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Abstract

We present an oracle-efficient algorithm for boosting the adversarial robustness

of barely robust learners. Barely robust learning algorithms learn predictors that
are adversarially robust only on a small fraction � ⌧ 1 of the data distribution.
Our proposed notion of barely robust learning requires robustness with respect to a
“larger” perturbation set; which we show is necessary for strongly robust learning,
and that weaker relaxations are not sufficient for strongly robust learning. Our
results reveal a qualitative and quantitative equivalence between two seemingly
unrelated problems: strongly robust learning and barely robust learning.

1 Introduction

We consider the problem of learning predictors that are robust to adversarial examples at test time.
That is, we would like to be robust against a perturbation set U : X ! 2X , where U(x) ✓ X is the
set of allowed perturbations that an adversary might replace x with, e.g., U could be perturbations of
bounded `p-norms [10]. The goal is to learn a predictor h with small robust risk:

RU (h;D) , Pr
(x,y)⇠D

[9z 2 U(x) : h(z) 6= y] . (1)

Adversarially robust learning has proven to be quite challenging in practice, where current adversarial
learning methods typically learn predictors with low natural error but robust only on a small fraction
of the data. For example, according to the RobustBench leaderboard [7], the highest achieved robust
accuracy with respect to `1 perturbations on CIFAR10 is ⇡ 66% and on ImageNet is ⇡ 38%. Can
we leverage existing methods and go beyond their limits? This motivates us to pursue the idea of
boosting robustness, and study the following theoretical question:

Can we boost barely robust learning algorithms to learn predictors with high robust accuracy?

That is, given a barely robust learning algorithm A which can only learn predictors robust on say
� = 10% fraction of the data distribution, we are asking whether it is possible to boost the robustness
of A and learn predictors with high robust accuracy, say 90%. We want to emphasize that we are
interested here in extreme situations when the robustness parameter � ⌧ 1. We are interested
in generic boosting algorithms that take as input a black-box learner A and a specification of the
perturbation set U , and output a predictor with high robust accuracy by repeatedly calling A.

In this work, by studying the question above, we offer a new perspective on adversarial robustness.
Specifically, we discover a qualitative and quantitative equivalence between two seemingly unrelated
problems: strongly robust learning and barely robust learning. We show that barely robust learning
implies strongly robust learning through a novel algorithm for boosting robustness. As we elaborate
below, our proposed notion of barely robust learning requires robustness with respect to a “larger”
perturbation set. We also show that this is necessary for strongly robust learning, and that weaker
relaxations of barely robust learning do not imply strongly robust learning.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



1.1 Main contributions

When formally studying the problem of boosting robustness, an important question emerges which is:
what notion of “barely robust” learning is required for boosting robustness? As we shall show, this is
not immediately obvious. One of the main contributions of this work is the following key definition
of barely robust learners:
Definition 1 (Barely Robust Learner). Learner A (�, ✏, �)-barely-robustly-learns a concept
c : X ! Y w.r.t. U�1(U) if 9mA(�, ✏, �) 2 N s.t. for any distribution D over X
s.t. Prx⇠D [9z 2 U(x) : c(z) 6= c(x)] = 0, with prob. at least 1�� over S = {(xi, c(xi))}mi=1 ⇠ Dc

and any internal randomness in the learner, A outputs a predictor ĥ = A(S) satisfying:

Pr
x⇠D

h
8x̃ 2 U�1(U)(x) : ĥ(x̃) = ĥ(x)

i
� � and Pr

x⇠D

h
ĥ(x) 6= c(x)

i
 ✏.

Notice that we require �-robustness with respect to a “larger” perturbation set U�1(U). Specifically,
U�1(U)(x) is the set of all natural examples x̃ that share an adversarial perturbation z with x (see
Equation 2). E.g., if U(x) is an `p-ball with radius �, then U�1(U)(x) is an `p-ball with radius 2�.

On the other hand, (✏, �)-robustly-learning a concept c with respect to U is concerned with learning a
predictor ĥ from samples S with small robust risk RU (ĥ;Dc)  ✏ with probability at least 1� � over
S ⇠ D

m
c (see Equation 1 and Definition 2), where we are interested in robustness with respect to

U and not U�1(U). Despite this qualitative difference between barely robust learning and strongly

robust learning, we provably show next that they are in fact equivalent.

Our main algorithmic result is �-RoBoost, an oracle-efficient boosting algorithm that boosts barely
robust learners to strongly robust learners:
Theorem 1. For any perturbation set U , �-RoBoost (✏, �)-robustly-learns any target concept c :

X ! Y w.r.t. U using T = ln(2/✏)
� black-box oracle calls to any (�, �✏

2 ,
�
2T )-barely-robust learner A

for c w.r.t. U�1(U), with sample complexity
4TmA

✏ , where mA is the sample complexity of learner A.

The result above shows that barely robust learning is sufficient for strongly robust learning. An
important question remains, however: is our proposed notion of barely robust learning necessary

for strongly robust learning? In particular, our proposed notion of barely robust learning requires
�-robustness with respect to a “larger” perturbation set U�1(U), instead of the actual perturbation set
U that we care about. We provably show next that this is necessary.
Theorem 4. For any U , learner B, and ✏ 2 (0, 1/4), if B (✏, �)-robustly-learns some unknown target

concept c w.r.t. U , then there is a learner B̃ that ( 1�✏
2 , 2✏, 2�)-barely-robustly-learns c w.r.t. U�1(U).

