MNM
z and MNM

s are overwritten with zk and sk, respectively.
The consistency loss is then enforced between each query zq ≜ {fθ(x)|x ∈ x}, according to the
differentiable online encoder, and each of its matches, Vk(z′q) ≜ CaliperNNξ(zq, zk, hψ(zk), sk)
providing that Vk(z′q) ̸= ∅ (that is, under the condition that the estimated propensity score for z′q does
not violate the caliper(s) and there are at least k valid matches whose estimated propensity scores also
do not), with the loss simply 0 otherwise. Since fθ′ is frozen, zk carries an implicit stop-gradient and
gradients are computed only w.r.t. θ. These steps are illustrated pictorially in Fig 2 and as pseudocode
in Appendix G.

Similarly, rather than solving for the optimal parameters, ψ⋆ for the propensity scorer given the
current values of zk, which is infeasible for the large values of NM needed to well-approximate
the full dataset, we resort to a biased estimate of ψ⋆. Namely, we train hψ in an online fashion to
minimise the per-batch loss

Lps =
1

|zk|
∑

z∈zk,s∈sk

wsk(s)H(hψ(z), s), (6)

where H is the standard cross-entropy loss between the predictive distribution and the (degenerate)
ground-truth distribution, given by the one-hot encoded domain labels, and wsk : S → R+

∗ is a
function assigning to each s an importance weight [66] based on the inverse of its frequency in sk to
counteract label imbalance. In the special case in which the Dl and Du are known to have disjoint
support over S (that is, Sl ∩ Su = ∅), we can substitute their domain labels with 1 and 0, respectively
(such that we have Dl ≜ {xi, yi, 1}Nl

i=1 and Du ≜ {xi, 0}Nu
i=1), thus reducing the propensity scorer

and CaliperNN to their binary forms. Knowing whether this condition is satisfied a priori (and thus
whether the use of domain labels can be forgone completely from our pipeline) is not unrealistic: one
may, for example know that two sets of satellite imagery cover two different parts of the world (e.g.
Africa and Asia) yet not know the exact coordinates underlying their respective coverage.

4 Related Work

Domain Generalisation The goal of domain generalisation (DG) is to produce models that are
robust to a wide range of distribution shifts (including those outside the training distribution), given a
training set consisting of samples sourced from multiple domains. Despite the various techniques
(many well theoretically-motivated) designed to improve the generalisation of deep neural networks
current methods continue to fall short in the face of natural distribution shifts [31, 41]. Indeed, ERM
has repeatedly shown to be a strong baseline – frequently outperforming dedicated methods that
leverage domain information or additional unlabelled data – for DG [31, 63], despite the theoretical
problems associated with using it when the training and test sets are misaligned. Until now, only
pre-training on larger, more diverse datasets (with harder examples), has consistently proven to
improve OOD generalisation, yet allowing pre-trained models to fit the ID data too closely can undo
any such benefit conferred by the pre-training [3, 39, 69, 74]. Similar to Okapi, MatchDG [51]
draws upon causal matching to tackle DG. Despite the surface-level similarity, there are a number of
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Figure 2: Overview of Okapi’s online-learning pipeline based using the iWildCam dataset for the
sake of illustration. For simplicity, we limit k to 1 so that the output of matching is a single vector
rather than a set of vectors; for the same reason we illustrate the process for only a single sample
taken from the labelled data set Dl, annotated with both domain (s; in this case, camera location)
and class (y) information. Inspired by recent advances in self-supervised learning, we maintain a
copy (the target encoder) of the online encoder, fθ, whose parameters, θ′, are an exponential moving
average (EMA) of θ. This EMA update is performed at the beginning of each training set at a rate
governed by the decay coefficient, ζ. For a given sample, we first compute its embedding using the
target encoder to produce the query vector, z′q, and by the online encoder to produce zq, which will
serve as the ’anchor’ in the consistency loss. This query vector is then used – alongside the output of
the propensity scorer – by CaliperNN to compute its cross-domain nearest neighbour, zn, where the
keys are taken to be the current and past (stored in the Memory Bank) NM encodings of the data. The
cross-domain constraint, prohibiting matching of samples belonging to the same domain, is denoted
through a red coloring of the location identifiers, the nearest sample obeying this constraint and the
constraints of the calipers with purple highlighting. The consistency loss is the distance between
zq and zn, defined by function some distance function d. Finally, the supervised loss, Lsup (here
instantiated as the standard cross-entropy loss, H), is computed using the output of the predictor
acting on zq and the ground-truth given by y.

significant differences, principally in the respects that we consider semi-supervised DG (whereas
MatchDG requires full-labeling w.r.t. y) and employ an augmented form of k-NN for bias-reduction
in the absence of y.

