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Abstract

We study the learnability of linear threshold functions (LTFs) in the learning from
label proportions (LLP) framework. In this, the feature-vector classifier is learnt
from bags of feature-vectors and their corresponding observed label proportions
which are satisfied by (i.e., consistent with) some unknown LTF. This problem has
been investigated in recent work ([37]) which gave an algorithm to produce an
LTF that satisfies at least (2/5)-fraction of a satisfiable collection of bags, each of
size  2, by solving and rounding a natural SDP relaxation. However, this SDP
relaxation is specific to at most 2-sized bags and does not apply to bags of larger
size.
In this work we provide a fairly non-trivial SDP relaxation of a non-quadratic
formulation for bags of size 3. We analyze its rounding procedure using novel
matrix decomposition techniques to obtain an algorithm which outputs an LTF
satisfying at least (1/12)-fraction of the bags of size  3. We also apply our
techniques to bags of size q � 4 to provide a ⌦ (1/q)-approximation guarantee for
a weaker notion of satisfiability. We include comparative experiments on simulated
data demonstrating the applicability of our algorithmic techniques.
From the complexity side we provide a hardness reduction to produce instances
with bags of any constant size q. Our reduction proves the NP-hardness of satisfying
more than (1/q) + o(1) fraction of a satisfiable collection of such bags using as
hypothesis any function of constantly many LTFs, showing thereby that the problem
is harder to approximate as the bag size q increases. Using a strengthened analysis,
for q = 2 we obtain a (4/9) + o(1) hardness factor for this problem, improving
upon the (1/2) + o(1) factor shown by [37].

1 Introduction

Our work studies the computational learnability of linear threshold functions (LTFs) in the learning
from label proportions (LLP) framework, which is a generalization of traditional supervised learning.
In this, a bag B is a set of some (say q) feature vectors {x1, . . . ,xq} with a corresponding {0, 1}-label
proportion �B 2 [0, 1] implying that exactly q�B out of the q feature-vectors have 1 as their true
label. Given a collection (or distribution) of (B,�B) consistent with an unknown classifier, in LLP
the goal is to fit a feature-vector level classifier hypothesis that matches the bag label proportions as
closely as possible. One way to formalize this is by defining that a hypothesis classifier satisfies a
bag (B,�B) iff its predicted label proportion equals �B , with the goal being to maximize the number
of bags satisfied by the hypothesis. This notion of satisfiability boils down to supervised learning
when all bags are of size 1, and is a reasonable measure of classifier performance for small bags.

An LTF over d-dimensional feature-vectors x is given by pos(g(x)) for some linear function
g(x1, . . . , xd) =

P
d

i=1 cixi + cd+1, where pos(z) := {z>0}. Recently, [37] studied the proper
LLP learnability of LTFs i.e, given a collection of bags and their label proportions consistent with an

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



unknown LTF, compute an LTF satisfying the maximum number of bags. It is well known ([7]) that
in supervised learning (all bags of size 1) LTFs are learnable by LTFs (i.e., all bags can be satisfied)
using linear programming. This however does not work for bags sizes > 1, and neither are random
LTFs guaranteed to satisfy any significant fraction of the bags. The work of [37] studied this problem
when all bags are of size  2, giving an algorithm that satisfies at least (2/5)-fraction of all the bags,
and (1/2)-fraction if all bags are non-monochromatic i.e., �B 62 {0, 1} for all bags B. From the
hardness side [37] showed that even on satisfiable instances where all bags are non-monochromatic
of size 2, it is NP-hard to find an LTF satisfying more that (1/2) + o(1) fraction of them.

The main algorithmic technique of [37] is based on the observation that the label proportion of a bag
B = {x1,x2} determines the sign of g(x1)g(x2) where pos(g) is a satisfying LTF with non-zero
margin 1 i.e., g(x1), g(x2) 6= 0. Thus, one can write a collection of quadratic constraints over
the coefficients of g. The corresponding semi-definite programming (SDP) relaxation can then be
rounded using random hyperplanes to obtain the desired LTF.

However, the above approach is not directly applicable even for bags B = {x1,x2,x3} of size 3 since
their label proportions no longer determine the products g(xi)g(xj) (1  i 6= j  3). Therefore, the
following question remained: is there an efficient algorithm which given a collection of (B,�B) s.t.
|B|  3 consistent with some LTF, computes an LTF that satisfies at least ⌦(1)-fraction of the bags.

Our work answers the above question in the affirmative, using a fairly non-trivial SDP relaxation and
new techniques to analyze the rounding algorithm. In particular, we show that if allowed the presence
of certain boolean variables the problem admits a non-quadratic formulation which nevertheless can
be relaxed to an SDP. For further analysis we prove a novel characterization of the condition A ⌫ B
for two symmetric positive semi-definite (psd) matrices A and B in terms of their decomposition.
Our algorithm provides an LTF satisfying at least (1/12)-fraction of the bags of size  3. For bags
of sizes � 4, we adapt this approach to provide a ⌦(1/q)-approximation for a weaker notion of bag
satisfiability which is the same as satisfiability for monochromatic bags, but only requires splitting
the non-monochromatic bags.