This still does not rule out the possibility that boosting robustness is possible even with the weaker
requirement of �-robustness with respect to U . But we show next that, indeed, barely robust learning
with respect to U is not sufficient for strongly robust learning with respect to U :
Theorem 6. There is a space X , a perturbation set U , and a class of concepts C s.t. C is (� = 1

2 , ✏ =
0, �)-barely-robustly-learnable w.r.t U , but C is not (✏, �)-robustly-learnable w.r.t. U for any ✏ < 1/2.

Our results offer a new perspective on adversarially robust learning. We show that two seemingly
unrelated problems: barely robust learning w.r.t. U�1(U) and strongly robust learning w.r.t. U , are in
fact equivalent. The following corollary follows from Theorem 1 and Theorem 4.
Corollary I. For any class C and any perturbation set U , C is strongly robustly learnable with

respect to U if and only if C is barely robustly learnable with respect to U�1(U).

We would like to note that having a separate robustness parameter � and a natural error parameter ✏
allows us to consider regimes where � <

1
2 and ✏ is small. This models typical scenarios in practice

where learning algorithms are able to learn predictors with reasonably low natural error but the
predictors are only barely robust. More generally, this allows us to explore the relationship between
� and ✏ in terms of boosting robustness (see Section 5 for a more elaborate discussion).

Landscape of boosting robustness. Our results reveal an interesting landscape for boosting ro-
bustness when put in context of prior work. When the robustness parameter � >

1
2 , it is known from

prior work that �-robustness with respect to U suffices for boosting robustness [see e.g., 15, 1], which
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is witnessed by the ↵-Boost algorithm [18]. When the robustness parameter �  1
2 , our results show

that boosting is still possible, but �-robustness with respect to U�1(U) is necessary and we cannot

boost robustness with �-robustness with respect to U .

In fact, by combining our algorithm �-RoBoost with ↵-Boost, we obtain an even stronger boosting
result that only requires barely robust learners with a natural error parameter that does not scale with
the targeted robust error. Beyond that, our results imply that we can even boost robustness with
respect to U�1(U). This is summarized in the following corollary which follows from Theorem 1,
Lemma 8, and Theorem 4.
Corollary II (Landscape of Boosting Robustness). Let C be a class of concepts. For fixed ✏0, �0 =
( 13 ,

1
3 ) and any target ✏ < ✏0 and � > �0:

1. If C is (�, �✏0
2 ,

��0
ln(2/✏0)

)-barely-robustly-learnable w.r.t. U�1(U), then C is (✏0, �0)-robustly-

learnable w.r.t. U .

2. If C is (✏0, �0)-robustly-learnable w.r.t. U , then C is (✏, �)-robustly learnable w.r.t. U .

3. If C is (✏, �)-robustly learnable w.r.t. U , then C is ( 1�✏
2 , 2✏, 2�)-barely-robustly-learnable

w.r.t. U�1(U).
In particular, 1 ) 2 ) 3 reveals that we can also algorithmically boost robustness w.r.t. U�1(U).

Boosting robustness with unlabeled data. In Appendix A and Theorem 7, we show that a variant
of our boosting algorithm, �-URoBoost, can boost robustness using unlabeled data when having
access to a barely robust learner A that is tolerant to small noise in the labels. In Appendix E,
we discuss an idea of obtaining robustness at different levels of granularity through our boosting
algorithm. Specifically, when U(x) is a metric-ball around x with radius �, we can learn a predictor
ĥ with different robustness levels: �, �

2 ,
�
4 , . . . , in different regions of the distribution.

1.2 Related work

To put our work in context, the classic and pioneering works of [12, 17, 8, 9] explored the question of
boosting the accuracy of weak learning algorithms, from accuracy slightly better than 1

2 to arbitrarily
high accuracy in the realizable PAC learning setting. Later works have explored boosting the accuracy
in the agnostic PAC setting [see e.g., 11].

In this work, we are interested in the problem of boosting robustness rather than accuracy. Specifically,
boosting robustness of learners A that are highly accurate on natural examples drawn from the data
distribution, but robust only on some � fraction of them. We consider this problem in the robust

realizable setting, that is, when the unknown target concept c has zero robust risk RU (c;Dc) = 0.
For example, with linear classifiers and `2 perturbations, robust realizability is equivalent to linear
separability with a margin, which is a setting that is studied extensively in the literature. Furthermore,
for vision datasets in practice (e.g., CIFAR10 and ImageNet), it has been observed that the classes
can be robustly separated with some non-negligible distance, indicating that robust classifiers for
these datasets do exist, i.e., the robust realizability assumption holds [see Section 3 in 19].

We know from prior work [see e.g., 15, 1, 20] that if the robustness parameter � >
1
2 , then barely

robust learning w.r.t. U implies strongly robust learning w.r.t. U . In this case, we essentially have
weak learners w.r.t. the robust risk RU , and the original boosting algorithms such as the ↵-Boost
algorithm [18, Section 6.4.2] can boost the robust risk. In this work, we focus on boosting barely

robust learners, i.e., mainly when the robustness parameter �  1/2, but our algorithm works for any
0 < �  1.