Self-Supervised Learning In self-supervised learning (SelfSL), models are trained to solve pretext
tasks constructed from the input data. This learning paradigm has led to significant breakthroughs in
unsupervised learning in recent years, with performance now approaching (or even surpassing, along
some axes such as adversarial robustness) that of supervised methods for many tasks while requiring
significantly less labelled data. Due to its generality, SelfSL has seen use across the complete
spectrum of applications and modalities and underlies many of the foundation models [11] that have
emerged in NLP [13, 16, 21], Computer Vision [29], and at their intersection [2, 78]. Common pretext
tasks include those based on the masked-language-modelling approach – originally popularised by
BERT [21] and recently generalised to other modalities [6, 7] – [15, 33], contrastive captioning
[56, 78], and instance discrimination and self-distillation [14, 30] which rely on transformations
of the data to generate multi-view inputs. Approaches belonging to the latter two categories were
originally limited by the fact that the transforms had to be tailored for a particular modality and for
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Table 1: A comparison between Okapi and different baselines on two benchmark image datasets.
We include both the results of our re-run of the baselines and those of [63]. Both ID and OOD
performances are reported. For iWildCam we average over results from 3 different seeds, for
PovertyMap we do so over the 5 pre-defined CV folds. Standard deviations are shown in parentheses.

Method iWildCam PovertyMap
macro F1 ↑ worst U/R corr. ↑ worst U/R MSE ↓

ID OOD ID OOD ID OOD
ERM [63] 47.0 (1.4) 32.2 (1.2) 0.66 (0.04) 0.49 (0.06) - -
FixMatch [63] 46.3 (0.5) 31.0 (1.3) 0.54 (0.10) 0.30 (0.11) - -

ERM 48.6 (1.1) 33.3 (0.3) 0.72 (0.03) 0.53 (0.09) 0.23 (0.03) 0.35 (0.12)
FixMatch 51.1 (1.0) 35.2 (0.7) 0.50 (0.13) 0.34 (0.12) 0.59 (0.42) 0.88 (0.61)
Okapi (ours) 50.6 (0.7) 36.1 (0.9) 0.72 (0.02) 0.55 (0.10) 0.22 (0.02) 0.33 (0.10)
Okapi (no calipers) - - 0.72 (0.02) 0.54 (0.12) 0.22 (0.02) 0.36 (0.14)

some modalities, such as tabular data, there is no obvious way to define them. A number of recent
works have sought to obviate this problem through the use of MixUp [72], masking [6, 34], and k-NN
[24, 42, 71], the latter of which is directly relevant to our work. Okapi bears closest resemblance to
[42] in combining momentum-encoding with nearest-neighbours lookup to generate the views for a
BYOL-style [30] consistency loss. However, a key distinction lies in the use of an augmented form
of nearest-neighbours, CaliperNN, which both constrains pairs of samples to being from different
domains and filters out any queries or keys deemed outliers according to a learned propensity score.

Semi-Supervised Learning Semi-supervised learning (SemiSL) encompasses a broad class of
algorithms that combine unsupervised learning with supervised learning in order to improve the
performance of the latter, especially when labelled data is limited. Many SemiSL methods are based
on the self-training paradigm which can trace its roots back decades to the early work in pattern
recognition by [65] and continues to be relevant in the modern era due to its generality, both within
SemiSL itself and in related fields such as domain adaptation [27], and fledgling field of SelfSL
[14] discussed above. Self-training applies to any framework predicated on using a model’s own
predictions to produce pseudo-labels for the unlabelled data which can either be used as targets
for self-distillation [75] or enforcing consistency between predictions that themselves have been
perturbed [5, 75] or that have been generated from perturbed/multi-view inputs [67]. FixMatch
[67] is one example of a consistency-based method which has proven effective for semi-supervised
classification, despite its simplicity, and various works [28, 46] have since built on the its framework
prescribing the use of weakly- and strongly-augmented inputs to generate the targets and predictions,
respectively. Like these methods, Okapi also makes use of a cross-view consistency loss, however,
the alternative views for a given sample are generated not through data-augmentation but through
statistical matching [58], with the aim being to achieve invariance to the domain rather than a
particular series of perturbations. Another example of particular relevance to our work is [70],
which uses a copy of the model with exponentially-averaged weights to generate the targets for the
unlabelled data. Okapi also uses such a model to produce the targets for its consistency loss, but is
more akin to momentum-encoding [33] in the respect that the loss is imposed on the latent space.

