
Supplementary Appendix for:
Algorithms and Hardness for Learning
Linear Thresholds from Label Proportions

Rishi Saket
Google Research India

rishisaket@google.com

A Feasibility of SDP-I (Fig. 2)

A simple argument based on the satisfiability of the instance I (see Lemma 2.1 in [37]) along with
the definition of x̃i (i 2 [n]) yields that there exists r 2 R(d+1) s.t. hr, x̃ii 6= 0 (non-zero margin)
for 1  i  n, and pos (hr, x̃ii) is an LTF that satisfies all the bags of I. We take R := r(r)T.
Observing that hr, x̃iihr, x̃ji = x̃T

i
r(r)Tx̃j = x̃T

i
Rx̃j the non-zero margin property implies that

(13) is satisfied. Further, we have the following.

(i) Let B` = {xi,xj} be a bag of size 2. If B` is monochromatic then the inner products hr, x̃ii are
of the same sign and otherwise are of different signs. Thus,

(�` 2 {0, 1})) hr, x̃iihr, x̃ji � 0, and (�` 62 {0, 1})) hr, x̃iihr⇤, x̃ji  0. (24)
From the above it follows that R satisfies (14) and (15).

(ii) Let B` = {xi,xj ,xk} be a bag of size 3. If B` is monochromatic then all the pairwise products
as above are non-negative i.e.,

hr, x̃iihr, x̃ji � 0, hr, x̃jihr, x̃ki � 0 and, hr, x̃kihr, x̃ii � 0, (25)
implying that the collection of NOSPLIT constraints (16) given by (7) are satisfied by R.
Lastly, suppose B` is non-monochromatic. Let

R{r,s} =

⇢
R if hr, x̃rihr, x̃si < 0
0 otherwise

for r, s 2 [n], r < s. (26)

The definition of R{r,s} directly ensures that (8) and (9) are satisfied. Now, for every t 2 {i, j, k}
there is a t0 2 {i, j, k} s.t. hr, x̃tihr, x̃t0i = x̃T

t
Rx̃t0 < 0. Letting t00 be the third index, this

guarantees that R{t,t0} +R{t,t00} is either R or 2R, and thus (10)–(12) are satisfied.

B Proof of Theorem 1.2 for q = 2

We wish to compute
min

p2[0,1]
max
↵2[0,1]

p↵2 + 2(1� p)↵(1� ↵) (27)

Define:
�(p,↵) := p↵2 + 2(1� p)↵(1� ↵) (28)

for p,↵ 2 [0, 1]. It is easy to see that if we choose p � 1/2 then letting ↵ = 1 yields �(p,↵) � 1/2.
Therefore, let us consider 0  p  1/2. Differentiating w.r.t ↵ we obtain,

@�(p,↵)

@↵
= ↵(6p� 4) + 2(1� p), and,

@2�(p,↵)

@2↵
= 6p� 4. (29)

Thus, in the range 0  p  1/2, @
2�(p,↵)
@2↵

< 0, therefore �(p,↵) attains a maximum when
@�(p,↵)

@↵
= 0. Thus we set ↵(6p � 4) + 2(1 � p) = 0, to obtain the root ↵⇤ = (1 � p)/(2 � 3p).

Substituting this value of ↵ along with some calculations we obtain

�(p,↵⇤) =
(1� p)2

(2� 3p)
.

Differentiating the above w.r.t p we find that it is minimized at p = p⇤ = 1/3, at which ↵⇤ = 2/3.
Observing that �(1/3, 2/3) = 4/9 completes the analysis.
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C Proof of Theorem 4.1

Our hardness result is via a reduction from the Smooth-Label-Cover problem defined below.
Definition C.1. An instance of Smooth-Label-Cover L(G(V,E), N,M, {⇡e,v | e 2 E, v 2 e})
consists of a regular connected (undirected) graph G(V,E) with vertex set V and edge set E. Every
edge e = (v1, v2) is associated with projection functions {⇡e,vi}2

i=1 where ⇡e,vi : [M ] ! [N ]. A
vertex labeling is a mapping defined on L : V ! [M ]. A labeling L satisfies edge e = (v1, v2) if
⇡e,v1(L(v1)) = ⇡e,v2(L(v2)). The goal is to find a labeling which satisfies the maximum number of
edges.

The following theorem states the hardness of Smooth-Label-Cover and is proved in Appendix A of
[21].
Theorem C.2. There exists a constant c0 > 0 such that for any constant integer parameters Q,R � 1,
it is NP-hard to distinguish between the following two cases for a Smooth Label Cover instance
L(G(V,E), N,M, {⇡e,v | e 2 E, v 2 e}) with M = 7(Q+1)R and N = 2R7QR:

• (YES Case) There is a labeling that satisfies every edge.
• (NO Case) Every labeling satisfies less than a fraction 2�c0R of the edges.

In addition, the instance L satisfies the following properties:

• (Smoothness) For any vertex w 2 V , 8i, j 2 [M ], i 6= j, Pre⇠w [⇡e,w(i) = ⇡e,w(j)] 
1/Q, where the probability is over a randomly chosen edge incident on w.

• For any vertex v, edge e incident on v, and any element i 2 [N ], we have |(⇡e,v)�1(i)| 
d := 4R; i.e., there are at most d = 4R elements in [M ] that are mapped to the same
element in [N ].

• (Weak Expansion) For any � > 0, let V 0 ✓ V and |V 0| = � · |V |, then the number of edges
among the vertices in |V 0| is at least �2|E|.

Theorem 4.1 directly follows from the following theorem.
Theorem C.3. For positive integers constants q > 1, ` � 1, and any constants ⇣ > 0 and {pr �
0}q

r=1 s.t.
P

q

r=1 pr = 1, there is a setting of Q,R in Theorem C.2 such that there is a polynomial
time reduction from the corresponding instance L of Smooth-Label-Cover to an instance I of
LLP-LTF[q] with pr fraction of bags of size q and label proportion r/q, for r 2 {1, . . . , q} satisfying:

• YES Case. If L is a YES instance then there is an LTF that satisfies all the bags of I.

• NO Case. If L is a NO instance then for any {0, 1}-valued function f of at most ` LTFs,
satisfies at most �q,p1,...,pq + ⇣ fraction of the bags in I where

�q,p1,...,pq := max
↵2[0,1]

 
X

r=1

pr�q,r,↵

!
where �q,r,↵ :=

✓
q

r

◆
↵r(1� ↵)q�r. (30)

This section is devoted to the proof of Theorem C.3. Given q, ` we first set the parameters of the
reduction as follows:

" :=
"0

1010q`

✓
⇣

8q`

◆32

⌧ := "0
"8

28
� := "0

⌧4

M2
Q :=

4

"2

✓
16d8`

⌧6

◆2

(31)

where "0 2 (0, 1) is a small enough absolute constant. Here d := 4R is the size of the pre-images of
the projective constraints in Theorem C.2, and R is the free parameter that will be chosen to be small
enough. These parameter settings will be used till the end of Appendix F.

Let L be the Smooth-Label-Cover instance obtained from Theorem C.2 using the above parameter
setting. Let us define the space of coordinates as RVL⇥[M ], and for a vector X in this space let Xv

be the M -dimensional restriction to the coordinates corresponding to v. First, we define in Fig. 4
an intermediate instance Ĩ of LLP-LTF[q] as a sampling procedure for bags of size q and their label
proportions. The probabilities (p1, . . . , pq) are only used to sample bags from different Dr

X
.
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1. Uniformly sample a vertex v 2 VL.
2. Sample r 2 [q] with probability pr.
3. With ", � as chosen in (31) sample a bag of M -dimensional vectors�

X(1), . . . ,X(q)
�
 Dr

X
(Fig. 5).