[15] studied the problem of adversarially robust learning (as in Definition 2). They showed that
if a hypothesis class C is PAC learnable non-robustly (i.e., C has finite VC dimension), then C is
adversarially robustly learnable. This result, however, is not constructive and the robust learning
algorithm given does not directly use a black-box non-robust learner. Later on, [16] studied a more
constructive version of the same question: reducing strongly robust learning to non-robust PAC
learning when given access to black-box non-robust PAC learners. This is different from the question
we study in this work. In particular, we explore the relationship between strongly robust learning
and barely robust learning, and we present a boosting algorithm for learners that already have some
non-trivial robustness guarantee � > 0.
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2 Preliminaries

Let X denote the instance space and Y denote the label space. We would like to be robust with
respect to a perturbation set U : X ! 2X , where U(x) ✓ X is the set of allowed adversarial
perturbations that an adversary might replace x with at test time. Denote by U�1 the inverse image
of U , where for each z 2 X , U�1(z) = {x 2 X : z 2 U(x)}. Observe that for any x, z 2 X
it holds that z 2 U(x) , x 2 U�1(z). Furthermore, when U is symmetric, where for any
x, z 2 X , z 2 U(x) , x 2 U(z), it holds that U = U�1. For each x 2 X , denote by U�1(U)(x)
the set of all natural examples x̃ that share some adversarial perturbation z with x, i.e.,

U�1(U)(x) = [z2U(x)U�1(z) = {x̃ : 9z 2 U(x) \ U(x̃)} . (2)

For example, when U(x) = B�(x) = {z 2 X : ⇢(x, z)  �} where � > 0 and ⇢ is some metric on
X (e.g., `p-balls), then U�1(U)(x) = B2�(x). For any classifier h : X ! Y and any U , denote by
RobU (h) the robust region of h with respect to U defined as:

RobU (h) , {x 2 X : 8z 2 U(x), h(z) = h(x)} . (3)

Definition 2 (Strongly Robust Learner). Learner B (✏, �)-robustly-learns a concept c : X ! Y
with respect to U if there exists m(✏, �) 2 N s.t. for any distribution D over X satisfying
Prx⇠D [9z 2 U(x) : c(z) 6= c(x)] = 0, with probability at least 1� � over S = {(xi, c(xi))}mi=1 ⇠
Dc, B outputs a predictor ĥ = B(S) satisfying:

RU (ĥ;Dc) = Pr
x⇠D

h
9z 2 U(x) : ĥ(z) 6= c(x)

i
 ✏.

3 Boosting a barely robust Learner to a strongly robust learner

We present our main result in this section: �-RoBoost is an algorithm for boosting the robustness of
barely robust learners. Specifically, in Theorem 1, we show that given a barely robust learner A for
some unknown target concept c (according to Definition 1), it is possible to strongly robustly learn c

with �-RoBoost by making black-box oracle calls to A.

Algorithm 1: �-RoBoost — Boosting barely robust learners.
Input: Sampling oracle for distribution Dc, black-box (�, ✏, �)-barely-robust learner A.

1 Set T = ln(2/✏)
� , and m = max

n
mA(�,

�✏
2 ,

�
2T ), 4 ln

�
2T
�

�o
.

2 while 1  t  T do
3 Call RejectionSampling on h1, . . . , ht�1 and m, and let S̃t be the returned dataset.
4 If S̃t 6= ;, then call learner A on S̃t and let ht = A(S̃t) be its output. Otherwise, break.

Output: The cascade predictor defined as
CAS(h1, . . . , hT )(z) , Ghs(z) where s = min {1  t  T : Ght(z) 6=?}, and

selective classifiers Ght(z) ,
⇢
y, if (9y 2 Y)

�
8x̃ 2 U�1(z)

�
: h(x̃) = y;

?, otherwise.
.

5 RejectionSampling(predictors h1, . . . , ht, and sample size m):
6 for 1  i  m do
7 Draw samples (x, y) ⇠ D until sampling an (xi, yi) s.t.: 8t0t9z2U(xi)Ght0 (z) =?.

// sampling from the region of D where all predictors h1, . . . , ht are not robust.

8 If this costs more than 4
✏ samples from D, abort and return an empty dataset S̃ = ;.

// If the mass of the non-robust region is small, then we can safely terminate.

9 Output dataset S̃ = {(x1, y1), . . . , (xm, ym)}.

Theorem 1. For any perturbation set U , �-RoBoost (✏, �)-robustly-learns any target concept c

w.r.t. U using T = ln(2/✏)
� black-box oracle calls to any (�, �✏

2 ,
�
2T )-barely-robust learner A for c

w.r.t. U�1(U), with total sample complexity

m(✏, �) 
4T max

n
mA(�,

�✏
2 ,

�
2T ), 4 ln

�
2T
�

�o

✏
.
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In fact, we present next an even stronger result for boosting (�, ✏0, �0)-barely-robust-learners with
fixed error ✏0 = �

6 and confidence �0 = �
6 ln(6) . This is established by combining two boosting

algorithms: �-RoBoost from Theorem 1 and ↵-Boost from earlier work [see e.g., 15, 18] which is
presented in Appendix B for convenience. The main idea is to perform two layers of boosting. In
the first layer, we use �-RoBoost to get a ( 13 ,

1
3 )-robust-learner w.r.t. U from a (�, ✏0, �0)-barely-

robust-learner A w.r.t. U�1(U). Then, in the second layer, we use ↵-Boost to boost �-RoBoost from
a ( 13 ,

1
3 )-robust-learner to an (✏, �)-robust-learner w.r.t. U .