5 Experiments

5.1 Datasets

We evaluate Okapi on three datasets taken from the WILDS 2.0 benchmark [63]. These span a variety
of modalities and tasks, allowing us to showcase the generality of our proposed method (Okapi):
iWildCam (images, multiclass classification), PovertyMap (multispectral images, regression), and
CivilComments (text, binary classification). Details of each dataset can be found in Appendix A.

5.2 Image experiments

Results of our image-data experiments are summarised in Table 1. Due to spacial constraints, we
defer the full set of results, including those for the ‘offline’ (w.r.t. the matching) version of Okapi to
Appendix. C. For both datasets in question, we use the same metrics as [63]: macro-F1 for iWildCam
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and worst-group (with the group defined as urban (U) vs. rural (R)) Pearson correlation for Poverty
Map. For completeness, we include mean squared error (MSE) as a secondary metric for the latter
dataset. Following [63], we compute the mean and standard deviation (shown in parentheses) over
multiple runs for both ID and OOD test sets, with these runs conducted with 3 different random seeds
and 5 pre-defined cross-validation folds for iWildCam and PovertyMap, respectively.

We compare Okapi against two baselines, ERM and FixMatch [67], both according to our re-
implementation and according to the original implementation given in [63]. We note that since
FixMatch, in its original form, is only applicable to classification problems due to its use of confidence-
based thresholding, for the PovertyMap dataset, FixMatch represents a simplified variant (following
[63]) without such thresholding, that is trained to simply minimise the MSE between all regressed
values for the weakly- and strongly-augmented images. As described in Appendix D, the main
difference between the baselines run included in [63] and our re-runs is in the backbone architecture,
with us opting for a ConvNeXt [47] architecture over a ResNet one. For both datasets, and for
both baselines we observe significant improvements stemming the change of backbone. Moreover,
utilising ConvNeXt seems to be crucial in enabling FixMatch to surpass the ERM baseline in the
classification task with 32.2 (ERM) vs 31.0 (FixMatch) and 33.3 (ERM) vs. 35.2 (FixMatch), with
ResNet and ConvNeXt architecture respectively.

Okapi, convincingly outperforms the baselines, w.r.t the OOD metric of interest, on both datasets.
We observe an improvement of +0.9 macro F1, i.e. 36.1 vs 35.2 of Okapi and FixMatch (the best
baseline for iWildCam) respectively. For the regression task in PovertyMap, Okapi achieves 0.55 and
0.33 on the OOD test set in terms of Pearson correlation and MSE, respectively, in contrast to the
0.53 and 0.33 of ERM. At the same time, we note that FixMatch fails to generalise well to this task,
yielding by far the worst results amongst the evaluated methods.

5.3 Text classification

Method Civil Comments
worst-group acc ↑
OOD

ERM [63] 66.6 (1.6)
ERM (fully-labelled) [63] 69.4 (0.6)
ERM (reproduction) 68.5 (2.2)
Okapi (ours) 69.7 (2.0)

Table 2: Comparison between Okapi and the
baselines methods on the Civil Comments
dataset. We include both the original results
of [63] as well as those of our reproduction of
their ERM baseline. Performance is measured
in terms of worst-group accuracy and averaged
over seeds; standard deviations are shown in
parentheses.

In Table 2 we summarise the numerical results for the CivilComments dataset. Remaining consistent
with [63], we evaluate models according to the worst-group accuracy – the minimum of the conditional
accuracies obtained by conditioning on each of the 8 dimensions of s – averaged over 5 replicates.
Since there is no canonical ID test split available for this dataset, we report only the results only for
the OOD split that is, rather than doing so for a custom split to avoid misrepresentation. We compare
Okapi against both ERM variants featured in [63] – one trained on only the official labelled data and
one trained with annotated unlabelled data (fully-labelled) – as well as our re-implementation of the
ERM variant trained on only the labelled data with an identical hyperparameter configuration to the
former. In contrast to the image datasets, we do not diverge in our choice of architecture, with all
models trained with a pre-trained DistilBERT [64] backbone.

We observe marked improvement in the worst-group accuracy of this baseline compared with that
reported therein. We attribute this partly to the high variance of the model-selection procedure
(inherited from [63]) based on intermittently-computed validation performance (which does not
consistently align with test performance) to determine the final model. This aside, we observe
that Okapi outperforms the ERM baseline by a significant margin, to the point of parity with the
fully-labelled baseline.