4. Define q vectors
n
X̃(j)

oq

j=1
each in RVL⇥[M ] as:

X̃(j)
w

=

⇢
X(j) if w = v
0 otherwise,

8w 2 VL, j 2 [q]. (32)

5. Output the bag B̃ =
n
X̃(j)

oq

j=1
with label proportion �B = r/q

Figure 4: Instance Ĩ

C.1 Folding and Final Instance I

For any edge e = (u, v) 2 EL and element j 2 [N ], define the vector h(e,j) 2 RVL⇥[M ] as follows,

h(e,j)
w,i

=

8
<

:

1 if w = u and i 2 (⇡e,u)�1(j)
�1 if w = v and i 2 (⇡e,v)�1(j)
0 otherwise.

Therefore, for any vector X̃ 2 RVL⇥[M ],

8e = (u, v) 2 E, j 2 [N ], X̃ ? h(e,j) ,
X

i2(⇡e,u)�1(j)

X̃u,i =
X

i02(⇡e,v)�1(j)

X̃v,i0 (33)

Define two subspaces H and F of RVL⇥[M ] as:

H := span(h(e,j) | e 2 E, j 2 [N ]}) and F = H? (34)

i.e, F is the orthogonal complement of H in RVL⇥[M ]

The final instance I is obtained by replacing each bag B̃ =
n
X̃(j)

oq

j=1
with a bag B =

n
X

(j)
oq

j=1
,

where X
(j)

is the projection of the vector X̃(j) onto F and represented using a orthonormal basis for
F (j 2 [q]). Thus, the entire instance I along with the expected LTF solutions reside in F .

C.2 Proof of YES Case

If L is a YES instance then consider a satisfying labeling L : VL ! [M ], and define the vector
r̃ 2 RVL⇥[M ] as r̃v,L(v) = 1 for all v 2 VL and all the other coordinates are 0. It is easy to see the
r̃ ? H and therefore r̃ 2 F . Letting r be r̃ written in the orthonormal basis of F and consider the
LTF f⇤(X) = pos

�
hr,Xi

�
.

Observe that since r̃ ? H , for any bag B̃ =
n
X̃(j)

oq

j=1
from Ĩ and the corresponding bag B =

n
X

(j)
oq

j=1
of I,

hr,X(j)i = hr̃, X̃(j)i (35)

Let v 2 VL chosen in Step 1 of Fig. 4 when B̃ was sampled in Ĩ. From the construction of the vectors
in B̃ and the fact that pos

�
heL(v), .i

�
for the coordinate vector eL(v) 2 RM satisfies all the bags of

Dr

X
(r 2 [q]) (See Appendix D.1) implies that the LTF f⇤ satisfies all the bags of I.
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C.3 Proof of NO Case.

Consider any boolean function f of ` LTFs over F given by pos(hs(·) where hs(·) := hcs, ·i+ cs0
(s 2 [q]). By folding, the coefficient vectors are written in a basis for F , and therefore we can rewrite
the coefficient vectors as cs in RVL⇥[M ] satisfying (33) (s 2 [q]). Thus, in RVL⇥[M ] the LTFs are
given by hs(X̃) := hcs, X̃i+ cs0 .

Let us further for each v 2 VL define hs,v(X) := hcs,v,Xi+ c0 over RM , for s 2 [`].

Suppose that f(pos(h1), . . . , pos(h`)) satisfies more than �q,p1,...,pq + ⇣ fraction of all the bags of I.
Since cs 2 F (35) for r, r̃ is also satisfied for cs, cs, i.e., the relevant inner products of the coefficient
vectors and the bag feature vectors are preserved. Therefore, f(pos(h1), . . . , pos(h`)) over RVL⇥[M ]

satisfies �q,p1,...,pq + ⇣ fraction of all the bags of Ĩ.

By averaging, for ⇣/2 fraction of the vertices v (call them nice), f(pos(h1), . . . , pos(h`)) satisfies at
least �q,p1,...,pq + ⇣/2 fraction of the bags B̃ sampled after choosing v in Step 1 of Fig. 4. By the
construction, this implies that for nice vertices v f(pos(h1,v), . . . , pos(h`,v)) satisfies �q,p1,...,pq +
⇣/2 fraction of the bags sampled from Dq,p1,...,pq where the latter samples bags from Dr

X
with

probability pr, for r 2 [q]. By our setting of the parameters, this is contradicts the condition of
Lemma F.3 so that for each nice v we can select one sv 2 [`] s.t. csv,v is not ⌧ -regular (see Defn. E.7).
Thus, by averaging there is one s⇤ 2 [`] s.t. sv = s⇤ for at least 1/` fraction of the nice vertices. Call
these vertices good, and they therefore constitute ⇣/(2`) fraction of all the vertices. For convenience
let us abuse notation to let cv denote cs⇤,v .

Using the above each good v define the subsets
S0(v) := {i 2 [M ] | |cv,i| > ⌧kcvk2}, (36)
S1(v) := {i 2 [M ] \ S0(v) | |cv,i| > (⌧/(4d))kcvk2}, (37)
S2(v) := [M ] \ (S0(v) [ S1(v)) . (38)

Note that 1  |S0(v)|  1/⌧2 and |S1(v)|  16d2/⌧2. By the density property of Theorem C.2 we
have that the good vertices induce at least (⇣2/(4`2) fraction of the edges EL. Out of these call those
edges e = (u, v) good if it satisfies:
|⇡e,u (S0(u) [ S1(u))| = |S0(u) [ S1(u)| and, |⇡e,v (S0(v) [ S1(v))| = |S0(v) [ S1(v)|

(39)
Using the smoothness property from Theorem C.2, our choice of Q along with an union bound of
separating any pair in S0(u)[S1(u) and similarly for S0(v)[S1(v) we obtain that the good vertices
induce at least (⇣2/(8`2)) fraction of the edges in EL as good edges.

We now show that,
⇡e,u (S0(u)) \ ⇡e,v (S0(v)) 6= ; for any good edge e = (u, v). (40)

To see this, assume for a contradiction that a good edge e = (u, v) has ⇡e,u (S0(u))\⇡e,v (S0(v)) =
;, and assume WLOG that kcvk2 � kcuk2. Choose i⇤ 2 S0(v) and let j⇤ = ⇡e,v(i⇤). By (39)��(S0(v) [ S1(v)) \ (⇡e,v)�1(j⇤)

�� = 1. Thus,
������

X

i2\(⇡e,v)�1(j⇤)

cv,i

������
� |cv,i⇤ |� d ((⌧/(4d))kcvk2) � (3⌧/4)kcvk2 (41)

On the other hand, since j⇤ 62 ⇡e,u (S0(u)), and
��S1(u) \ (⇡e,u)�1(j⇤)

��  1 (by (39))
������

X

i2\(⇡e,u)�1(j⇤)

cu,i

������
 d ((⌧/(4d))kcuk2)  (⌧/4)kcuk2 (42)

However, (33) implies that the LHS of (41) and (42) should be the same, which from the above is a
contradiction since we assumed kcvk2 � kcuk2.

