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Abstract

In this paper, we study dataset distillation (DD), from a novel perspective and
introduce a dataset factorization approach, termed HaBa, which is a plug-and-
play strategy portable to any existing DD baseline. Unlike conventional DD
approaches that aim to produce distilled and representative samples, HaBa explores
decomposing a dataset into two components: data Hallucination networks and
Bases, where the latter is fed into the former to reconstruct image samples. The
flexible combinations between bases and hallucination networks, therefore, equip
the distilled data with exponential informativeness gain, which largely increase
the representation capability of distilled datasets. To furthermore increase the
data efficiency of compression results, we further introduce a pair of adversarial
contrastive constraints on the resultant hallucination networks and bases, which
increase the diversity of generated images and inject more discriminant information
into the factorization. Extensive comparisons and experiments demonstrate that
our method can yield significant improvement on downstream classification tasks
compared with previous state of the arts, while reducing the total number of
compressed parameters by up to 65%. Moreover, distilled datasets by our approach
also achieve ~10% higher accuracy than baseline methods in cross-architecture
generalization. Our code is available here.

1 Introduction

The success of deep models on a variety of vision tasks, such as image classification [23, 9, 34],
object detection [33, 32], and semantic segmentation [39, 49, 25], is largely attributed to the huge
amount of data used for training and various pre-trained models [50]. However, the sheer amount
of data introduces significant obstacles for storage, transmission, and data pre-processing. Besides,
publishing raw data inevitably brings about privacy or copyright issue in practice [40, 8]. To alleviate
these problems, Wang et al. [47] pioneer the research of dataset distillation (DD), to distill a large
dataset into a synthetic one with only a limited number of samples, so that the training efforts
with the distilled dataset for downstream models on the original dataset can be largely reduced,
which facilitates a series of applications like continual learning [37, 36, 48, 27] and black-box
optimization [6]. Due the significant practical value of DD, many endeavours have been made on this
area [55, 53, 54, 46, 21, 5, 56] to design novel supervision signals to train the synthetic datasets and
to further improve their performances.

Nevertheless, there is a potential drawback in conventional settings of DD: it largely treats each
synthetic sample independently and ignores the inter coherence and relationship between different
instances. As such, the information embraced by each sample, despite distilled, is by nature limited.
Using the synthetic samples for training downstream models, therefore, inevitably leads to the loss of
dataset information. Moreover, the few distilled samples are incompatible with the enormous number
of parameters in a deep model and may yield the risk of overfitting.

To verify these potential issues, we conduct a pre-experiment on CIFAR10 dataset with 10 synthetic
images per class, using MTT [5], the current SOTA solution on DD, as the baseline. In addition
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Figure 1: Intuition of our hallucinator-basis factorization for dataset distillation.

to the baseline setting, we also incorporate all the checkpoint synthetic datasets after each 100 DD
iterations in the convergent stage to train the downstream model. Since the synthetic images are
fine-tuned during this stage, multiple checkpoints can be viewed as related but different, which may
somehow increase the diversity. As a result, it yields overall lower test loss and hence better final
results in downstream training, as shown in the blue and green curves in Fig. 2, which indicates that
current DD solutions can be potentially improved by leveraging some sample-wise relationships to
diversify the distilled data. Nevertheless, simply involving more data samples may also increase the
memory overhead. This fact motivates us to ask: is it possible to encode some shared relationships in
a dataset implicitly, instead of storing samples directly, to avoid such additional storage costs?
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Figure 2: Visualization
of test loss using syn-
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ple checkpoints, and ours.

We show in this paper that, it can indeed be made possible through
reformulating the DD task as a factorization problem. As shown in
Fig. 1, we propose a novel perspective dubbed HaBa, to factorize a
dataset into two compositions: data Hallucination networks and Bases.
A data hallucination network, or hallucinator, can take any basis as
input and output the corresponding hallucinated image. Supervised
by the training objective of DD, a set of hallucinators can synthesize
multiple samples from a common basis and are optimized to extract
effective relationships among different samples in original datasets
explicitly. In this way, information of |H|×|B| images can be included
for a factorization result with |H| hallucinators and |B| bases via
arbitrary pair-wise combination, which improves the data efficiency
of traditional DD exponentially. As shown in the yellow curve in Fig.
2, with the same budget on the storage, our strategy achieves better
test performance compared with the MTT baseline.

To further increase the informativeness of factorized results, we introduce a pair of adversarial
contrastive constraints to promote sample-wise diversity. The goal of HaBa is to minimize the
correlation among images composed of different hallucinators but a common basis, while an adversary
tries to maximize it. Such an adversarial scheme, in turn, enforces the hallucinators to produce
diversified images and increases the amount of useful information.