Corollary 2 (Stronger Boosting Guarantee). For any perturbation set U , ↵-Boost com-

bined with �-RoBoost (✏, �)-robustly-learn any target concept c w.r.t. U using T =
O(log(m) (log(1/�) + log logm)) · 1

� black-box oracle calls to any (�, �
6 ,

�
6 ln(6) )-barely-robust-

learner A for c w.r.t. U�1(U), with total sample complexity

m(✏, �) = O

✓
m0

�✏
log2

✓
m0

�✏

◆
+

log(1/�)

✏

◆
,

where m0 = max
n
mA

⇣
�,

�
6 ,

�
6 ln(6)

⌘
, 4 ln

⇣
6 ln(6)

�

⌘o
.

We begin with describing the intuition behind �-RoBoost, and then we will prove Theorem 1. The
proof of Corollary 2 is deferred to Appendix B.

High-level strategy. Let Dc be the unknown distribution we want to robustly learn. Since A is a
barely robust learner for c, calling learner A on an i.i.d. sample S from Dc will return a predictor
h1, where h1 is robust only on a region R1 ✓ X of small mass � > 0 under distribution D,
Prx⇠D[x 2 R1] � �. We can trust the predictions of h1 in the region R1, but not in the complement
region R̄1 where it is not robust. For this reason, we will use a selective classifier Gh1 (see Equation 4)
which makes predictions on all adversarial perturbations in region R1, but abstains on adversarial
perturbations not from R1. In each round t > 1, the strategy is to focus on the region of distribution
D where all predictors h1, . . . , ht�1 returned by A so far are not robust. By rejection sampling,
�-RoBoost gives barely robust learner A a sample S̃t from this non-robust region, and then A returns
a predictor ht with robustness at least � in this region. Thus, in each round, we shrink by a factor of
� the mass of region D where the predictors learned so far are not robust. After T rounds, �-RoBoost
outputs a cascade of selective classifiers Gh1 , . . . , GhT where roughly each selective classifier Ght

is responsible for making predictions in the region where ht is robust.

As mentioned above, one of the main components in our boosting algorithm is selective classifiers

that essentially abstain from predicting in the region where they are not robust. Formally, for any
classifier h : X ! Y and any U , denote by Gh : X ! Y [ {?} a selective classifier defined as:

Gh(z) ,
⇢
y, if (9y 2 Y)

�
8x̃ 2 U�1(z)

�
: h(x̃) = y;

?, otherwise.
(4)

Before proceeding with the proof of Theorem 1, we prove the following key Lemma about selective

classifier Gh which states that Gh will not abstain in the region where h is robust, and whenever Gh

predicts a label for a perturbation z then we are guaranteed that this is the same label that h predicts
on the corresponding natural example x where z 2 U(x).
Lemma 3. For any distribution D over X , any U , and any � > 0, given a classifier h : X ! Y
satisfying Prx⇠D

⇥
x 2 RobU�1(U)(h)

⇤
� �, then the selective classifier Gh : X ! Y [ {?} (see

Equation 4) satisfies:

Pr
x⇠D

[8z 2 U(x) : Gh(z) = h(x)] � � and Pr
x⇠D

[8z 2 U(x) : Gh(z) = h(x) _Gh(z) =?] = 1.

Proof. Observe that, by the definition of the robust region of h w.r.t. U�1(U) (see Equation 3), for
any x 2 RobU�1(U)(h) the following holds:(8z 2 U(x))

�
8x̃ 2 U�1(z)

�
: h(x̃) = h(x). By the

definition of the selective classifier Gh (see Equation 4), this implies that: 8z 2 U(x), Gh(z) = h(x).

Since Prx⇠D

⇥
x 2 RobU�1(U)(h)

⇤
� �, the above implies Prx⇠D [8z 2 U(x) : Gh(z) = h(x)] �

�. Furthermore, for any x 2 X and any z 2 U(x), by definition of U�1, x 2 U�1(z). Thus, by
definition of Gh (see Equation 4), if Gh(z) = y for some y 2 Y , then it holds that h(x) = y.
Altogether, this implies that Prx⇠D [8z 2 U(x) : Gh(z) = h(x) _Gh(z) =?] = 1.
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We are now ready to proceed with the proof of Theorem 1.

Proof of Theorem 1. Let U be an arbitrary adversary, and A a (�, ✏, �)-barely-robust learner for
some unknown target concept c : X ! Y with respect to U�1(U). We will show that �-RoBoost
(✏, �)-robustly-learns c with respect to U . Let D be some unknown distribution over X such that
Prx⇠D [9z 2 U(x) : c(z) 6= c(x)] = 0. Let ✏ > 0 be our target robust error, and ✏

0 be the error
guarantee of learner A (which we will set later to be �✏

2 ).