Finally, we construct a good labeling by sampling a label u.a.r. from S0(v) for each good vertex v.
By the size bound on S0(v), and (40), this procedure satisfies each good edge with probability at
least ⌧4, thereby satisfying in expectation at least ⌧4(⇣2/(8`2)) fraction of all the edges, which is a
contradiction by a small enough setting of R and the NO case of Theorem C.2.
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D Dictatorship Test and Analysis

Let M and ` be positive integers, and let � 2 (0, 1) be a parameter possibly depending on M, ` and q.
Further, let " > 0 be a constant to be chosen later (independent of M ).

Let X1, . . . , XM be M coordinates over which the dictatorship test will be created. First we define
a distribution Dr

X
bags each of size q and observed label proportion r/q i.e., with exactly r 1s, for

some r 2 {1, . . . , q}. For convenience let us define functions �s : {0, 1, 2}q ! Z�0 for s = 1, 2
where �s(u) counts the number of s-valued coordinates in u, for s = 1, 2. Let Ur be the uniform
distribution over the subset {u 2 {0, 1, 2}q | �2(u) = 1,�1(u) = r � 1} i.e., the subset of vectors
in {0, 1, 2}q having exactly one 2 and (r � 1) 1 values. With this we define in Fig. 5 the distribution
Dr

X
.

Output: q vectors
�
X(1), . . . ,X(q)

�
, where X(j) = (X(j)

1 , . . . , X(j)
M

), for j 2 [q].

1. Construct a matrix Z 2 {0, 1, 2}M⇥q by independently for each i 2 [M ] sampling Zi

uniformly from Ur.

2. Sample Z̃ 2 {0, 1, 2}M⇥q by independently sampling each entry to be 0 w.p. (1� "),
1 w.p. "/2 and 2 w.p. "/2.

3. For each i 2 [M ], j 2 [q] define

X(j)
i

:=

8
>>>>><

>>>>>:

0 if Zij = 0
� if Zij = 1
� if Zij = 2 and Z̃ij = 0
1 if Zij = 2 and Z̃ij = 1
2 if Zij = 2 and Z̃ij = 2.

(43)

4. Output
�
X(1), . . . ,X(q)

�
as a bag of exactly r 1s.

Figure 5: Distribution Dr

X
, r 2 {1, . . . , q � 1}

D.1 Completeness Analysis

For any i 2 [M ] consider the LTF given by pos(Xi). Consider Dr

X
wherein each row of Z is sampled

from Ur, i.e. having exactly r non-zero values. By construction the coordinates of nonzero values
in (X(1)

i
, . . . , X(q)

i
) and in Zi are the same. Therefore, pos(Xi) will classify as 1 exactly r of the

vectors in any bag sampled from Dr

X
, thus satisfying all the bags of Dr

X
.

The soundness analysis is fairly lengthy and tedious and appears in Appendix F.

E Preliminaries for Dictatorship Test Soundness Analysis

The following theorems are used for the soundness analysis of the dictatorship test in Appendix D
Theorem E.1 (Berry-Esseen Theorem, [31]). Let X1, . . . , Xn be independent random variables
with E[Xi] = 0 and Var[Xi] = �2

i
. Let �2 =

P
i2n �

2
i
. Then,

sup
t2

������
Pr

X1,...,Xn

2

4��1
X

i2[n]

Xi  t

3

5� �(t)

������
 c� (44)

where c is a universal constant, � is the CDF of the standard Gaussian N(0, 1), and � :=
��1 maxi2[n](E

⇥
|Xi|3

⇤
/�2

i
).

Theorem E.2 (Multi-dimensional Berry-Esseen Theorem, [34]). Let X1, . . . ,Xn be independent
random vectors in Rd with E[Xi] = 0. Let S =

P
n

i=1 Xi and ⌃ = Cov[S]. Then for all convex sets
A ✓ Rd

|P [S 2 A]� Pr[Z 2 A|  Cd1/4� (45)

where C is a universal constant, Z ⇠ N(0,⌃) and � :=
P

n

i=1 E
h��⌃�1/2Xi

��3
2

i
.
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Theorem E.3 (Chernoff-Hoeffding). Let X1, . . . , Xn be independent random variables, s.t. ai 
Xi  bi, �i = bi � ai for i = 1, . . . , n. Then, for any t > 0,

Pr

"�����

nX

i=1

Xi �
nX

i=1

E[Xi]

����� > t

#
 2 · exp

✓
� 2t2P

n

i=1 �
2
i

◆
.

Chebyshev’s Inequality. For any random variable X and t > 0,
Pr [|X| > t]  E[X2]/t2. (46)

The total variation distance between two distributions P,Q over Rd is TV(P,Q) := sup
A✓Rd |P (A)�

Q(A)|.
Theorem E.4 ([14]). If ⌃1 and ⌃2 are positive-definite d⇥ d matrices, and let �1, . . . ,�d be the
eigenvalues of ⌃�11 ⌃2 � Id, then for any µ 2 Rd

TV (N (µ,⌃1) , N (µ,⌃2))  (3/2)

 
dX

i=1

�2
i

!1/2

The total variation between one-dimensional Gaussians is as follows.
Theorem E.5 ([14]).

TV
�
N(µ1,�

2
1), N(µ2,�

2
2)
�
 3|�2

1 � �2
2 |

�2
1

+
|µ1 � µ2|

2�1
.

The following Gaussian anti-concentration bound (which is obtained by simple integration) showss
that for g ⇠ N(0,�2)

Pr[g 2 [t, t+ �]]  �/(�
p
2⇡) (47)

for any t 2 R and � > 0. We will also use the following simple lemma which appears as Lemma B.8
in [37].
Lemma E.6. Any boolean valued function f over boolean variables y1, . . . , y` can be written as

f(y1, . . . , y`) =
X

H✓[`]

 
aH

Y

s2H
ys

!
, (48)

where each |aH |  2` for each H ✓ [`].
Definition E.7 (Regularity). A vector c 2 Rn is ⌫-regular if |ci|  ⌫kck2 for all i 2 [n].

F Dictatorship Test Soundness Analysis

In this section we shall consider ` linear forms h1 . . . h` : RM ! R given by hs(X) := hcs,Xi+ c0
such that cs are unit and ⌧ -regular (Defn. E.7) vectors, for each s 2 [`]. The choice of ⌧ and other
parameters is as given in (31). The following is the key lemma for our analysis, the proof of which
we defer to Appendix F.1.
Lemma F.1. There is a vector µ 2 R` and a covariance matrix ⌃ 2 R`⇥` satisfying: for any
r 2 {1, . . . , q � 1} and any j 2 [q] and any subset H ✓ [`], with probability at least (1� ⌫0) over
the choice of Z in Step 1 of Dr

X
(Fig. 5):

����� Pr
X(j) D

r
X

"
^

s2H

⇣
hs

⇣
X(j)

⌘
> 0
⌘#
� Pr

(g1,...,g`) N(µ,⌃)

"
^

s2H
(gs > 0)

#�����  ⌘0 (49)

where ⌫0, ⌘0 = O(`2"1/4).