We also show hardness reduction to this problem for bags of any constant size q � 2. Unlike the
reduction of [37], ours produces a mixture of non-monochromatic and monochromatic bags, and for
general bag sizes q 2 Z+ it yields a (1/q)+ (1) hardness factor for any boolean function of constantly
many LTFs as hypothesis, providing evidence that the problem becomes harder as the bag size q
increases. For the specific case of q = 2 we obtain a hardness factor of (4/9) + o(1) improving on the
(1/2) + o(1) bound of [37].

An overview of our algorithms, hardness result and their analysis is provided later in this section.

1.1 Previous Related Work

The study of LLP is motivated by applications in which only the aggregated labels for sets (bags)
of feature vectors are available due to privacy or legal [35, 40] constraints or inadequate or costly
supervision [13, 11]. LLP has been applied to several weakly supervised tasks, for e.g. IVF
prediction [23] and image classification [8, 30]. Notably, small bag sizes – studied in this work –
arise in real-world scenarios, e.g. [30] consider bags of size 50, and bag sizes 10 ⇠ 20 are relevant
for IVF applications (see Sec 1.2 of [4]).

There have been several works works applying a variety of techniques e.g. MCMC, clustering, linear
classifiers, variants of SVM ([12, 22, 29, 35, 41], others ([33, 32, 39, 38] provided guarantees under
distributional assumptions, while recent works [26, 15, 27] have proposed deep neural net based
methods. There methods typically attempt to fit an ML model to a collection of bags and their
label proportions by minimizing some loss between the label-proportions and the average model
predictions, summed over all the bags. However, while being practically applicable, they do not
provide any non-trivial worst case performance guarantees, even for learning LTFs in the LLP setting.

In contrast to the above, the study of computational learning in the LLP framework has been – apart
from the work of [37] – fairly sparse. The LLP framework (as an analogue of PAC learning) was first
formalized in the work of [42]. They bounded the generalization error of a trained classifier when
taking the (bag, label-proportion)-pairs as instances sampled iid from some distribution. Their loss

1It is easy to see that the non-zero margin property can be assumed for a finite set of linearly separable points
(see Lemma 2.1 of [37])
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function was different – a weaker notion than the strict bag satisfaction predicate that [37] and our
work use.

As mentioned, LTFs [7] are well known to be properly learnable without any distributional as-
sumptions. In the presence of adversarial label noise however the problem is NP-hard even to
approximate [1, 5, 10] with the optimal (1/2 + ")-factor hardness shown by [16, 20], and generalized
by [6] to hold even for constant degree polynomial thresholds as hypotheses.

1.2 Problem Definition

For an integer q, an instance of LLP-LTF[q] consists of (X,B = {B`}m`=1, {�`}m`=1) where X =
{x1, . . . ,xn} ✓ Rd is a set of feature-vectors, and B = {B1, . . . , Bm} ✓ 2X s.t. |Bj |  q, is a
collection of bags each of size at most q. For each bag B` there is a number �` which is the sum of
the {0, 1}-labels of the vectors in the bag, satisfying �` 2 {0, . . . , |B`|}, with the label proportion
given by �` := �`/|B`|. When �` 2 {0, 1} then B` is said to be monochromatic i.e., bags which
have same label (either 0 or 1) for all their feature-vectors. The remaining bags B` necessarily of size
> 1 are called non-monochromatic.

A bag B` 2 B is satisfied by some F : X ! {0, 1} if
�P

x2B`
F (x)

�
= �` = �`|B`|. We say that a

bag is split by F if
�P

x2B`
F (x)

�
2 {1, . . . , |B`|� 1}, while it is unsplit by F if the latter assigns

the same label to all the vectors in the bag. We say that a bag B` is weakly satisfied by F if (i) B is
monochromatic and is satisfied by F , or (ii) B is non-monochromatic and is split by F . Note that
weak satisfiability is implied by satisfiability.

An instance of LLP-LTF[q] is said to be satisfiable if there exists an LTF that satisfies all the bags. It
is said to be weakly satisfiable if the LTF weakly satisfies all the bags. The goal is to find an LTF that
(weakly) satisfies the most bags.

Choice of objective. The satisfiability condition is a natural generalization of the “classification”
objective in supervised learning in which a {0, 1}-labeled example is either classified correctly or
incorrectly. For small-sized bags, it is also a reasonable approximation to objectives based on the
deviation of

�P
x2B`

F (x)
�

from �`. More importantly, as we shall see later in this paper, the
satisfiability objective allows for a compact and tractable SDP relaxation in which any feasible
solution can be rounded to an LTF with (in expectation) a non-trivial approximation guarantee.

1.3 Our Results

Our algorithmic result for satisfiable LLP-LTF[3] is as follows.

Theorem 1.1. Let I be a satisfiable LLP-LTF[3] instance with m bags partitioned into m0 monochro-
matic bags of size  2, m1 non-monochromatic bags of size 2, m2 monochromatic bags of
bags of size 3, and m3 non-monochromatic bags of size 3. Then, there is a randomized poly-
nomial time algorithm which on input I produces and LTF that satisfies in expectation at least
((m0/2 + m2/4 + m3/6)/2 + m1/2) bags. In the worst case, (if m = m3) the algorithm satisfies in
expectation at least (1/12)-fraction of the bags.

