
Appendix: Understanding Hyperdimensional
Computing for Parallel Single-Pass Learning

A Proofs of Lemmas, Statements and Theorems

Lemma 4.1. No binary HDC can express the following similarity matrix

M =

 1 − 1
2 − 1

2
− 1

2 1 − 1
2

− 1
2 − 1

2 1

 .

Proof. There are n = 3 basic entities, where we have some HDC vectors v0,v1,v2 ∈ RD which can
be any dimension. We start from D = 1 case, with the inner product as the similarity measurement,
we can easily enumerate all possible similarity matrices as follows:(

1 1 1
1 1 1
1 1 1

)
,
(

1 −1 1
−1 1 −1
1 −1 1

)
,
(

1 1 −1
1 1 −1
−1 −1 1

)
,
(

1 −1 −1
−1 1 1
−1 1 1

)
.

When D > 1, note that
S(vi,vj) =

∑D
k=1 S(vik,vjk)/D ,

which indicates that all possible similarity matrices must reside in the convex hull of the similarity
matrices enumerated above because D can be of any dimension. Easy to verify that this convex hell
does not contain M: thus no binary HDC can achieve it.

Statement 4.1. Binary HDC cannot learn the following task.

Consider a supervised learning task with input example set X = {0, 1, 2}, output label set Y = X ,
and source distribution

P(x, y) =

{
1/9 + 2p x = y

1/9− p x ̸= y

for some small positive number p.

Proof. Let ϕ : X → {−1, 1}D be any binary HDC encoding, and extend ϕ(x) = ϕ(x mod 3) when
x > 3. Given a class ŷ, we can then compute the class representative cŷ as

cŷ =
⊕

x:y(x)=ŷ

ϕ(x) = sgn(E[ϕ(x)|ŷ])

= sgn[(
1

3
− 3p)(ϕ(ŷ + 1) + ϕ(ŷ + 2)) + (

1

3
+ 6p)ϕ(ŷ)]

= sgn[(
1

3
− 3p)(ϕ(ŷ) + ϕ(ŷ + 1) + ϕ(ŷ + 2)) + 9pϕ(ŷ)] .

Note that ϕ(ŷ) + ϕ(ŷ + 1) + ϕ(ŷ + 2) cannot be a zero vector; otherwise,

0 = S(ϕ(ŷ), ϕ(ŷ) + ϕ(ŷ + 1) + ϕ(ŷ + 2))

= 1 +
∑
j ̸=ŷ

S(ϕ(ŷ), ϕ(j)),

due to symmetry, one can easily derive that S(ϕ(i), ϕ(j)) = −1/2 for i ̸= j, then M is achieved, a
contradiction to Lemma 4.1.
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Since p is small positive number, then the sign of E[ϕ(x)|ŷ] is dominated by the first term ϕ(ŷ) +
ϕ(ŷ + 1) + ϕ(ŷ + 2). Hence, the class representative of class ŷ is computed as

cŷ =
⊕

x:y(x)=ŷ

ϕ(x) = sgn(E[ϕ(x)|ŷ])

= sgn(ϕ(ŷ) + ϕ(ŷ + 1) + ϕ(ŷ + 2)),

which is same for each class, i.e., binary HDC fails to learn this simple task.

On the other hand, for any VSA that can express M with v0,v1,v2, set ϕ(x) = vx. We can compute
the class representative cŷ as

cŷ =
⊕

x:y(x)=ŷ

ϕ(x) = argmax
z

⟨z,E[ϕ(x)|ŷ]⟩

= argmax
z

⟨z, (1
3
− 3p)(ϕ(ŷ) + ϕ(ŷ + 1) + ϕ(ŷ + 2)) + 9pϕ(ŷ)⟩

= argmax
z

⟨z, 9pϕ(ŷ)⟩ = ϕ(ŷ).

The class representative of class ŷ will be

cŷ = sgn(E[ϕ(x)|ŷ]) = sgn(
3p

2
ϕ(ŷ)) = ϕ(ŷ),

which gives a Bayes optimal classifier, outputs the most probable class and proves Statement 4.2.

Statement 4.2. Any VSA (formalized in Definition 2) that can express MLemma 4.1 can learn this task.
Lemma 4.2. Let u1, u2, . . . , uK be binary vectors sampled coordinate-wise independently at random,
where each coordinate of ui has the same probability pi of being 1. Let v0, v1, and v2 be vectors that
result from some composition of binding and permutation acting on u1, . . . , uK , and let M ∈ R3×3

be their similarity matrix, such that Mij = S(vi, vj). Then∥∥∥∥∥∥E[M]−

 1 − 1
3 − 1

3
− 1

3 1 − 1
3

− 1
3 − 1

3 1

∥∥∥∥∥∥
F

≥
√
2

3
,

but this target matrix is expressible by some binary HDC.