5.4 Ablations and qualitatitive analysis

In order to evaluate the importance of the caliper-based filtering to the performance of Okapi, we
perform an ablation experiment on PovertyMap dataset (Okapi (no calipers)) with said filtering
disabled (and all else constant), such that instead of CaliperNN we have standard k-NN, albeit with
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Figure 3: Examples of input (labelled) images and their 1-NN matched (unlabelled) images retrieved
using CaliperNN on iWildCam dataset. Here, we match images from the labelled-train set to images
from the unlabelled-extra set, taking advantage the fact that their domains are disjoint.

the cross-group constraint still in place (per Eq. 2). We see that performance degrades according to
both metrics of interest, and, crucially, that the standard deviation of the runs is significantly higher,
in line with our expectation that filtering out poor matches should stabilise optimisation. We provide
additional ablation experiments in Appendix F, exploring the relative importance of the two (fixed
and std-) calipers, the optimal number of neighbours to use for computing Lunsup, and the feasibility
of using the online encoder to generate the queries for CaliperNN.

Finally, in Fig. 3 we show samples of matched pairs retrieved by CaliperNN from the encodings of
the learned encoder for the iWildCam dataset. Here, we see that semantic information (encoding the
species of animal) is preserved across pairs, while nuisance factors such as illumination, background
and contrast vary. Further examples from PovertyMap are shown in Appendix E. In Appendix H,
we include matching results for the PACS (photo (P), art painting (A), cartoon (C), and sketch (S))
dataset [45] demonstrating how temperature scaling, in conjunction with the fixed caliper, can be
used to control the filtering rate.

6 Conclusion

In this work, we introduced, Okapi, a semi-supervised method for training distributionally-robust
models that is intuitive, effective, and is applicable to any modality or task. Okapi is based on
the simple idea of supplementing the supervised loss with a cross-domain consistency loss that
encourages the outputs of an encoder network to be similar for neighbouring (within the latent space
of the encoder itself) samples belonging to different domains, which is made efficient using an
online-learning framework. Rather than simply using k-NN with a cross-domain constraint, however,
we propose an augmented form based on statistical matching (CaliperNN) that combines propensity
scores with calipers to winnow out low-quality matches; we find this to be important for both the
end-performance and consistency of Okapi. Our work serves as a response to [63], in that we find that
it is in fact possible to effectively incorporate unlabelled data and domain information into a training
algorithm in order to improve upon ERM with respect to an OOD test set, assuming an appropriate
choice of architecture. Namely, on three datasets from the WILDS 2.0 benchmark, representing two
different tasks (classification and regression) and modalities (image and text), we show that Okapi
outperforms both the ERM and FixMatch baselines according to the relevant OOD metrics.

Buoyed by these promising results, we intend to apply Okapi to other tasks (e.g. object detection and
image segmentation) and other modalities (e.g. audio) to further establish its generality. Furthermore,
one limitation of the current incarnation of the method is that the thresholds for the calipers are fixed
over the course of training whereas it may be beneficial to set these adaptively with the view to
optimise such measures of inter-domain balance as Variance Ratio and Standard Mean Differences
that are commonly used to evaluate the the goodness of statistical matching procedures.
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contributions and scope?
Yes; we show through our experiments detailed in Sec. 5 that our proposed method is
able to outperform our baseline methods, and the original implementations of them
given in [63], according to three recent OOD benchmark datasets.

(b) Did you describe the limitations of your work?
Yes; we describe the foremost limitation of our work in Sec. 6. Namely, we point
out that using fixed thresholds for the caliper the entire duration of training is likely
suboptimal and these hyperparameters should instead be set adaptively.

(c) Did you discuss any potential negative societal impacts of your work?
No, we do not anticipate there being any negative societal impacts specific to our work.
On the contrary, we propose a method for training more distributionally-robust models
with the view to develop safer, less biased, machine-learning systems.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them?
Yes, we have read the review guidelines and have made sure that our paper complies
with them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results?

N/A
(b) Did you include complete proofs of all theoretical results?

N/A
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)?
Yes; the code – containing with the requisite instructions and configuration files needed
to run all of the experiments detailed in Sec 5 – is publicly available and linked to in
the Abstract.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)?
Yes; all implementation details, including those related to optimisation and
hyperparameter-selection, are given in Appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
Yes, we ran all methods with multiple random seeds/folds; we report the standard
deviation over the runs for each method-dataset combination in parentheses in Table 1
and Table 2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)?
No, however do provide estimates of the carbon footprint for a single run of our method
and of the ERM and FixMatch baselines for the iWildCam dataset.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators?

Yes, we use datasets from the WILDS 2.0 benchmark developed by [63] for evaluating
our models and cite the associated paper in both Sec. 1 and Sec. 5.

(b) Did you mention the license of the assets?
No.

(c) Did you include any new assets either in the supplemental material or as a URL?
Yes, we include a URL link to the code for the paper at the end of the Abstract.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating?
N/A
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content?
N/A

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable?
N/A

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable?
N/A

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation?
N/A
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