Let f1, . . . , fq be some boolean functions over ` boolean variables. With the setup as in Lemma F.1,
define for convenience,

byjs := pos
⇣
hs

⇣
X(j)

⌘⌘
, (50)

for all s 2 [`] and j 2 [q] where (X(j))q
j=1 is sampled from Dr

X
which is either specified or clear

from context. Also, let ys := pos(gs) where (g1, . . . , g`) N(µ,⌃).
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Lemma F.2. With the variables defined as above,
������
ED

r
X

2

4
qY

j=1

fj (byj1, . . . , byj`)

3

5�
qY

j=1

EN(µ,⌃) [fj (y1, . . . , y`)]

������
 q⌫0 + 22q` · ⌘0, (51)

for each r 2 [q � 1].

Proof. From Lemma E.6 we can write the boolean functions as fj(!1, . . . ,!`) :=P
H✓[`] aj,H

Q
s2H !s, where each aH is of magnitude at most 2`. Using this one can expand

the first term of the LHS of (51) as:

E

2

4
qY

j=1

fj (byj1, . . . , byj`)

3

5 =
X

(Hj)
q
j=12(2[`])

q

E

2

4
qY

j=1

0

@aj,Hj

Y

s2Hj

byjs

1

A

3

5 . (52)

From Lemma F.1 for all except q⌫0 fraction of the choices of Z, (49) holds for all j 2 [q].

Let us fix one such Z and observe that this renders { bX(j)}q
j=1 independent vectors. Applying (49) to

the expectation on RHS of (52) we obtain,

E

2

4
qY

j=1

0

@aj,Hj

Y

s2Hj

byjs

1

A | Z

3

5 =
qY

j=1

0

@aj,HjE

2

4
Y

s2Hj

byjs | Z

3

5

1

A (53)

and
������

qY

j=1

0

@aj,HjE

2

4
Y

s2Hj

byjs | Z

3

5

1

A�
qY

j=1

0

@aj,HjE

2

4
Y

s2Hj

ys | Z

3

5

1

A

������


qY

j=1

��aj,Hj

�� ⌘0  2q`⌘0.

(54)
Applying the above two bounds to all the 2q` terms in (52) and using the fact that the product of the
boolean functions is at most one to bound the loss due to the error in the choice of Z to q⌫0 we obtain
(51).

We finally have the following lemma bounding the probability of satisfying bags sampled from Dr

X
,

r 2 {1, . . . , q}.

Lemma F.3. Let f be some a boolean function over ` boolean variables, such that ↵ :=
E[f(y1, . . . , ys)]. Then, then letting b� be the probability that f applied to the LTFs pos(hs) (s 2 [`])
satisfies the bags sampled from Dr

X
(r 2 [q]) we have,

b� 
✓
q

r

◆
↵r (1� ↵)q�r + ⇣1, (55)

where ⇣1 = O
�
(q⌫0 + 22ql⌘0) · 22q

�
.

Proof. By definition we have that b� is the expected sum of all terms
Q

q

j=1 fj (byj1, . . . , byj`) where
exactly r out of ` fjs are f and the rest (1� f). Applying (51) of Lemma F.2, and using the fact that
↵ 2 [0, 1] we obtain that the expectation of each such term is ↵r (1� ↵)q�r + (q⌫0 + 22ql⌘0) · 2q.
Multiplying this by the number

�
q

r

�
 2q of the possible terms yield the bound of the lemma.

F.1 Proof of Lemma F.1

Let us fix any j 2 [q] and r 2 [q � 1] along with the choices of � and ⌧ as in (31).
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F.1.1 Conditional expectation of a single hs

Consider the steps of Dr

X
in Fig. 5. Let J := {i 2 [M ] | Zij = 2}, and let J" := {i 2 J | Z̃ij 6= 0}.

Note that J is completely determined by jth column of Z while J" depends on that along with the
jth column of Z̃. For a given choice of Z in Step 1 of Dr

X
(Fig. 5) define the following quantities.

E(J)
s

:= ED
r
X

h
hs(X

(j)) | J
i
, V (J)

s
:= VarDr

X

h
hs(X

(j)) | J
i

(56)

Fixing J , and randomizing J", each coordinate i in J has X(j)
i

�, 1 or 2 w.p. 1 � ", "/2 and "/2
respectively. Further, the coordinates outside J are � with probability (r � 1)/(q � 1) and otherwise
0. Therefore,

E(J)
s

=
X

i2[M ]

⇣
1{i2J} · Es,i,j + (1� 1{i2J}) · Ẽs,i,j

⌘
+ cs,0 (57)

where
Es,i,j = cs,i (3"/2 + �(1� ")) , Ẽs,i,j = cs,i ((r � 1)/(q � 1)) �. (58)

Thus, we can bound E(J)
s as:

E(J)
s
2
h
E

(J)
s
� �kcsk1, E

(J)
s

+ �kcsk1
i
, (59)

where

E
(J)
s

:= (3"/2)
X

j2J
cs,i + cs,0 and EJ

h
E

(J)
s

i
= (3"r/(2q))

X

j2[M ]

cs,i + cs,0 (60)

since 1i2J are iid with Pr[i 2 J ] = 1/q. Further,

VarJ
h
E

(J)
s

i
= VarJ

2

4(3"/2)
X

j2J
cs,i

3

5 = (3"/2)2
�
(1/q)� (1/q)2

�
kcsk22 (61)

where the last equality uses the fact that each i 2 J independently w.p. (1/q).

F.1.2 Conditional covariance of hs, ht

Consider s, t 2 [`] (not necessarily distinct), and let us define:

Cs,t,i = Cov (cs,iXi,j , ct,iXi,j | i 2 J) and, C̃s,t,i = Cov (cs,iXi,j , ct,iXi,j | i 62 J) (62)

We can compute the above quantities as:

Cs,t,i = E
⇥
cs,ict,iX

2
i,j

⇤
� Es,i,jEt,i,j (63)

and a few calculations along with our setting of � yield:
��Cs,t,i �

⇥
(5")/2� (9"2/4)

⇤
cs,ict,i

�� 
p
� |cs,ict,i| (64)

Further, it is easy to see that
C̃s,t,i  �2 |cs,ict,i| . (65)

Therefore,

C(J)
s,t

:= Cov
⇣
hs(X

(j), ht(X
(j)) | J

⌘
, C

(J)
s,t

:=
⇥
(5")/2� (9"2/4)

⇤ X

i2[M ]

1{i2J}cs,ict,i (66)

satisfy, ���C(J)
s,t
� C

(J)
s,t

���  2
p
�kcsk2kctk2. (67)

where we use Cauchy-Schwatrz to bound
P

i
|cs,ict,i| by kcsk2kctk2. We will now prove a two

sided bound on C
(J)
s,t

. For this, observe that each i 2 J w.p. (1/q) which implies that,

EJ

h
C

(J)
s,t

i
=
⇥
(5")/2� (9"2/4)

⇤
(1/q)

X

i2[M ]

cs,ict,i (68)
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and furthermore,
X

i2[M ]

(cs,ict,i)
2 

✓
max
i2[M ]

|cs,i|
◆✓

max
i2[M ]

|cs,i|
◆ X

i2[M ]

|cs,ict,i|  ⌧kcsk2⌧kctk2 · kcsk2kctk2

= ⌧2kcsk22kctk22 (69)

using the fact that cs and ct are ⌧ -regular. Applying the Chernoff-Hoeffding bound (Theorem E.3)
we obtain that

Pr
J

h���C
(J)
s,t
� EJ

h
C

(J)
s,t

i��� > ⌧1/2kcsk2kctk2
i
 exp(�1/⌧). (70)

which using (67) and the fact that cs, ct are unit vectors,

Pr
J

h���C(J)
s,t
� EJ

h
C

(J)
s,t

i���  ⌧1/2
i
� 1� exp(�1/⌧). (71)

F.1.3 Berry-Esseen for single hs

We now show using the above bounds that there is a fixed Gaussian distribution which is close to the
distribution of hs(X(j)) conditioned on J , for nearly all choices of J .