Without loss of generality, suppose that �-RoBoost ran for T = ln(2/✏)
� rounds (Step 4 takes care of

the scenario where progress is made faster). Let h1 = A(S̃1), . . . , hT = A(S̃T ) be the predictors
returned by learner A on rounds 1  t  T . For any 1  t  T and any x 2 X , denote by Rt

the event that x 2 RobU�1(U)(ht), and by R̄t the event that x /2 RobU�1(U)(ht) (as defined in
Equation 3). Observe that by properties of A (see Definition 1), we are guaranteed that

81  t  T : Pr
x⇠Dt

[Rt] � � and Pr
x⇠Dt

[ht(x) 6= c(x)]  ✏
0
, (5)

where Dt is the distribution from which S̃t is drawn. In words, distribution Dt is a conditional
distribution focusing on the region of distribution D where all predictors h1, . . . , ht�1 are non-

robust. Specifically, for any x ⇠ D, in case x 2 R1 [ · · · [ Rt�1 (i.e., there is a predictor among
h1, . . . , ht�1 that is robust on x), then Lemma 3 guarantees that one of the selective classifiers
Gh1 , . . . , Ght�1 will not abstain on any z 2 U(x): 9t0  t � 1, 8z 2 U(x), Ght0 (z) 6=?. In
case x 2 R̄1 \ · · · \ R̄t�1, then, by definition of R̄1, . . . , R̄t�1, each of the selective classifiers
Gh1 , . . . , Ght�1 can be forced to abstain: 8t0  t� 1, 9z 2 U(x), Ght0 (z) =?. Thus, in Step 7 of
�-RoBoost, rejection sampling guarantees that S̃t is a sample drawn from distribution D conditioned
on the region R̄1:t�1 , R̄1 \ · · · \ R̄t�1. Formally, distribution Dt is defined such that for any
measurable event E:

Pr
x⇠Dt

[E] , Pr
x⇠D

⇥
E|R̄1 \ · · · \ R̄t�1

⇤
. (6)

Low error on natural examples. Lemma 3 guarantees that whenever any of the selective classifiers
Gh1 , . . . , GhT (see Equation 4) chooses to classify an instance z at test-time their prediction will be
correct with high probability. We consider two cases. First, in case of event Rt, x 2 RobU�1(U)(ht),
and therefore, by Lemma 3, 8z 2 U(x) : Ght(z) = ht(x). Thus, Equation 6 implies that 81  t  T :

Pr
x⇠D

⇥
Rt ^ (9z 2 U(x) : (Ght(z) 6=?) ^ (Ght(z) 6= c(x))) |R̄1:t�1

⇤

= Pr
x⇠Dt

[Rt ^ (9z 2 U(x) : (Ght(z) 6=?) ^ (Ght(z) 6= c(x)))]

= Pr
x⇠Dt

[Rt ^ (ht(x) 6= c(x))] .

(7)

Second, in case of the complement event R̄t, x /2 RobU�1(U)(ht). Therefore, by Lemma 3, 8z 2
U(x), we have Ght(z) =? or Ght(z) = ht(x). Thus,

Pr
x⇠D

⇥
R̄t ^ (9z 2 U(x) : (Ght(z) 6=?) ^ (Ght(z) 6= c(x))) |R̄1:t�1

⇤

= Pr
x⇠Dt

⇥
R̄t ^ (9z 2 U(x) : (Ght(z) 6=?) ^ (Ght(z) 6= c(x)))

⇤
 Pr

x⇠Dt

⇥
R̄t ^ (ht(x) 6= c(x))

⇤
.

(8)

By law of total probability Equation 7, Equation 8, and Equation 5,

Pr
x⇠D

⇥
(Rt _ R̄t) ^ (9z 2 U(x) : (Ght(z) 6=?) ^ (Ght(z) 6= c(x))) |R̄1:t�1

⇤

 Pr
x⇠Dt

[Rt ^ ht(x) 6= c(x)] + Pr
x⇠Dt

⇥
R̄t ^ ht(x) 6= c(x)

⇤
= Pr

x⇠Dt

[ht(x) 6= c(x)]  ✏
0
.

(9)

Boosted robustness. We claim that for each 1  t  T : Prx⇠D

⇥
R̄1:t

⇤
 (1� �)t. We proceed

by induction on the number of rounds 1  t  T . In the base case, when t = 1, D1 = D and by
Equation 5, we have Prx⇠D [R1] � � and therefore Prx⇠D

⇥
R̄1

⇤
 1� �.
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When t > 1, again by Equation 5, we have that Prx⇠Dt [Rt] � � and therefore, by Equation 6,
Prx⇠D

⇥
R̄t|R̄1:t�1

⇤
= Prx⇠Dt

⇥
R̄t

⇤
 1� �. Finally, by the inductive hypothesis and Bayes’ rule,

we get

Pr
x⇠D

⇥
R̄1:t

⇤
= Pr

x⇠D

⇥
R̄t|R̄1:t�1

⇤
Pr
x⇠D

⇥
R̄1:t�1

⇤
 (1� �) (1� �)t�1 = (1� �)t . (10)

Analysis of robust risk. For each 1  t  T , let
At =

�
x 2 R̄t : 9z 2 U(x) s.t. Ght(z) 6=? ^8t0<tGht0 (z) =?