The following theorem states our hardness result for satisfiable LLP-LTF[q] and the improved hardness
for satisfiable LLP-LTF[2].

Theorem 1.2. For any ` 2 Z+ and constant ⇣ > 0 it is NP-hard to find any boolean valued function
f of ` LTFs that satisfies more than (1/q+ ⇣)-fraction of the bags of a satisfiable LLP-LTF[q] instance.
For q = 2 in particular, a strengthened result holds with a hardness factor of (4/9 + ⇣).

We also provide the following algorithm for weakly-satisfying bags of a weakly-satisfiable LLP-
LTF[q] instance for any q 2 Z+.

Theorem 1.3. Let I be a weakly-satisfiable LLP-LTF[q] instance with m bags. Then, there is a
randomized polynomial time algorithm which on input I produces an LTF that weakly-satisfies in
expectation at least (c0m/q) bags for some absolute constant c0 > 0.
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1.4 Overview of the Algorithm

First, observe that it is the non-monochromatic bags that make the LLP-LTF problem difficult, as
one can simply use linear programming to find an LTF satisfying all the monochromatic bags. This
LTF may however not satisfy even a single non-monochromatic bag.

Let us first see how the algorithm of [37] for satisfiable LLP-LTF[2] proceeds. Since we can
always append a coordinate with 1 to all feature vectors, assume that the satisfying LTF is given
by pos(hr,xi) (where r is the normal vector of the separating hyperplane) with non-zero margin,
the latter is possible by perturbing the LTF if necessary. For a bag B = {x1,x2}, hr,x1ihr,x2i is
either positive or negative depending on whether the bag is monochromatic or non-monochromatic.
There is a straightforward relaxation of this quadratic program to an SDP - substitute rrT with a
symmetric psd matrix R and replace hr,x1ihr,x2i by xT

1Rx2. Solving this SDP and using the psd
decomposition R = LTL one obtains the same sign pattern for hLx1,Lx2i. Further, the non-zero
margin property guarantees kLxk22 = hLx,Lxi = xTRx > 0 for all the feature vectors x of the
instance. A standard hyperplane rounding of Lx and taking the best of the obtained LTF or its
negation yields a random LTF that satisfies non-monochromatic bags with probability 1/2 and the
monochromatic ones with probability 1/4.

Note that the above algorithm crucially hinges on the fact that the label proportion of the 2-sized
bag determines the sign of hr,x1ihr,x2i. This clearly is no longer true for a non-monochromatic
B = {x1,x2,x3} of size 3, and therefore it doesn’t seem possible to write an SDP relaxation with
only terms of the form xT

i
Rxj and solve for R as the relaxation of rrT. Nevertheless, we observe

that at least one of the two products hr,x1ihr,xji (j = 2, 3) is negative. Let us define boolean
variables s{i,j} to be indicator of the event that hr,xiihr,xji < 0. Then, we have the following valid
inequalities:

s{i,j}
�
xT
i
Rxj

�
 0 81  i < j  3, and

X

j=2,3

s{1,j} � 1.

Of course, such constraints do not yield an SDP or a convex program due to the presence of the
unknown variables s{i,j} in products with R.

The key step for obtaining an SDP is to relax s{i,j}R to a symmetric psd matrix R{i,j} with the
constraint R ⌫ R{i,j} which is valid since s{i,j} 2 {0, 1}. Now, the above two constraints can be
rewritten as

xT
i
R{i,j}xj  0 81  i < j  3, and

X

j=2,3

R{1,j} ⌫ R.

From the last constraint above, we have xT
1R

{1,2}x1 + xT
1R

{1,3}x1 � xT
1Rx1, and assuming

xT
1R

{1,2}x1 � xT
1R

{1,3}x1 WLOG we have

xT
1R

{1,2}x1 � xT
1Rx1/2 (⇤) along with, xT

2R
{1,2}x1  0 (⇤⇤).

The above suggests that the angle between Lx1 and Lx2 cannot be too small, where R = LTL.
Indeed, suppose for the moment that we could replace the LHS of the first inequality above with
hLx1, zi and the LHS of the second inequality with hLx2, zi with the guarantee that kzk2  kLx1k2.
A simple calculation shows that the angle between z and Lx1 is at most ⇡/3, while the angle between
z and Lx2 is at least ⇡/2, implying a lower bound of ⇡/6 on the angle between Lx1 and Lx2.
Thus, random hyperplane rounding will separate Lx1 and Lx2 with probability at least 1/6, and the
obtained LTF or its negation will satisfy the bag with probability at least 1/12.

The only question that remains is whether such a z as assumed above exists. We answer this in the
affirmative by proving (in Sec. 2.1) the following: given psd A, 9L s.t. A = LTL, and for any
psd B these two conditions are equivalent: (i) A ⌫ B; and (ii) , 9C s.t B = LTC and A ⌫ CTC.
Moreover, L is efficiently obtained by the spectral decomposition of A.