First we set t = s and use (67), (68) and (70) and the setting of � to obtain that except with probability
exp(�1/⌧) over the choice of J ,
���C(J)

s,s
� EJ

h
C

(J)
s,s

i���  2⌧1/2kcsk22, and, EJ

h
C

(J)
s,s

i
=
⇥
(5")/2� (9"2/4)

⇤
(1/q)kcsk22. (72)

implying (from our setting of ⌧ )
���C(J)

s,s
� EJ

h
C

(J)
s,s

i���  2⌧1/4EJ

h
C

(J)
s,s

i
. (73)

Along with the second equality in (72), (61) and (59) (with our setting of ") implies that,

VarJ
h
E

(J)
s

i
 "EJ

h
C

(J)
s,s

i
(74)

Thus, using Chebyshev’s inequality we obtain that

Pr

"���E
(J)
s
� EJ

h
E

(J)
s

i��� > "1/4
r

EJ

h
C

(J)
s,s

i#

 Pr

"���E
(J)
s
� EJ

h
E

(J)
s

i��� >
⇣
1/"1/4

⌘r
VarJ

h
E

(J)
s

i#

 "1/4. (75)

Combining the above with (59) and using the setting of � which ensures (using the second equality in
(72)) that

�kcsk1  "1/4
r
EJ

h
C

(J)
s,s

i

we obtain that except with probability exp(�1/⌧) + "1/4 over the choice of J that (73) holds along
with ���E(J)

s
� EJ

h
E

(J)
s

i���  "1/4
r
EJ

h
C

(J)
s,s

i
(76)

Fix one such choice “good’ choice of J guaranteed from above, and construct the sum

hs(X
(j))� E

h
hs(X

(j)) | J
i
=
X

i2[m]

�i, where �i = cs,iXij � E [cs,iXij | J ] . (77)

From the above proved lower bounds on the variance of hs(X(j)) conditioned on J , the ⌧ -regularity
of cs and our setting of � and ⌧ , one upper can using straightforward calculations upper bound

max
i

E[|�i|3 | J ]
⇣P

k2[M ] E[|�k|2 | J ]
⌘1/2

E[|�i|2 | J ]
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by
p
⌧ . One can then apply the Berry-Esseen theorem to obtain that for any t 2 R,

���Pr
h
hs(X

(j)) > t | J
i
� Pr

h
G̃ > t

i���  O(
p
⌧) (78)

where G̃ ⇠ N
⇣
E(J)

s , C(J)
s,s

⌘
. Moreover, from Theorem E.5 we obtain that for any t 2 R,

���Pr
h
G̃ > t

i
� Pr [G > t]

���  6⌧1/4 + "1/4 = O("1/4), (79)

where G ⇠ N
⇣
EJ

h
E

(J)
s

i
,EJ

h
C

(J)
s,s

i⌘
. Combining the above two, we obtain that,

���Pr
h
hs(X

(j)) > t | J
i
� Pr [G > t]

���  O("1/4) (80)

F.1.4 Applying Mutlivariate Berry-Esseen Theorem

For applying the multivariate Berry-Esseen theorem we consider h1, . . . , h` together and construct
their noisy versions as follows. We fix a choice of J which is “good” (as defined in the previous
subsection) for all s 2 [`], and also satisfies the constraint inside the probability in (71) for all s, t in[`].
This is true for all except O(`2"1/4) fraction of the choices of J . Let {⇣s,i ⇠ N

⇣
0, "

2

64 |cs,i|
2
⌘
} be

mean-zero independent Gaussians independent of each other and independent of all other variables.
Define for all s 2 [`]

h̃s(X
(j)) =

X

i2[M ]

⇣
cs,iX

(j)
i

+ ⇣s,i
⌘
+ cs,0 (81)

and note that the E[hs | J ] = E[h̃s | J ] for all J . Further, hs � h̃s is a mean-zero Gaussian
with variance ("2/64) which is at most O(") fraction of EJ

h
C

(J)
s,s

i
and of C

(J)
s,s

by our choice of J .
Therefore using Thm. E.5,

���Pr[hs > t | J ]� Pr[h̃s > t | J ]
���  O(

p
") (82)

for any t 2 R and s 2 [`]. Now, define the vectors Y1, . . . ,YM 2 R` as:

Yi,s :=
⇣
cs,iX

(j)
i

+ ⇣s,i
⌘
� E[cs,iX

(j)
i

| J ] (83)

Let ⌃ be the covariance matrix of given by the covariances CJ

s,t
, and let ⌃̃ be the covariance matrix

(conditioned on J) of Y :=
P

i2[M ] Yi. Since kcsk2 = 1 for s 2 [`], we have that

⌃̃ = ⌃+
"2

64
I. (84)

Using the bounds proved in the previous two subsections, the ⌧ -regularity of cs (s 2 [`]) and the
choice of ⌧ , the following can be shown (analogous to Appendix D.5 of [37]):

X

i2[M ]

E
⇥
kYik32

⇤
 O(`

p
⌧) (85)

Using the fact that the minimum eigenvalue of ⌃̃ is at least "2/64, the maximum eigenvalue of ⌃̃�1/2
is at most 8/". Thus,

MX

i=1

kE
h
⌃̃�1/2Yik32

i
 O

�
`
p
⌧/"3

�
. (86)

Thus, applying the multivariate Berry-Esseen theorem:

|Pr[Y 2 A | J ]� Pr[⌥ 2 A]|  O
�
`
p
⌧/"3

�
(87)

where A is any convex subset of R` and ⌥ ⇠ N
⇣
0, ⌃̃

⌘
.

Now consider the matrix ⌃0 given by the entries EJ

h
C

(J)
s,t

i
, and define ⌃ := ⌃0 + ("2/64)I.

Note that C
(J)
s,t

is the covariance C(J)
s,t

obtained when � = 0, thereofore ⌃0 is an expectation over
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SPLITt

⇣
(ur)

t
r=1,Q, (Q{r,s})1r<st

⌘
:

81  r < s  t : uT
rQ

{r,s}us  0 (89)

81  r < s  t : Q�Q{r,s} ⌫ 0 (90)

8r 2 [t] :
X

s2[t]\{r}

Q{r,s} ⌫ Q (91)

Figure 6: SPLITt for t � 3

For bags non-monochromatic bags B` s.t. |B`| =
t 2 [4, q], B` = {xir}tr=1,

SPLITt

⇣
(x̃ir )

t
r=1,R, (R{ir,is})1r<st

⌘

(92)

Figure 7: Constraints for non-
monochromatic bags of size t 2 [3, q] in
SDP-I-q.

covariance matrices and is therefore also a covariance matrix. Further, by the choice of J satisfying
the probability condition in (71) for all s, t, we obtain that

k⌃̃�⌃kF = k⌃�⌃0kF  `2⌧1/2.