Proof. It is straightforward to show that for some x, y, z ∈ [−1, 1]

E[M] =

(
1 xy xz
xy 1 yz
xz yz 1

)
.

But since (xy) ·(xz) ·(yz) = x2y2z2 is a square number, it follows that the upper-triangular elements
cannot all be negative. At least one of them must be non-negative, from which the result immediately
follows. A binary HDC that achieves this matrix is: (−1, 1, 1), (1,−1, 1), (1, 1,−1).

Lemma 5.1. Suppose that X and Y are jointly Gaussian zero-mean unit-variance random variables.
Then

E[sgn(X) sgn(Y )] =
2

π
arcsin (E[XY ])

Proof. Without loss of generality let U ∼ N (0, I) be a standard Gaussian over R2, and suppose that
X = aTU , Y = bTU for some vectors a, b ∈ R2 with ∥a∥ = ∥b∥ = 1 and aT b = E[XY ]. Here, a
geometric argument shows that P(X ≥ 0 ∧ Y ≤ 0) = P(aTU ≥ 0 ∧ bTU ≤ 0) = θ/(2π), where θ
is the angle between a and b. An analogous analysis of the other three cases, combined with some
straightforward trigonometry, proves the lemma.

Theorem 6.1. Let (G,⊗) be a finite group, and let X denote the set of its non-trivial irreducible
characters. Let α : X → R≥0 be some function that assigns a non-negative weight to each of the
characters. Then, if we set S to be

S(g, h) =
∑

χ∈X α(χ) · Re(χ(g−1 ⊗ h))∑
χ∈X α(χ) · χ(1)

,
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where the inverse and unit 1 are those of the group (G,⊗), and define bundling ⊕ as given in the
definition of a group VSA, then (G,⊗,S,⊕) is a finite group VSA. Any finite group VSA can be
constructed in this way.

If in this construction α is supported on only one character χ, i.e. S(g, h) = Re(χ(g−1 ⊗ h))/χ(1),
then the VSA will have the product property.

Proof. The first part of this theorem is a direct consequence of the following more technically-stated
theorem.

The second part follows directly from the fact that if ϕ is an irreducible representation of a finite
group G, and A is the set of automorphisms of G, then for any g ∈ G,

1

|A|
∑
a∈A

ϕ(a(g)) = cI

for some scalar c. In particular, this means that if χ is the corresponding character, then for any
g, h ∈ G,

1

|A|
∑
a∈A

χ(h−1a(g)) =
1

|A|
∑
a∈A

tr
(
ϕ(h−1)ϕ(a(g))

)
= tr

(
ϕ(h−1)

1

|A|
∑
a∈A

ϕ(a(g))

)
= tr

(
ϕ(h−1) · cII

)
= c · χ(h−1).

Substituting h = 1 yields that c = Re(χ(g))/χ(1) (since χmust also be preserved by automorphisms
up to complex conjugation), which immediately implies what we wanted to prove.

Theorem A.1 (Representation theorem for group VSAs). Suppose that we have a finite group G
equipped with a similarity measure denoted ⟨·|·⟩G. Let X denote the set of non-trivial irreducible
characters of G (i.e. X is the character table of G excluding the top row). Then there exists a unique
function α : X → R≥0 such that α(χ̄) = α(χ) for all χ ∈ X ,

∑
χ∈X α(χ) · χ(1) = 1, and

⟨·|·⟩G =
∑
χ∈X

α(χ) · χ(g−1h). (1)

Conversely, for any function α of this type, if we define ⟨·|·⟩ according to (1), then ⟨·|·⟩ will be a
similarity measure for G.

Additionally, if we define M as the matrix such that Mgh = ⟨g|h⟩G, and d is the rank of M , then
there exists some positive integer K and positive integers d1, d2, . . . , dK such that

∑K
k=1 dK = 1,

and there exists a |G|-dimensional subspace A of Rd1×d1 × Rd2×d2 × · · · × RdK×dK and function
ϕ : G→ A such that for all g, h ∈ G,

ϕ(g)ϕ(h) = ϕ(gh)

ϕ(g)−1 = ϕ(g)T = ϕ(g−1)

ϕ(1) = ϕ(I),

where multiplication and transposition in A is done component-wise on the K components (each
of which is a matrix), and such multiplication preserves A. Also, there exist some positive scalars
β1, β2, . . . , βK such that if we define an inner product on A as