For our analysis, letting A = R and B = R{1,2}, we can take z = Cx1, and the last implication of
(ii) yields kLx1k2 � kzk2.

This decomposition characterization of A ⌫ B for psd A,B seems novel to the best of the authors’
knowledge, and may prove useful in other geometric and SDP rounding techniques. It is easy to see
that (ii) ) (i). The proof of the other direction is based on a specific choice of L which yields the
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decomposition of B = LTC. To show A ⌫ CTC we invoke a variant of Schur complement positive
definiteness condition.

For monochromatic 3-sized bags we use a standard SDP relaxation and random hyperplane rounding
analysis. The complete algorithm for LLP-LTF[3] and its analysis are provided in Sec. 3. We include
in Sec. 5 an experimental validation of our algorithm for LLP-LTF[3] on simulated data, showing
that our method outperforms random LTF classifier, especially in the small margin scenarios. In
these scenarios, the LTF of our algorithm has high predictive accuracy on instance-level test data,
demonstrating the practical applicability of our algorithmic methods.

1.4.1 LLP-LTF[q]

In Appendix G, we extend the above algorithm to weakly satisfy bags of a weakly satisfiable LLP-
LTF[q] instance for q � 4. Such instances also admit an analogous analysis for non-monochromatic
bags as above and we obtain (⇤) and (⇤⇤) except with a factor of 1/(q � 1) instead of 1/2, yielding
an ⌦(1/q) probability for random hyperplane rounding splitting q-sized non-monochromatic bags.
Our techniques are also applicable to the related multiple instance learning (MIL) [8] of LTFs and
we include an explanation in Appendix L. Obtaining guarantees for satisfying non-monochromatic
bags size of q � 4 seems to require qualitatively stronger geometric techniques and in Appendix H
of the supplementary we describe the technical issues in more detail. We also provide in Appendix
K similar (to the LLP-LTF[3] experiments) empirical evaluation of our weak-satisfaction algorithm
for LLP-LTF[4]. Lastly, in Appendix M we discuss how previous works can be used to derive
generalizations bounds for satisfying LLP-LTF[q] instances.

1.5 Overview of Hardness for LLP-LTF[q]

The hardness reduction uses the template of a dictatorship test (see Chap. 7 of [31], Sec. 2 of [18])
and combines it with a variant of the Label Cover problem [3, 21]. A dictatorship test over a domain
[M ] produces an instance I of the target problem, in our case LLP-LTF[q], such that (i) (completeness)
corresponding to each i 2 [M ] there is an LTF satisfying all bags of I, (ii) (soundness) an LTF that
does not have any distinguished (relatively large) coefficients does not satisfy more than some � < 1
fraction of the bags. The crux is to construct dictatorship tests with large completeness vs soundness
gap i.e., small �.

Fix any r 2 {1, . . . , q} and consider the following distribution Dr on bags of q feature vectors
X(1), . . . ,X(q) 2 RM , each bag with label proportion r/q. First, sample Z 2 RM⇥q so that each
row of Zi is sampled iid uniformly from the set of vectors in {0, 1, 2}q which have exactly one
coordinate with 2, (r� 1) with 1 and rest 0. We derive the vectors X(1), . . . ,X(q) from Z as follows
for each j 2 [q]: if Zij is 0 then set X(j)

i
= 0, if Zij is 1 then set X(j)

i
= �. Independently for each i

where Zij = 2, set X(j)
i

= � w.p. (1� "), set X(j)
i

= 1 w.p. "/2 and set X(j)
i

= 2 w.p. "/2. Here �
is taken to be small depending on M and q, while " is a small constant depending on q but not on
[M ].

Note that for any i, there exactly r of the q vectors X(1), . . . ,X(q) have non-zero entries in the
ith coordinates. Thus, each coordinate yields an LTF pos(Xi) which satisfies all the bags. The
dictatorship test and the completeness analysis are presented in Appendix D.

For the soundness analysis (Appendix F), consider any LTF given by pos(h(X)), such that it has
no large coefficients. Observe that {h(X(j))}q

j=1 are identically distributed but not necessarily
independent, while conditioned on Z they are independent but not identical. Using a fairly involved
analysis we show is that there is a fixed Gaussian distribution N(µ,⌃) (independent of the choice of
Z, r) such that with high probability over the choice of Z each of {h(X(j))}q

j=1 are distributed close
to N(µ,�). In effect, this implies that the probability that the bag is satisfied is at most, �r,↵ + o(1),
where �r,↵ :=

�
q

r

�
↵r(1 � ↵)q�r, and ↵ := E[pos(g)], g ⇠ N(µ,�), whre E is the expectation

operator.

The above invariance is obtained (in Appendix F.1) through the randomness induced by the noise
coordinates in X(j) for a given j i.e, those i for which Zij is sampled to be 2, on which X(j)

i
are

independently sampled to be 1 or 2 w.p. "/2 each. Due to their small magnitude the �-valued
coordinates in X(j)

i
can essentially be ignored. After estimating bounds on the conditional (on
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Z) expectation and variance of h(X(j)) we apply the Berry-Esseen theorem to obtain the desired
invariance.