 

denote the non-robust region of classifier ht where the selective classifier Ght does not abstain but
all selective classifiers Gh1 , . . . , Ght�1 abstain. By the law of total probability, we can analyze the
robust risk of the cascade predictor CAS(h1, . . . , hT ) by partitioning the space into the robust and
non-robust regions of h1, . . . , hT . Specifically, by the structure of the cascade predictor CAS(h1:T ),
each x ⇠ D such that 9z 2 U(x) where CAS(h1:T )(z) 6= c(x) satisfies the following condition:

9z2U(x) :CAS(h1:T )(z) 6= c(x) ) (91tT )
�
9z2U(x)

�
:8t0<tGh0

t
(z) =? ^Ght(z) 6=? ^Ght(z) 6= c(x).

Thus, each x ⇠ D such that 9z 2 U(x) where CAS(h1:T )(z) 6= c(x) can be mapped to one (or
more) of the following regions:

R1 _A1| {z }
Gh1 does not abstain

| R̄1 ^ (R2 _A2)| {z }
Gh2

does not abstain

| R̄1:2 ^ (R3 _A3) | . . . | R̄1:T�1 ^ (RT _AT )| {z }
GhT

does not abstain

| R̄1:T .

We will now analyze the robust risk based on the above decomposition:
Pr
x⇠D

[9z 2 U(x) : CAS(h1:T )(z) 6= c(x)]


T+1X

t=1

Pr
x⇠D

⇥
R̄1:t�1 ^ (Rt _At) ^ (9z 2 U(x) : CAS(h1:T )(z) 6= c(x))

⇤


TX

t=1

Pr
x⇠D

⇥
R̄1:t�1 ^ (Rt _At) ^ (9z 2 U(x) : CAS(h1:T )(z) 6= c(x))

⇤
+ Pr

x⇠D

⇥
R̄1:T

⇤

(i)


TX

t=1

Pr
x⇠D

⇥
R̄1:t�1 ^ (Rt _At) ^ (9z 2 U(x) : Ght(z) 6=? ^Ght(z) 6= c(x))

⇤
+ Pr

x⇠D

⇥
R̄1:T

⇤

=
TX

t=1

Pr
x⇠D

⇥
R̄1:t�1

⇤
Pr
x⇠D

⇥
(Rt_At) ^ (9z 2 U(x) :Ght(z) 6=? ^Ght(z) 6= c(x)) |R̄1:t�1

⇤
+ Pr

x⇠D

⇥
R̄1:T

⇤

(ii)


TX

t=1

(1� �)t�1
✏
0 + (1� �)T = ✏

0
TX

t=1

(1� �)t�1 = ✏
0 1� (1� �)T

1� (1� �)
+ (1� �)T  ✏

0

�
+ (1� �)T ,

(11)

where inequality (i) follows from the definitions of R̄1:t�1, Rt, and At, and inequality (ii) follows
from Equation 10 and Equation 9. It remains to choose T and ✏

0 such that the robust risk is at most ✏.

Sample and oracle complexity. It suffices to choose T = ln(2/✏)
� and ✏

0 = ✏�
2 . We next analyze

the sample complexity. Fix an arbitrary round 1  t  T . In order to obtain a good predictor ht

from learner A satisfying Equation 5, we need to draw mA(�,�✏/2, �/2T ) samples from Dt. We do
this by drawing samples from the original distribution D and doing rejection sampling. Specifically,
let m = max

n
mA(�,

✏�
2 ,

�
2T ), 4 ln

�
2T
�

�o
(as defined in Step 1). Then, for each 1  i  m, let

Xt,i be a random variable counting the number of samples (x, y) drawn from D until a sample
(x, y) 2 R̄1:t�1 is obtained. Notice that Xt,i is a geometric random variable with expectation 1/pt
where pt = Prx⇠D

⇥
R̄1:t

⇤
. Then, the expected number of samples drawn from D in round t is

E [
Pm

i=1 Xt,i] =
m
pt

. By applying a standard concentration inequality for the sums of i.i.d. geometric
random variables [4], we get

Pr

"
mX

i=1

Xt,i > 2
m

pt

#
 e

� 2m(1�1/2)2

2 = e
�m

4  �

2T
,
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where the last inequality follows from our choice of m. By a standard union bound, we get that
with probability at least 1 � �

2 , the total number of samples
PT

t=1

Pm
i=1 Xt,i 

PT
t=1 2

m
pt

=

2m
PT

t=1
1
pt

 4mT
✏ .

4 The Necessity of barely robust learning

We have established in Section 3 (Theorem 1) that our proposed notion of barely robust learning in
Definition 1 suffices for strongly robust learning. But is our notion actually necessary for strongly
robust learning? In particular, notice that in our proposed notion of barely robust learning in
Definition 1, we require �-robustness with respect to a “larger” perturbation set U�1(U), instead of
the actual perturbation set U that we care about. Is this necessary? or can we perhaps boost robustness
even with the weaker guarantee of �-robustness with respect to U?