⟨(x1, x2, . . . , xK), (y1, y2, . . . , yK)⟩A =

K∑
k=1

βk tr
(
xTk yk

)
,

where here each xk ∈ Rdk×dk , then

⟨g|h⟩G = ⟨ϕ(g)|ϕ(h)⟩A.
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Proof. Let M be the matrix described in the theorem statement, such that Mgh = ⟨g|h⟩G. Observe
that M must be symmetric and positive semidefinite (by the properties of the similarity measure).
For some f ∈ G, let Bf denote the matrix

Bf =
∑
g∈G

efge
T
g ,

where eg is the unit basis element associated with g. Observe that BT
f = B−1

f = Bf−1 , and that Bf

commutes with M , because

eThMBfeg = eThMefg

= ρ(h−1fg)

= ρ((f−1h)−1g)

= eTf−1hMeg

=
(
Bf−1eh

)T
Meg

= eThB
T
f−1Meg

= eThBfMeg.

That is, MBf = BfM . Since Bf commutes with M , it also must commute with any polynomial of
M . In particular, if the nonzero eigendecomposition of M is

M =

K∑
k=1

λkVk,

where each λk > 0 is distinct, and V 2
k = Vk is a symmetric projection matrix onto the associated

eigenspace, then since Vk can be expressed as a polynomial in M , it must also commute with Bf for
all f . The same thing will be true for Cf defined as

Cf =
∑
g∈G

egfe
T
g .

These results together show that for any f, g, h ∈ G,

eThVkeg = eTfhVkefg = eThfVkegf .

Now, let dk denote the rank of Vk (the multiplicity of the eigenvalue λk in M ). So, there must exist
some matrix Wk ∈ R|G|×dk such that Vk = WkW

T
k and WT

k Wk = I . For any g ∈ G, let Uk(g)
denote the matrix in Rdk×dk

Uk(g) =WT
k BgWk.

Observe that Uk(1) = I , all the Uk(g) matrices are orthogonal, and

Uk(g)Uk(h) =WT
k BgWkW

T
k BhWk

=WT
k BgVkBhWk

=WT
k BgBhVkWk

=WT
k BghWk

= Uk(gh).
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That is, Uk is a representation of the group G. Observe that the trace of Uk(g) is

tr (Uk(g)) = tr
(
WT

k BgWk

)
= tr

(
WkW

T
k Bg

)
= tr (VkBg)

=
∑
h∈G

eThVkBgeh

=
∑
h∈G

eThVkegh

=
∑
h∈G

eT1 Vkeg

= |G| · eT1 Vkeg.

In particular, this means that g 7→ |G| ·eT1 Vkeg is a character of G. As a character, it must be a sum of
irreducible characters of G, and since it is real, it must place the same weight on complex-conjugate
characters. It follows that g 7→

∑K
k=1 λke

T
1 Vkeg must be a non-negative scaled sum of irreducible

characters of G that places the same weight on complex-conjugate characters. But, this function is
just g 7→ eT1Meg , which is just ρ. So, ρmust be a non-negative sum of the irreducible characters ofG.
The fact that this scaling is unique follows from the fact that the characters are linearly independent;
the fact that this scaling only contains non-trivial characters follows from the average-dissimilarity
property.

We then construct an algebra A as follows. Let ϕ(g) : G→ Rd1×d1 × · · · ×RdK×dK
be defined as

ϕ(g) = (U1(g), U2(g), . . . , UK(g)),

and let the inner product scalars be

βk =
λk
|G|

.

Then
K∑

k=1

βk tr
(
Uk(h)

TUk(g)
)
=

K∑
k=1

βk tr
(
Uk(h

−1)Uk(g)
)

=

K∑
k=1

βk tr
(
Uk(h

−1g)
)

= eT1Meh−1g

= ρ(h−1g)

= ⟨h|g⟩G

as desired. To finish the construction, let A be the algebra spanned by {ϕ(g) | g ∈ G}. Observe that
this must be closed under multiplication and transposition because G is closed under multiplication
and inversion.

Statement 6.1. Let M be similarity matrices expressible by a finite group VSA. Then there exists a
finite group VSA that has the product property and can also achieve M.

Proof. Suppose the first VSA’s group is G and has irreducible characters χ1, χ2, . . . , χk. Then the
group Gk consisting of the direct product of k copies of the group G, together with a similarity
function S((x1, . . . , xk), (y1, . . . , yk)) ∝

∏k
i=1 χi(x

−1
i ⊗ yi) will both have the product property

(as its similarity matrix is proportional to a single character) and can express any similarity matrix
the first VSA can.