In Appendix C.1 we use the trick of folding over a real subspace [25] to encode the Label Cover
and combine the above dictatorship test only on the [M ] labels of the Label Cover vertices. This
combination and the label decoding (in Appendix C.3) is along the lines as previous works e.g.
by [25, 21]. In fact, we combine the Label Cover instance with Dr on bags of size q with label
proportions r/q for all r 2 {1, . . . , q}. We note that the noise coordinates are identically distributed
in each Dr. Thus, we are able to use the same µ and ⌃ for each r to obtain the �r,↵+ o(1) bound for
each r with the same ↵. If we weigh each of these distributions uniformly, using the easy derivation
that

P
q

r=1 �r,↵  1 for ↵ 2 [0, 1], we obtain a (1/q+ o(1)) factor hardness as shown in Sec. 4. For
q = 2, we obtain in Appendix B a better 4/9 + o(1) factor using explicit calculations.

Like the reduction of [37], ours also works for functions of constantly many LTFs as hypotheses,
requiring the application of the multi-dimensional version of Berry-Esseen theorem.

The approach of decoupling by conditioning on Z is similar in spirit to that followed by [37] though
their reduction has boolean coordinates which does not readily admit generalizations to larger bag
sizes q. The main contribution of our hardness result is the design and analysis a dictatorship test that
works for all bag sizes q yielding bag-distributions of specific label proportions r/q (r = 1, . . . , q)
with random-threshold like soundness �r,↵ + o(1).

Organization of the paper. The next section provides some mathematical preliminaries and the
proof of our novel characterization of A ⌫ B for psd matrices. The latter is used in the proof of
Theorem 1.1 in Sec. 3 which provides and analyzes our algorithm A for LLP-LTF[3]. Sec. 5 presents
an experimental evaluation of our algorithm on simulated data. In Sec. 4, Theorem 1.2 is derived
from the statement of our hardness reduction whose proof is deferred to the Appendix C. The proof
of Theorem 1.3 is also omitted and appears in Appendix G.

2 Preliminaries

We state a few well known facts about matrices.

The pseudo-inverse of a diagonal matrix D = Diag(�1, . . . ,�r, 0 . . . , 0) with top r non-zero entries
and the rest 0 is given by D† := Diag(��1

1 , . . . ,��1
r

, 0 . . . , 0). A symmetric matrix A has a
decomposition A = UDUT for some diagonal matrix D and orthonormal matrix U i.e., satisfying
UUT = UTU = I. The pseudo-inverse is A† = UD†UT.
Definition 2.1 (see [28, 9]). For a real symmetric n ⇥ n matrix A, the following conditions are
equivalent: (1) A ⌫ 0, i.e A is positive semi-definite (psd), (2) UAUT ⌫ 0 for all orthonormal
matrices U, (3) xTAx � 0 for all x 2 Rn, (4) A = UDUT for some orthonormal U with D being
a non-negative diagonal matrix(spectral decomposition), (5) all the principal minors of A have
non-negative determinant.

For any two matrices, the Loewner order is given by A ⌫ B,A�B ⌫ 0. The square-root of a
non-negative diagonal matrix D = Diag(�1, . . . ,�n) is D1/2 := Diag(�1/2

1 , . . . ,�1/2
n ). For a psd

A = UDUT, the square root is A1/2 = UD1/2UT. The following lemma, a variant of the the
Schur-complement definiteness property, can be found on page 88 of [9], see also Thm. 4.3 of [17].
Lemma 2.2. For any n⇥ n matrices A,B and C where A and C are symmetric, let X =

�
A B
BT C

�
.

Then, X ⌫ 0 ) A�BC†BT ⌫ 0.

2.1 A characterization of A ⌫ B for psd matrices

We prove the following lemmas which are used in our algorithmic results.
Lemma 2.3. Given a real symmetric psd matrix A, 9L s.t. A = LTL and the following are
equivalent: (i) A ⌫ B, and (ii) 9C s.t. B = LTC and A ⌫ CTC, for any real symmetric psd
matrix B. Further, L can be efficiently obtained from the spectral decomposition of A.

Proof. It is easy to see that (ii) ) (i) as follows. Considering any vector x we have,
kCxk22 = xTCTCx  xTAx = xTLTLx = kLxk22 (1)
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where we use A ⌫ CTC and A = LTL. Thus, using (1)

xTBx = xTLTCx = hLx,Cxi  kLxk2kCxk2  kLxk22 = xTAx

Thus, (ii) ) (i). The reverse is proved in Lemma 2.4 along with the explicit formula for L.

Lemma 2.4. Let A and B be two real, symmetric, psd k ⇥ k matrices such that A ⌫ B (‡). Then,
with the spectral decomposition A = UDUT = LTL where U is orthonormal, D is non-negative
diagonal and L = D1/2UT, there exists C such that (i) B = LTC, and (ii) A ⌫ CTC.