In this section, we answer this question in the negative. First, we provably show in Theorem 4 that
strongly robust learning with respect to U implies barely robust learning with respect to U�1(U). This
indicates that our proposed notion of barely robust learning with respect to U�1(U) (Definition 1) is
necessary for strongly robust learning with respect to U . Second, we provably show in Theorem 6
that barely robust learning with respect to U does not imply strongly robust learning with respect to U
when the robustness parameter �  1

2 which is the main regime of interest that we study in this work.
Theorem 4. For any U , learner B, and ✏ 2 (0, 1/4), if B (✏, �)-robustly learns some unknown target

concept c w.r.t. U , then there is a learner B̃ that ( 1�✏
2 , 2✏, 2�)-barely-robustly-learns c w.r.t. U�1(U).

We defer the proof of Theorem 4 to Appendix C, but we briefly describe the high-level strategy here.
The main idea is to convert a strongly robust learner B with respect to U to a barely robust learner B̃
with respect to U�1(U). We do this with a simple expansion trick that modifies a predictor h robust
with respect to U to a predictor g robust with respect to U�1(U). For each label y 2 Y , we do this
expansion conditional on the label to get a predictor gy that is robust w.r.t. U�1(U) but only in the
region of X where h predicts the label y robustly w.r.t. U . This is described in the following key
Lemma. We then use fresh samples to select predictor a gy whose label y occurs more often.
Lemma 5. For any distribution D over X and any concept c : X ! {±1}, given a predictor

ĥ : X ! {±1} such that RU (ĥ;Dc)  ✏ for some ✏ 2 (0, 1/4), then for each y 2 {±1}, the

predictor gy defined for each x 2 X as

gy(x) , y iff x 2
[

U�1(U(x̃))
x̃2RobU (ĥ)^ĥ(x̃)=y

satisfies

Pr
x⇠D

[gy(x) 6= c(x)]  2✏ and Pr
x⇠D

⇥
x 2 RobU�1(U)(gy)

⇤
� (1�✏) Pr

x⇠D

h
ĥ(x) = y

��x 2 RobU (ĥ)
i
.

As mentioned earlier, Theorem 4 still leaves open the question of whether the weaker requirement of
barely robust learning with respect to U suffices for strongly robust learning with respect to U . We
show next that this weaker requirement is not sufficient.
Theorem 6. There is an instance space X , a perturbation set U , and a class C such that C is

(� = 1
2 , ✏ = 0, �)-barely-robustly-learnable with respect to U , but C is not (✏, �)-robustly-learnable

with respect to U for any ✏ < 1/2.

We defer the proof of Theorem 6 to Appendix D, but we briefly sketch the high-level argument here.
To show this impossibility result, we construct a collection of distributions that is barely robustly
learnable w.r.t. U with robustness parameter � = 1

2 and natural error ✏ = 0 using a randomized
predictor. We also show that it is not possible to robustly learn this collection with robust risk strictly
smaller than 1

2 . The second part is shown by relying on a necessary condition for strongly robust
learning proposed by [15] which is the finiteness of the robust shattering dimension.

5 Discussion

In this paper, we put forward a theory for boosting adversarial robustness. We discuss below practical
implications and outstanding directions that remain to be addressed.
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Practical implications. Our algorithm �-RoBoost is generic and can be used with any black-box
barely robust learner A. In the context of deep learning and `p robustness, our results suggest the
following: for targeted robustness of radius �, use an adversarial learning method [e.g., 13, 21, 6] to
learn a neural net h1

NN predictor robust with radius 2�, then filter the training examples to include
only the ones on which h

1
NN is not robust with radius 2�, and repeat the training process on the

filtered examples to learn a second neural net, and so on. Finally, use the cascade of neural nets
CAS(h1

NN, h
2
NN, . . . ) as defined in �-RoBoost to predict.

It would be interesting to empirically explore whether adversarial learning methods [e.g., 13, 21, 6]
satisfy the barely robust learning condition: on each round of boosting, the learning algorithm can
shrink the fraction of the training examples on which the predictor from the previous round is not
robust on. This is crucial for progress.

Multiclass. We would like to emphasize that our theory for boosting barely robust learners extends
seamlessly to multiclass learning problems. In particular, when the label space |Y| > 2, we obtain
the same guarantees in Theorem 1 using the same algorithm �-RoBoost. The other direction of
converting an (✏, �)-robust-learner with respect to U to an (�, 2✏, 2�)-barely-robust-learner with
respect to U�1(U) also holds, using the same technique in Theorem 4, but now we get � = 1�✏

|Y| .

Relationship between robustness parameter � and error parameter ✏. To achieve robust risk at
most ✏ using a barely robust learner A with robustness parameter �, our algorithm �-RoBoost requires
A to achieve a natural error of ✏̃ = �✏0

2 for any constant ✏0 <
1
2 (say ✏̃ = �

6 ) (see Corollary 2). It would
be interesting to resolve whether requiring natural risk ✏̃ that depends on � is necessary, or whether it
is possible to avoid dependence on �. Concretely, an open question here is: can we achieve robust risk
at most ✏ using a (�, O(✏), �)-barely-robust-learner instead of requiring (�, O(�), �)-barely-robust-
learner? It actually suffices to answer the following: given a (�, 1

3 , �)-barely-robust-learner, is it
possible to achieve robust risk at most 1

3? A related question is whether it is possible to boost the error
while maintaining robustness fixed at some level. For example, given a (�, 1

3 , �)-barely-robust-learner
A, is it possible to boost this to a (�, ✏, �)-barely-robust-learner B?