Statement 6.2. Any similarity matrix M that can be expressed by a finite Abelian group VSA can be
expressed by the unit-cycle VSA (G = {z ∈ C | |z| = 1}, x⊗ y = xy, S(x, y) = Re(x∗y)).
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Proof. Note the fact that all irreducible representations of finite Abelian groups are 1-dimensional.
Then the results follows immediately with any irreducible representation as the mapping from a finite
Abelian group to G = {z ∈ C | |z| = 1}.

Statement 6.3. There exists a similarity matrix M that can be expressed by a VSA over the (non-
Abelian) binary icosahedral group, but not by the unit-cycle VSA.

Proof. Consider the binary icosahedral group expressed as a subset of the quaternions. This group
consists of 120 elements which are placed at the vertices of a 600-cell inscribed in the unit 3-sphere.
Consider an arbitrary sequence of 60 of these elements containing exactly one of {x,−x} for each x
in the binary icosahedral group: i.e. we select exactly one of each pair of antipodal points in the group.
This sequence of 60 points has a similarity matrix M ∈ R60×60. It is easy to check that the absolute
values of the entries of this matrix lie in {0, 1

2ϕ ,
1
2 ,

ϕ
2 , 1}, where ϕ = 1+

√
5

2 is the golden ratio. Define

the matrix A ∈ R60×60 such that Aij = ±1 if Mij = ±ϕ
2 and Aij = 0 otherwise. Consider the

optimization problem to maximize tr(AZ) over positive semidefinite matrices Z ∈ R60×60 subject
to the constraint that the diagonal of Z is all-ones, i.e. Zii = 1. It is easy to check numerically that
the only solution to this optimization problem is Z =M . Also observe that M has rank greater than
2.

Now, suppose that there existed some representation of M using vectors with entries in the unit
circle in C. For this to hold, it would need to be the case that M is in the convex combination of
the similarity matrices generated by those entries, each of which must be of rank 2. But, this is
impossible, since (1) none of those matrices can be equal to M , and as such (2) any such matrix
MC will have tr(MCA) < tr(MA). This shows that this particular matrix can’t be represented by
hypervectors with unit-absolute-value entries in C.

B Calculation of θ in Section 7

We can theoretically calculate the angle θ between the class vector sc and a randomly selected
hypervector ti in the set Tc.

cosθ =
sc · vj

∥sc∥ ∥vj∥
=

2 · q −D

D

D is the dimension of ti. q is the number of elements that have the same sign in sc and ti. Since

sc = sgn

⊕
j∈Tc

tj

 = sgn

ti + 2k+1∑
j=1,j ̸=i

tj

 ,

q is proportional to the probability pk of the sign of an entry in ti will be flipped after adding the term∑2k+1
j=1,j ̸=i tj (the other 2k vectors) to it. Obviously q = D · pk as each entry in ti is independent.

In order to avoid flipping the sign of an entry, there should be at least k entries out of 2k that have the
same sign, so the probability pk can be calculated by

pk =

(
2k
k

)
+
(

2k
k+1

)
+ · · ·+

(
2k
2k

)
22k

=
1 + 1

22k

(
2k
k

)
2

Plug the expression of pk into cosθ, we can get

θ2k+1 = cos−1(
1

22k
·
(
2k

k

)
)

Importantly, pk is monotonic.
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Proof.

pk+1 =
1 + 1

22k
· 1
4 ·
(
2k+2
k+1

)
2

=
1 + 1

22k
· 1
4 · [
(
2k+1
k+1

)
+
(
2k+1

k

)
]

2

=
1 + 1

22k
· 1
4 · [
(

2k
k+1

)
+
(
2k
k

)
+
(
2k
k

)
+
(

2k
k−1

)
]

2

<
1 + 1

22k
· 1
4 · 4 ·

(
2k
k

)
2

= pk

This means that the more vectors we bundle together, the closer θ is to 90 degrees.

C Learning with Group VSA

For a cyclic group VSA model, similar as the binary HDC case, we initialize a linear model with
weights W of size #class×D, where each element belongs to G = Z/nZ = {0, 1, · · · , n − 1}.
Inputs to this classifier are encoded hypervectors v ∈ GD, the model computes per-class similarities
with defined similarity function:

S(x, y) = ⟨ψ(x), ψ(y)⟩ = cos(2π(x− y)/n),∀x, y ∈ G,

which extends to higher dimensional space via

S([x1, . . . , xD], [y1, . . . , yD]) =
1

D

D∑
i=1

S(xi, yi).

We calculate the cross-entropy loss between the classifier outputs and the labels, and do back
propagation using high precision numbers such as 16-bit floats. At each optimizer step, SGD
optimizer moves W away from G#class×D, we pull it back with (Fast)-Round operation to finish
current step before entering next step. Similar as the binary case, the inference cost remains the same
as the bundling method.
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