Proof. Let C := UTBU be symmetric psd (Defn. 2.1). Condition (‡) of the lemma implies,

D�C = UTAU�UTBU ⌫ 0. (2)

Suppose that D has top r diagonal elements positive and the rest zero. Then C is zero outside of the
top r ⇥ r submatrix. Otherwise, D�C will have nonzero entries �Cir0 = �Cr0i in the (i, r0) and
(r0, i) entries for some r0 > r and i. On the other hand, the diagonal entry at (r0, r0) is �Cr0,r0 = 0
since both (D �C) and C are psd and have non-negative diagonals, and thus the 2 ⇥ 2 principal
minor of D�C given by the ith and r0th rows/columns has a negative determinant which contradicts
Defn. 2.1.

Since C is zero outside of the top r ⇥ r submatrix, letting Ir be diagonal matrix with ones in the top
k entries and zero otherwise we have,

UTBU = IrU
TBU = D

1/2

⇣
D

1/2

⌘†
C ) B = UD

1/2

⇣
D

1/2

⌘†
CUT = LT

⇣
D

1/2

⌘†
CUT

Letting C :=
�
D1/2

�†
CUT yields property (i) of the lemma. For the second property observe that,

CTC = UC
T
⇣
D

1/2

⌘† ⇣
D

1/2

⌘†
CUT = UCD†CUT, (3)

using which A ⌫ CTC , UTAU ⌫ UTCTCU , D ⌫ CD†C ( X ⌫ 0, where
X =

�
D C
C

T
D

�
=

�
D C
C D

�
, and the last implication follows from Lemma 2.2. It remains to show that

X ⌫ 0. For this let z = (x1, . . . , xk, y1, . . . , yk), and x = (x1, . . . , xk),y = (y1, . . . , yk). Then,

zTXz = xTDx+ yTDy + 2xTCy (4)

Since C is symmetric psd we can write it as VTV so that

xTCx+ yTCy + 2xTCy = hVx,Vxi+ hVy,Vyi+ 2hVx,Vyi = kVx+Vyk22 � 0 (5)

Substituting 2xTCy � �
�
xTCx+ yTCy

�
into the RHS of (4) we obtain,

zTXz � xT(D�C)x+ yT(D�C)y � 0 (6)

by (2) which holds for any z. Thus, X is psd which completes the proof.

3 Algorithm for LLP-LTF[3]

3.1 SDP Relaxation

We define two collections of constraints NOSPLIT and SPLIT for monochromatic and non-
monochromatic bags of size 3 respectively in Fig. 1. For a satisfiable instance I = (X =
{x1, . . . ,xn} ✓ Rd,B = {B`}m`=1, {�`}m`=1) of LLP-LTF[3] let x̃i 2 Rd+1 be given by appending
an extra 1-valued coordinate to xi for i 2 [n]. With this the corresponding SDP relaxation is given in
Fig. 2, and it enforces NOSPLIT constraints for monochromatic bags of size 3 and those given by
SPLIT for the non-monochromatic 3-sized bags. Constraints for margin and bags of size 2 are the
same as in the algorithm of [37].

Feasibility of SDP-I. As discussed in Sec. 1.4, if pos(hr, x̃i) is the satisfying LTF, then we can set
R = rrT and R{i,j} = R if hr, x̃iihr, x̃ji < 0 and 0 otherwise. The arguments for the margin and
2-sized bag constraints are same as those in Sec 2.1 of [37], and those for the 3-sized bag constraints
are informally presented in Sec. 1.4. We defer the formal proof to Appendix A.
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NOSPLIT(u1,u2,u3,Q) :

81  r < s  3 : uT
rQus � 0 (7)

SPLIT
⇣
u1,u2,u3,Q,Q{1,2},Q{2,3},Q{1,3}

⌘
:

81  r < s  3 : uT
rQ

{r,s}us  0 (8)

81  r < s  3 : Q�Q{r,s} ⌫ 0 (9)

Q{1,2} +Q{1,3} ⌫ Q (10)

Q{1,2} +Q{2,3} ⌫ Q (11)

Q{1,3} +Q{2,3} ⌫ Q (12)

Figure 1: NOSPLIT and SPLIT

Given ({x̃i}ni=1, {B`}m`=1, {�`}m`=1). Vars: real,
symmetric psd R, R{i,j} 1  i < j  n, s.t.

8i 2 [n] : x̃T
i Rx̃i > 0 (13)

8B` = {xi,xj}, (i < j) :

if �` 2 {0, 1} : x̃T
i Rx̃j � 0 (14)

if �` 62 {0, 1} : x̃T
i Rx̃j  0 (15)

8B` = {xi,xj ,xk}, (i < j < k) :

if �` 2 {0, 1} : NOSPLIT(x̃i, x̃j , x̃k,R) (16)
if �` 62 {0, 1} : SPLIT(x̃i, x̃j , x̃k,R,

R{i,j},R{j,k},R{i,k}) (17)

Figure 2: SDP-I

Algorithm A. Input: satisfiable instance I of LLP-LTF[3].