Agnostic setting. We focused only on boosting robustness in the realizable setting, where the
target unknown concept c and the unknown distribution D satisfy RU (c;Dc) = 0, and we showed
an equivalence between barely-robust-learning and strongly-robust-learning in this setting. In terms
of obtaining stronger guarantees, we remark that an agnostic-to-realizable reduction described in
[15, Theorem 8], implies, together with Theorem 1, that barely-robust-learning is equivalent to
agnostic-robust-learning. The agnostic-to-realizable reduction in [15] is not oracle-efficient, however,
so the interesting open question here is to explore oracle-efficient boosting algorithms in the agnostic
setting. A key step in this direction is to identify reasonable definitions of agnostic-barely-robust
learners that go beyond Definition 1.

Computational efficiency. Our algorithm �-RoBoost is guaranteed to terminate in at most T =
ln(2/✏)

� rounds of boosting (see Theorem 1), because our rejection sampling mechanism (Step
8) will safely terminate when the mass of the non-robust region becomes small (mass at most
✏/2). In each round t > 1 of boosting, rejection sampling (Step 7) in �-RoBoost needs to sample
from the region of the distribution where all previous predictors h1, . . . , ht�1 are non-robust, and
doing this computationally efficiently requires an efficient procedure to certify robustness of hi

on perturbation set U�1(U)(x). Certifying robustness of predictors is an active area of research
[e.g., randomized smoothing with `2 perturbations in 6], but is outside the scope of this work, since
we make no assumptions on the form of the returned predictors hi or the perturbation sets U and
U�1(U). In general, it’s hard to imagine a world where efficient robust learning is possible without
efficient certification of robustness. In other words, efficient certification of robustness seems to be a
“necessary” condition for efficient robust learning, not just for our proposed boosting algorithm, but
for any algorithm that is devised for robust learning. Without efficient certification of robustness, we
can’t even compute the robust loss, so how can we even learn.

Comparing U�1(U) vs. U . As mentioned earlier in the introduction, if U is a metric-ball of radius
�, then U�1(U) is a metric-ball of radius 2�. More generally, we think of robustness w.r.t. U�1(U)
as being robust to “twice” the adversary’s power (which is represented by U). For example, for a
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general vector space X , if U(x) = x + B, where B is some arbitrary symmetric set (i.e. v 2 B

if and only if �v 2 B), then U�1(U)(x) = x + B + B. We do not yet know of examples of U
where U�1(U) is much “larger” than U , but this is an interesting direction to explore. More generally,
it would be interesting to explore whether barely-robust-learning w.r.t. U�1(U) is computationally

equivalent to strong-robust-learning w.r.t. U .

6 Simple Experiments

We conduct simple experiments that illustrate the utility of our theoretical contribution for boosting
robustness. These experiments demonstrate that our algorithm, �-RoBoost, can boost and improve
the robustness of black-box learning algorithms. We describe the setup and the results below.

Datasets. A synthetic binary classification dataset (make_moons from scikit-learn), and MNIST
(rescaled by dividing by 255, and converted to binary classification of odd vs. even).

Perturbation set U . We consider `2 perturbations of some radius �. In the respective datasets, we
computed the minimum distance between examples from different classes and chose a radius � that’s
smaller than this minimum distance.

Barely Robust Learner. We use an off-the-shelve Linear SVM solver (from scikit-learn) as a
barely-robust-learner. Using linear predictors and `2 perturbations simplifies the computation of
the robust loss since it exactly corresponds to computing the margin loss [see Lemma 4.2 in 14].
Formally, for any linear predictor w and example (x, y),

sup
k�k2�

[sign(hw, x+ �i) 6= y] =


y

⌧
w

kwk2
, x

�
 �

�
.

We ran our boosting algorithm, �-RoBoost, and compared it against the baseline of a single Linear
SVM call. In our boosting algorithm, we run for as many rounds as possible until there are no more
examples left in the training set to run LinearSVM on.

Results On make_moons with perturbation radius � = 0.1, the baseline Linear SVM achieves a
robust accuracy of 84.78%, while �-RoBoost (with 2 rounds of boosting) achieves robust accuracy
of 89.86%. On MNIST with perturbation radius � = 0.5, the baseline Linear SVM achieves a robust
accuracy of 73.9%, while �-RoBoost (with 2 rounds of boosting) achieves robust accuracy of 80.05%.
Finally, on MNIST with a bigger perturbation radius � = 1.0, the baseline Linear SVM achieves a
robust accuracy of 48.1%, while �-RoBoost (with 2 rounds of boosting) achieves robust accuracy of
70.12%.

We observe that �-RoBoost improves the robustness of Linear SVM. Notice that even in the regime
where the baseline Linear SVM archives robust-accuracy < 50% (MNIST with perturbation radius
1.0), �-RoBoost can actually improve the robust-accuracy beyond 50%.

We include code to reproduce our MNIST experiments with perturbation radius � = 1.0 in Appendix F.
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