Using the fact that minimum eigenvalue of ⌃ is at least "64, we obtain that the squares of the
eigenvalues of ⌃

�1 ⇣
⌃� ⌃̃

⌘
is at most O(`2⌧1/2/"2). Also, we can add in the expectations to

obtain from (87) and Theorem E.4���Pr
h
(h̃1, . . . , h̃`) 2 A | J

i
� Pr[⌥ 2 A]

���  O
�
`2
p
⌧/"3

�
(88)

where ⌥ ⇠ N(µ̃,⌃) where µ̃s = E[h̃s | J ] = E[hs | J ] for s 2 [`]. From the choice of J and we
know that

|µ̃s � µs|  "1/4
q
⌃s,s,

where µ is a expectation vector given by µs = EJ

h
E

(J)
s

i
. This combined with (82) allows us to take

µ and ⌃ with an ⌫0, ⌘0 = O(`2"1/4) in the statement of Lemma F.1.

G Proof of Thm. 1.3 : Weakly Satisfying LLP-LTF[q]

Our goal is to show an ⌦(1/q) approximation for weakly satisfying bags of a weakly satisfiable
LLP-LTF[q] instance, for all q � 4 with the case of q  3 handled by Theorem 1.1. So, for the rest of
this section we shall consider q � 4.

It is sufficient to provide an ⌦(1/q)-approximation for only non-monochromatic bags – if the instance
containts more than (1/q)-fraction monochromatic bags, standard linear programming can be used
to satisfy all of them (since weak satisfiability is same as satisfiability for monochromatic bags),
otherwise the ⌦(1/q) approximation can be applied to the � (1� 1/q)-fraction of weakly satisfiable
non-nonochromatic bags, together yielding an overall ⌦(1/q)-approximation. The rest of this section
provides the ⌦(1/q) approximation for weakly satisfying non-monochromatic bags of a weakly
satisfiable LLP-LTF[q] instance I.

The SDP relaxation has all the variables of SDP-I (Fig. 2) as well as all of its constraints for non-zero
margin (i.e., (13)) and those for non-monochromatic bags of size 2. For non-monochromatic bags
of size t 2 [3, q], Fig. 7 provides the constraints using SPLITt (given in Fig. 6) which is a direct
generalization of the corresponding formulation for bag size 3 in Fig. 1. We refer to the resultant
SDP relaxation as SDP-1-q (Fig. 7).

Feasibility of SDP-I-q. The feasibility follows from generalizing the arguments in Appendix A. We
state them here for completeness. As before if the LTF given by pos(hr, x̃i) weakly satisfies I then
we set R := rrT. Further the matrices R{r,s} are as defined in (26).

To begin with, the feasibility of the non-zero margin constraints and those for non-monochromatic
bags of size 2 is shown in Appendix A, noting that weak satisfiability by pos(hr, x̃i) is sufficient for
the arguments to go through.

Consider a non-monochromatic bag B` = {xi1 , . . . ,xit} of size t 2 [3, q]. The definition of R{r,s}

(according to (26)) directly ensures that (89) and (90) are satisfied. By weak satisfiability, for every
r 2 [t] there is a s 2 [t] s.t. hr, x̃rihr, x̃si = x̃T

r
Rx̃s  0. Thus the LHS of (91) is t0R = t0Q for

some t0 2 [1, t� 1], implying that (91) is satisfied.
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Algorithm Aq . Input: weakly satisfiable instance I of LLP-LTF[q].

1. For each x 2 Rd define x̃ := (x1, . . . , xd, 1) 2 Rd+1.

2. Solve SDP-I-q (as described in Sec. G) for psd matrix R 2 R(d+1)⇥(d+1).

3. Let R = UDUT be its spectral decomposition. Let L = D1/2UT so that R = LTL.
4. Sample g u.a.r from N(0, 1)d+1.
5. Output the linear form h(x) := hLx̃,gi.

Figure 8: Algorithm Aq for weakly satisfiable LLP-LTF[q].

G.1 SDP Algorithm and analysis

Fig. 8 provides the algorithm Aq for the weakly satisfiable LLP-LTF[q] instance I. We first observe
that Aq is the same algorithm (up to Step 5. and a specific choice of L) as that of [37], and by
their analysis the probability that a non-monochromatic bag of size 2 is split by pos(h(.)) is at
least 1/2. This, along with the following lemma implies that Aq weakly satisfies in expectation at
least 1/(⇡(q � 1)) fraction of the non-monochromatic bags of the weakly satisfiable instance I of
LLP-LTF[q] for q � 4. Along with the arguments in the beginning of this section, this completes the
proof of Thm. 1.3.
Lemma G.1. Consider the linear form h obtained in Step 5 of Aq (Fig. 8). Then, the probability of
a non-monochromatic t-sized bag (t 2 [3, q]) being split by pos(h(.)) is at least 1/(⇡(t� 1)).

Proof. Let B be a non-monochromatic bag of size t 2 [4, q] and by relabeling WLOG we can assume
that B = {x1, . . . ,xt}. Using (91) we have

x̃T
1

0

@
X

2rt
R{1,r}

1

A x̃1 � x̃T
1Rx̃1 = kLx̃1k22, (93)

where L is as defined in Step 3 of Aq (Fig. 8). By averaging and WLOG we can assume that
x̃T
1R

{1,2}x̃1 � kLx̃1k22/(t� 1) and by applying Lemma 2.4 to the guarantee that R ⌫ R{1,2} (from
(90)) we obtain that there exists a matrix C s.t.,

R{1,2} = LTC ) hLx̃1,Cx̃1i = x̃T
1L

TCx̃1 = x̃T
1R

{1,2}x̃1 � kLx̃1k22/(t� 1), (94)

and
R ⌫ CTC ) kCx̃1k22 = x̃T

1C
TCx̃1  x̃T

1Rx̃1 = kLx̃1k22. (95)
Further, using (89)

hLx̃2,Cx̃1i = x̃T
2L

TCx̃1 = x̃T
2R

{1,2}x̃1 = x̃T
1R

{1,2}x̃2  0. (96)

Eqn. (13) implies kLx̃bk2 > 0 (b = 1, 2), and by (94) we also have kCx̃1k2 > 0. Define the unit
vectors:

z0 := Cx̃1/kCx̃1k2, z1 := Lx̃1/kLx̃1k2, and z2 := Lx̃2/kLx̃2k2. (97)

From (94), (95) and (96) we obtain that hz0, z1i � 1/(t � 1), and hz0, z2i  0. For b = 0, 1 we
can write zb = cb0z0 + cb1z?b where kz?

b
k2 = 1 and z?

b
? z0 so that c2

b0 + c2
b1 = 1. Note that

hz0, z1i � 1/(t� 1) implies that c10 � 1/(t� 1) and therefore |c11| 
p

1� (t� 1)�2. Further,
hz0, z2i  0 implies that c20  0. Thus,

hz1, z2i  c10c20 + |c11||c21|  �(1/(t� 1))|c20|+
⇣p

1� (t� 1)�2
⌘
· 1


p

1� (t� 1)�2 = cos ✓, (98)

where ✓ = sin�1 (1/(t� 1)). Thus, the angle between Lx̃1 and Lx̃2 is at least ✓. From standard
facts on random hyperplane rounding (see Appendix A of [37]) and the fact that sin(�)  �
for � 2 [0,⇡/2] it can be seen that pos(h(x1)) 6= pos(h(x2)) with probability at least ✓/⇡ �
(1/(t� 1))/⇡ = 1/(⇡(t� 1)).
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Remark G.2. The relaxation SDP-1-q can be strengthened by also adding constraints (generalizing
NOSPLIT from Fig. 1) for monochromatic bags. One could attempt an analysis similar to the
monochromatic case of Lemma 3.1. However, the property that t vectors with pairwise non-negative
inner products can be rotated into a t-dimensional orthant is true in general only for t  4 and
counterexamples exist for t � 5 (see [19]). Therefore, a different (more tedious) analysis would be
required for monochromatic bags of size � 5. In any case, this does not yield significant asymptotic
improvement in the approximation guarantee, and we handle the monochromatic bags separately as
mentioned in the beginning of this section.