1. For each x 2 Rd define x̃ := (x1, . . . , xd, 1) 2 Rd+1.

2. Solve SDP-I (Fig. 2) for psd matrix R 2 R(d+1)⇥(d+1).

3. Let R = UDUT be its spectral decomposition. Let L = D1/2UT so that R = LTL.
4. Sample g u.a.r from N(0, 1)d+1.
5. Define the linear form h(x) := hLx̃,gi.
6. Let h⇤ 2 {h,�h} such that pos(h⇤(.)) satisfies more bags of I. Output pos(h⇤(.)).

Figure 3: Algorithm A for LLP-LTF[3].

3.2 SDP Algorithm and analysis

Fig. 3 provides the algorithm A for the satisfiable LLP-LTF[3] instance I. We have the following
lemma for bags of size 3.
Lemma 3.1. Consider the linear form h obtained in Step 5 of A (Fig. 3). Then, the probability
of a non-monochromatic 3-size bag being split by pos(h(.)) is at least 1/6, and that of a 3-sized
monochromatic being unsplit by pos(h(.)) is at least 1/4.

Proof. Let B be a bag of size 3 and by relabeling WLOG we can assume that B = {x1,x2,x3}.

Case: B non-monochromatic. Using (10) we have

x̃T
1

⇣
R{1,2} +R{1,3}

⌘
x̃1 � x̃T

1Rx̃1 = kLx̃1k22, (18)

where L is as defined in Step 3 of A (Fig. 3). By averaging and WLOG we can assume that
x̃T
1R

{1,2}x̃1 � kLx̃1k22/2 and by applying Lemma 2.4 to the guarantee that R ⌫ R{1,2} (from (9))
we obtain that there exists a matrix C s.t.,

R{1,2} = LTC ) hLx̃1,Cx̃1i = x̃T
1L

TCx̃1 = x̃T
1R

{1,2}x̃1 � kLx̃1k22/2, (19)

and
R ⌫ CTC ) kCx̃1k22 = x̃T

1C
TCx̃1  x̃T

1Rx̃1 = kLx̃1k22. (20)
Further, using (8)

hLx̃2,Cx̃1i = x̃T
2L

TCx̃1 = x̃T
2R

{1,2}x̃1 = x̃T
1R

{1,2}x̃2  0. (21)

Eqn. (13) implies kLx̃bk2 > 0 (b = 1, 2), and by (19) we also have kCx̃1k2 > 0. Define the unit
vectors:

z0 := Cx̃1/kCx̃1k2, z1 := Lx̃1/kLx̃1k2, and z2 := Lx̃2/kLx̃2k2. (22)
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From (19), (20) and (21) we obtain that hz0, z1i � 1/2, and hz0, z2i  0. For b = 0, 1 we can write
zb = cb0z0 + cb1z?b where kz?

b
k2 = 1 and z?

b
? z0 so that c2

b0 + c2
b1 = 1. Note that hz0, z1i � 1/2

implies that c10 � 1/2 and therefore |c11| 
p
3/2. Further, hz0, z2i  0 implies that c20  0. Thus,

hz1, z2i  c10c20 + |c11||c21|  �(1/2)|c20|+
⇣p

3/2
⌘
· 1 

p
3/2. (23)

Thus, the angle between Lx̃1 and Lx̃2 is at least ⇡/6. From standard facts on random hyperplane
rounding (see Appendix A of [37]) it is easy to see that pos(h(x1)) 6= pos(h(x2)) with probability
at least (⇡/6)/⇡ = 1/6.

Case: B monochromatic. In this case, (13), (7) guarantee that {Lx̃b | b = 1, 2, 3} are non-zero
vectors with pairwise non-negative inner products. It is a well known fact (see [19]) that such vectors
can be rotated to be contained in a three-dimensional orthant (cone subtended by three coordinate
rays). Thus, the probability that the bag is unsplit by pos(h(.)) is at least the probability that the inner
products of three orthonormal vectors with g (as chosen in Step 4 of A) all have the same sign. Each
of these three inner products is an independent standard Gaussian, so the latter probability is 1/4.

Since our algorithm A when restricted bags of size  2 is the same as that given by [37], we can
reuse the following lemma which summarizes the analysis in Sec. 2 of [37].
Lemma 3.2 (Sec. 2 of [37]). Any monochromatic bag of size  2 is unsplit by pos(h(.)) with
probability at least 1/2. Any non-monochromatic bag 2-sized bag is split by pos(h(.)) with probability
at least 1/2. Further, h(xi) 6= 0 (1  i  n) w.p. 1.

Assuming that h does not vanish any xi (which happens w.p. 1) we obtain the following properties.
If a monochromatic bag is usplit by pos(h(.)) then it is satisfied by exactly one of pos(h(.)) and
pos(�h(.)). This also holds for any non-monochromatic bag of size 3 split by pos(h(.)). On the
other hand a non-monochromatic bag of size 2, if split by pos(h(.)), is satisfied by both pos(h(.))
and pos(�h(.)). This, along with Step 6 of A completes the proof of Theorem 1.1.

An analysis of the time complexity of A (which is asymptotically dominated by the time taken to
solve the SDP) is provided in Appendix I.