H Technical challenges in satisfying bags of size � 4

The algorithm for LLP-LTF[3] presented in Sec. 3 finds a linear threshold pos(h(.)) which splits a non-
monochromatic bag of size 3 with probability 1/6, and then uses the crucial fact that one of pos(h(.))
or pos(�h(.)) satisfies the bag. This, however is not true for non-monochromatic bags of size� 4. For
e.g. consider a bag B` = {xi}4i=1 of size 4 such whose label proportion �` = 1/2. Now, if we apply
algorithm Aq (q = 4) on the instance, pos(h(.)) may satisfy (1/4)

P
i2[4] pos(h(xi)) 2 {1/4, 3/4}

in which case neither pos(h(.)) nor pos(�h(.)) satisfies B`.

One may attempt to strengthen the SPLITt constraints of Fig. 6 depending on label proportion of the
bag. However, this does not seem to resolve the problem since (1/4)

P
i2[4] pos(h(xi)) depends on

the combined geometry of {Lxi}4i=1. In the above example, it is possible that {Lxi}4i=1 are arranged
colinearly on a long line segment with Lx1 and Lx4 located at the two ends, while Lx2 and Lx3 are
both very close to the mid-point. It is easy to check that in such a situation, in the event that pos(h(.))
splits the bag, it will w.h.p. have 1/4 or 3/4 as the label proportion since Lx2 and Lx3 will most
likely not be separated while Lx1 and Lx4 will most likely be separated.

The above suggests that stronger constraints on the geometry of {Lxi}4i=1 may need to be derived to
ensure that the algorithm satisfies non-monochromatic bags of size � 4.

I Time complexity analysis

We analyze the running time of the algorithm A given in Fig. 3. The time complexity is dominated
by that of solving the SDP given in Fig. 2. This contains the following (d+ 1)⇥ (d+ 1) variable
matrices which are constrained to be psd:

• The matrix R.

• For each 3-sized non-monochromatic bag {xi,xj ,xk}:

– The matrices R{r,s} for distinct r, s 2 {i, j, k}.

– The three matrices R
{r,s}

:= R�R{r,s} for distinct r, s 2 {i, j, k}.

– The three matrices bR{r,s} := R{p,r} + R{p,s} � R, for each p 2 {i, j, k} with
{r, s} = {i, j, k} \ {p}.

Let the total number of bags be m. Construct a matrix Z which has the above 9 matrices as block
diagonal for each non-monochromatic bag, and an additional block diagonal for R. Constraining Z ⌫
0 ensures that all the block-diagonals are psd. The dimension N of Z is at most (9m(d+ 1) + 1)⇥
(9m(d+ 1) + 1). There are M = O(md2) linear constraints to ensure the consistency R

{r,s}
and

bR{r,s} defined above with the matrices R{r,s} and R, and to ensure the constraints of the SDP.

Thus, we have a canonical SDP with a N ⇥N psd matrix and M constraints linear in its entries.

We can apply the algorithm of [24] which runs in time Õ
⇣p

N
�
MN2 +M! +N!

�⌘
where Õ

ignores the logarithmic factors and ! is the matrix multiplication exponent. For us this gives an
Õ
�
m3.5d4.5 +m!+0.5d2!+0.5

�
-time algorithm.

A similar running time analysis also works for the algorithm (in Appendix G) for weakly satisfying
LLP-LTF[q], with both N , M being multiplied by an O(q2) factor.
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d m A R Atest Rtest frac_PC
(small margin)

10 50 93.0 ±8.0 6.3 ±4.2 96.2 ±4.2 51.4 ±6.1 1.00 ±0.001
10 100 97.1 ±3.8 4.4 ±2.0 98.6 ±1.6 53.2 ±6.0 1.00 ±0.000
40 50 81.9 ±9.9 4.8 ±2.6 85.4 ±6.1 51.8 ±6.2 0.93 ±0.027
40 100 83.0 ±17.9 4.4 ±2.2 90.1 ±8.6 52.0 ±4.8 0.97 ±0.005

(large margin)
10 50 51.0 ±7.1 46.3 ±5.6 67.7 ±10.4 58.1±11.0 0.21 ±0.046
10 100 55.9 ±8.4 46.5 ±8.9 75.1 ±7.2 63.1±11.7 0.34 ±0.064
40 50 43.5 ±4.9 41.2 ±4.9 52.9 ±5.6 53.2±5.5 0.04 ±0.002
40 100 40.2 ±3.4 40.9 ±3.6 53.4 ±5.7 52.3±6.7 0.04 ±0.002

Table 2: Our alg. (A) vs rand. LTF (R). Bag size 3.

J Alternate SDP constraints for non-monochromatic 3-sized bags for
LLP-LTF[3]

In the alternate SDP (as mentioned in the Remark in Sec. 5), we modify the SPLIT constraints in Fig.
1 by replacing (8) with the following:

8p 2 {1, 2, 3}, r < s 2 {1, 2, 3} \ {p} : uT
p
Q{p,r}ur + uT

p
Q{p,s}us < 0. (99)

To verify the feasibility of these constraints, let B`, r. R and R{r,s} be as defined in Appendix A.
Observe that when B` is a non-monochromatic bag, for any choice of t 2 {i, j, k} with {t, t0, t00} =
{1, 2, 3}, at least one of {hr, x̃tihr, x̃t0i, hr, x̃tihr, x̃t00i} = {x̃T

t
Rx̃t0 , x̃T

t
Rx̃t0} is negative. This,

along with the definition of R{r,s} in (26) implies (99).

The above described SDP variant combined with the same algorithm A (Fig 3) yields the same
approximation factor as in Thm. 1.1 via a slight modification of the analysis in Sec. 3.2. In particular,
for the proof of Lemma 3.1 we observe (using simple case analysis) that (99) implies the existence
of i 2 {1, 2, 3} such that x̃T

i
R{i,j}x̃j < 0 for both values of j 2 {1, 2, 3} \ {i}. Relabeling WLOG

i to 1 allows us to use the same proof of Lemma 3.1 as before. The rest of the analysis, and the
approximation guarantee remain the same.

K Experiments: Additional Details

Satisfiable LLP-LTF[3]. Table 2 has the values with stddev error bars of the experiments discussed
in Sec. 5. We also include the average fractional principal component frac_PC values. Here
frac_PC is the ratio of the the maximum eigenvalue to the sum of eigenvalues of the solution R
of the SDP for A. For the small margin cases, this value is close to 1 indicating that R is nearly a
rank-1 matrix whose principal component provides an LTF with excellent predictive performance.
This further suggests the usefulness of our algorithm in small margin scenarios, which in traditional
learning tasks are generally considered more difficult. Note that since these aggregates are over
25 independently sampled instances for each (d,m), the significant standard deviations are not
unexpected.