4 Hardness Result

The following theorem, whose proof is provided in Appendix C, states our detailed hardness result .
Theorem 4.1. For positive integers constants q > 1, ` � 1, and any constants ⇣ > 0 and {pr �
0}q

r=1 s.t.
P

q

r=1 pr = 1, given an instance I of LLP-LTF[q] with pr fraction of bags of size q and
label proportion r/q, for r 2 {1, . . . , q}, it is NP-hard to distinguish between the following cases:

YES Case. There is an LTF that satisfies all the bags of I.

NO Case. Any {0, 1}-function f of at most ` LTFs satisfies at most �q,p1,...,pq + ⇣ fraction of the
bags in I where �q,p1,...,pq := max↵2[0,1] (

P
r=1 pr�q,r,↵) and �q,r,↵ :=

�
q

r

�
↵r(1� ↵)q�r.

Proofs of Theorem 1.2. We apply Theorem 4.1 with pr = 1/q for r 2 [q]. In the NO case, the
total fraction of bags satisfied by f is � := max↵2[0,1]

⇣
1
q

P
q

r=1 �q,r,↵

⌘
+ ⇣ for an arbitrarily small

constant ⇣ > 0. Observing that
P

q

r=1 �q,r,↵ 
P

q

r=0 �q,r,↵ = (↵+ (1� ↵))q = 1, we obtain that
�  1/q + ⇣. This, along with the Yes case, proves Theorem 1.2 for LLP-LTF[q].

For the case of q = 2 we show (in Appendix B) that minp2[0,1] max↵2[0,1] p↵
2+2(1�p)↵(1�↵) =

4/9 to obtain a 4/9 + ⇣ hardness factor.

5 Experimental Evaluation

We compare our algorithm (A) to random LTF (R) evaluated on 25 instances for each row of Table 1
giving the avg. % bags satisfied by each method, and the last two columns providing the accuracy on
test dataset obtained by sampling a bag (same as the bag distribution) and sampling u.a.r. one of the
three feature-vectors from the bag.
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d m A R Atest Rtest
(small margin)

10 50 93.0 6.3 96.2 51.4
10 100 97.1 4.4 98.6 53.2
40 50 81.9 4.8 85.4 51.8
40 100 83.0 4.4 90.1 52.0

(large margin)
10 50 51.0 46.3 67.7 58.1
10 100 55.9 46.5 75.1 63.1
40 50 43.5 41.2 52.9 53.2
40 100 40.2 40.9 53.4 52.3

Table 1: Our alg. (A) vs rand.
LTF (R). Bag size 3.

For each instance, m bags (of 3 d-dim. vectors each) are sampled,
where each is non-monochromatic w.p. 3/4. The small and large
margin cases are analogous to the correlated and uncorrelated
cases in the experiments of [37], and we similarly follow a best-of
5-trials based rounding for A and best-of 5 u.a.r. LTFs or their
complements for R. We see that (i) A satisfies on avg. 80-97%
of the bags in the small margin cases, vastly outperforming R, the
average feature-vector level test accuracy of the LTF produced by
our algorithm is quite high: 96-98% for d = 10 and 85-90% for
d = 40, while that of random LTF is rather low at around 50-55%.
(ii) A also betters R in most of the large margin cases. Additional
details are included in Appendix K which also provides similar
experimental evaluation for weakly-satisfying LLP-LTF[4].

Remark. The SDP formulation in our experiments for 3-sized bags
differs slightly from the one in Fig. 2 by using alternate valid constraints for non-monochromatic
bags. In particular, instead of xT

i
R{i,j}xj  0, i 6= j 2 {1, 2, 3} (as described in Sec. 1.4) we

add xT
i
R{i,j}xj + xT

i
R{i,k}xk < 0 for each {i, j, k} = {1, 2, 3}. It is easy to see that the new

inequalities imply that there is i 2 {1, 2, 3} such that for each j 2 {1, 2, 3} \ {i}, xT
i
R{i,j}xj < 0.

Using this condition the rest of the analysis can be done as before yielding the same approximation
guarantee, while it provided better observed experimental performance. We defer a formal explanation
to Appendix J.

6 Conclusions

Our work develops novel linear algebraic techniques to design and analyze a non-trivial SDP
relaxation based (1/12)-approximation for satisfiable LLP-LTF[3], for which no previous algorithm
(other than trivial or random LTF) was known. We also prove a 1/q + o(1) factor hardness for
LLP-LTF[q] for all constant q, and a strengthened 4/9 + o(1) factor for q = 2, improving on the
previous 1/2 + o(1) factor [37]. We extend our algorithm to bag sizes q � 4 for for weaker notion of
bag-satisfiability, obtaining ⌦(1/q)-approximate algorithm.

Experiments on simulated data of 3-sized bags shows that our algorithm can provide substantially
improved (over random LTFs) performance, both in terms of bag satisfiability as well as on feature-
vector level test evaluation.

The main open question in this line of work is to develop algorithms for satisfiable LLP-LTF[q] for
q � 4. Of course, learnability in the LLP setting can also be studied for other natural classifiers such
as DNF formulas and decision trees.

Another interesting direction is to study variants of the bag satisfiabliltiy objective such as those
which minimize the average deviation (according to some distance e.g. `1 or `22) between the given
bag label proportions and those induced by the solution classifier.
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