K.1 Weakly Satisfying LLP-LTF[4]

We also conduct experiments on satisfiable LLP-LTF[4] instances (Table 3). The small and large
margin cases are analogous to the 3-sized bags case, and each bag is non-monochromatic with
probability 7/8. We use Aq for q = 4 with the SDP constraints for monochromatic bags added in (see
Remark G.2). Here, the bag-level performance in columns A4 and R is in terms of the % of weakly
satisfied bags. We see similar trends as in the previous experiments – A4 substantially outperforms R
in the small margin scenarios both at the bag level as well as on the instance-level test evaluation. The
matrix R is also close to being rank-1 in the small margin scenarios. The performance is similar in
the large margin cases, though A4 betters R in most large margin settings, especially in the evaluation
on the instance-level test data.
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d m A4 R A4,test Rtest frac_PC
(small margin)

10 50 89.1 ±5.9 53.8±5.8 83.3 ±25.2 49.7±6.00 0.99±0.002
10 100 91.1 ±3.9 51.5±3.4 93.5 ±5.3 49.1 ±4.9 0.99±0.001
40 50 86.2 ±8.0 53.8±4.5 71.8 ±18.2 51.6±6.1 0.86±0.038
40 100 86.8 ±8.7 51.0±4.3 82.0 ±8.6 51.2±5.1 0.92±0.008

(large margin)
10 50 83.8 ±4.3 82.6 ±5.4 61.0 ±13.5 54.52±10.6 0.23±0.054
10 100 82.9 ±3.4 83.0 ±3.3 65.88 ±15.8 54.32±12.5 0.34±0.109
40 50 83.5 ±3.6 83.2 ±3.6 54.3 ±10.3 53.4±7.9 0.04±0.003
40 100 81.8±3.2 81.6±3.2 50.9±5.5 51.8 ±6.6 0.04±0.003

Table 3: Our alg. (A4) vs rand. LTF (R). Bag size 4.

We note that in the small margin scenarios the instance level test data, the LTF produced by our
algorithm generally has high accuracy, even though our SDP only optimizes for weak satisfiability
of bags. Since weak satisfiability of non-monochromatic bags is invariant under negation of the
classifier, the algorithm may sometimes find a negated version of a good classifier. Due to this, the
standard deviation on test data of our algorithm on the test data is noticeably higher, especially in the
small margin case.

K.2 Compute Resources and Code

All the experiments were conducted on a 16 core Intel Xeon CPU 2.20GHz machine running Linux.
The experimental code is available at:
https://github.com/google-research/google-research/tree/master/
Algorithms_and_Hardness_for_Learning_Linear_Thresholds_from_Label_Proportions.

L Multiple Instance Learning (MIL) of LTFs

In the MIL problem [8, 2], instead of label proportions we are only given the OR of the boolean
labels of the feature-vectors of a bag i.e., an {0, 1}-indicator of the presence of at least one true label
in each bag. Here, the bag-level objective is to find an LTF that MIL-satisfies most bags, where a bag
is MIL-satisfied by an LTF if the OR of the LTF-induced labels matches the bag indicator.

Given an MIL instance with bags of size at most q which is consistent with an (unknown) LTF,
we can transform it into an instance of weakly-satisfiable LLP-LTF[q] and then use the algorithm
provided in Thm. 1.3 to obtain an approximate LTF solution which (in expectation) MIL-satisfies
⌦ (1/q)-fraction of the bags. We formally prove the following theorem.

Theorem L.1. Given an MIL instance with bags of size at most q whose indicators are consistent
with an (unknown) LTF, there is polynomial time randomized algorithm to produce an LTF that
MIL-satisfies (�0/q)-fraction of the bags in expectation, where �0 > 0 is an absolute constant.

Proof. Let the MIL instance have the collection of bags (each of size at most q) B = B0 [B1 where
Bb are the set of bags with indicator b, for b 2 {0, 1}. Let F ⇤ be the unknown LTF that this consistent
with the indicators of the bags. We can assume q � 2, otherwise we only have bags of size 1 and
using linear programming we can MIL-satisfy all bags. We have the following cases.

Case 1: F ⇤ evaluates to 1 on all feature vectors present in the bags B1. Since F ⇤ necessarily
evaluates to 0 on all feature-vectors in B0, in this case we know the labels of all feature vectors of
the MIL instance. Thus, using linear programming we can find an LTF F whose evaluation on the
feature-vectors of the instance is identical to that of F ⇤ and thus MIL-satisfies all the bags.

Case 2: Case 1 does not hold and |B0| � (1/q)|B|. In this case we can simply find (using linear
programming) find F which evaluates to 0 (same as F ⇤) on all feature-vectors of bags in B0 and thus
MIL-satisfy all bags in B0.
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Case 3: Case 1 does not hold and |B0| < (1/q)|B|. In this case, we have |B1| > (1 � 1/q)|B| >
|B|/2 (since q � 2), and there exists x⇤ in some bag of B1 s.t. F ⇤(x⇤) = 0. For a feature-
vector x, define an instance I(x) of LLP-LTF[q + 1] with only non-monochromatic bags given by
{B̃ | B̃ = B [ {x}, B 2 B1}. The definitions of B1 and x⇤ imply that I(x⇤) is weakly-satisfiable
by the LTF F ⇤. Using this we have the following algorithmic steps:

1. Find an x0 from the bags of B1 such that the SDP for the collection of non-monochromatic
bags in I(x0) given in Fig. 7 is feasible for bag size q + 1. By the above there is one such
x0 which can be found in polynomial time.

2. Use Algorithm Aq+1 from Fig. 8 to obtain an LTF F that weakly-satisfies (in expectation)
(c0/(q+1))-fraction of the bags of I(x0). Since all these bags bags are non-monochromatic,
F splits (c0/q)-fraction of the bags of I(x0) (in expectation).

3. Observe that if F splits B [ {x0} for a bag B 2 B1, then either F or (1�F ) MIL-satisfies
B. Thus, we output the best of F or (1 � F ), one of which will satisfy (in expectation)
(c0/(2(q + 1))-fraction of the bags of B1 which is (c0/(4(q + 1))-fraction of the bags of B.

Combining all the above cases we complete the proof.

M Generalization bounds for LLP-LTF[q]

The work of [37] had shown generalization bounds for LLP-LTF[2] based on the bounds for the
proportion function given [42]. The latter used the generalization bound result for multi-class labeling
shown by [36] which applies to the generalization error w.r.t. any real-valued labeling function f
mapping the vector of labels y of a bag to R that is 1-Lipshitz w.r.t. the infinity norm over the domain
of y. We use the same approach below for LLP-LTF[q] for any q � 2.

Firstly, it suffices to prove the result separately for each bag size r  q, since it can easily be shown
that the bag-size composition is essentially preserved in the empirical training sample with high
probability.

Let us fix a bag size 1  r  q. For each t 2 {0, . . . , r � 1} define the labeling function
ft : {0, 1}r ! R

ft(y) =

⇢
0 if kyk1  t
1 otherwise.

(100)

Clearly, |f(y1) � f(y2)|  |y1 � y2|1, and thus ft satisfies the condition above. Therefore, any
function which correctly classifies bags of size r into those with label proportion < t/r vs. the rest
admits generalization error bounds as given in [42, 36]. Thus, for any hypothesis which predicts the
label proportion as r different classes, we obtain r � 1 constraints using t = 1, . . . , r � 1, on the
per-class mis-classification errors. The final constraint is given by the fact that the fractions of bags
of each of the r classes sum to 1, thereby yielding the generalization bound on the sum of all the
per-class mis-classification errors.
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