Notably, HaBa is a versatile strategy that can be built upon existing DD baselines, since it is compatible
with any training objective for measuring the similarity between downstream performances as shown
in Fig. 1, We conduct extensive experiments to demonstrate the advantages of the proposed method
over baseline ones. In all benchmarks and comparisons, HaBa produces significant and consistent
improvement on training downstream models, while reducing the total number of compressed
parameters by up to 65%. Furthermore, it demonstrates strong cross-architecture generalization
ability with accuracy improvement higher than 10%. Our contributions are summarized as follows:

• We study dataset factorization, a novel perspective to explore dataset distillation, and propose
a novel approach termed HaBa for hallucinator-basis factorization.

• We present a pair of adversarial contrastive objectives to further increase the data diversity
and information capability.
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• HaBa is a plug-and-play scheme compatible with all existing training objectives of DD and
can yield significant and consistent improvement over the state of the arts.

2 Related Works

The goal of dataset distillation (DD) is to optimize a smaller synthetic dataset such that it is capable to
take place of original one for training downstream tasks, which is different from coreset selection [1,
7, 13, 38, 44], another branch for dataset compression, directly selecting samples from raw datasets.
In this section, we provide a detailed review of previous methods in DD.

Motivated from knowledge distillation [15, 12, 52, 51] aiming at model compression, Wang et al. [47]
introduce the concept of dataset distillation for dataset compression. The idea is to optimize the
synthetic images so that they can minimize loss functions of downstream tasks, where a bilevel
optimization algorithm [11] is involved. Following this routine, several works further consider
learnable labels beyond samples [3, 42]. Subsequently, Zhao et al. [55] and several following
approaches [53, 24] consider matching gradients of a downstream model produced by synthetic
samples and real images, which improve the performance significantly. Most recently, Cazenavette et
al. [5] argue that single-iteration gradient matching may lead to inferior performance due to error
accumulation across multiple steps and thereby propose to match long-range training dynamics of an
expert trained on the original dataset. As an alternative method to profile training effects produced by
different sets, Nguyen et al. [29, 30] also introduce the kernel ridge-regression approach based on the
Neural Tangent Kernel (NTK) in infinitely wide convolutional networks [17].

Apart from matching training effects, there are also methods matching data distributions between
original and synthetic datasets. For instance, Zhao et al. [54] propose a simple but effective Maximum
Mean Discrepancy (MMD) constraint for DD, which does not involve the training of downstream
models and enjoys superior training efficiency. Wang et al. [46] propose CAFE, explicitly attempting
to align the synthetic and real distributions in the feature space of a downstream network.

Above mentioned methods are dedicated to exploring suitable training objectives and pipelines for
DD. However, there are few works concerning improving the data efficiency for distilled samples.
Although Zhao et al. [53] propose differentiable siamese augmentation (DSA) to enrich the training
data, the augmentation operations used, e.g., crop, flip, scale, and rotation, cannot encode any
information about the target datasets. In this paper, we study the task in a factorization perspective,
to factorize a dataset into two different compositions: data hallucination networks and bases. Both
parts carry important knowledge of the raw dataset. For downstream training, hallucinators and bases
can perform arbitrary pair-wise combination, i.e., sending any basis to any hallucinator, to create
a training sample. The idea of factorization can improve the diversity of distilled training datasets
significantly, without introducing additional costs for storage. It is also a versatile strategy compatible
with all aforementioned DD methods, which will be demonstrated in the experiment part.

Concurrent Works on Efficient Distilled Dataset Parameterization: As a concurrent work, Kim
et al. [21] propose IDC for efficient synthetic data parameterization. It reveals that only storing
down-sample version of synthetic images and conducting bilinear upsampling in downstream training
would not hurt the performance much. Thus, given the same budget of storage, it can store 4×
number of 2× down-sample synthetic images compared with the baseline. Both IDC and HaBa
in this paper are dedicated to improving the data efficiency of synthetic parameters. Interestingly,
according to the definition of our hallucinator-basis factorization, IDC can in fact be treated as a
special case of HaBa, where the hallucinator is a parameter-free upsampling function and each basis
has a smaller spatial size. Nevertheless, the main focuses for IDC and HaBa are different and they are
in fact two orthogonal techniques, which can readily join force to enhance the baseline performance,
as discussed in Sec. 4.2.

3 Methods

In this section, we elaborate our proposed method HaBa for dataset distillation (DD). Assume
that there is an original dataset T = {(xi, yi)}|T |

i=1 with |T | pairs of a training sample xi and the
corresponding label yi. DD targets a synthetic dataset S = {(x̂i, ŷi)}|S|

i=1 with |S| ≪ |T | and expects
that a model trained on S can have similar performance than that trained on T .
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Figure 3: Left: Overall pipeline of the proposed hallucinator-basis factorization. B, H, and T
denote sets of bases, hallucinators, and original data respectively. Adv. denotes an adversary model.
We adopt batch size 2 here for clarity; Right: Architecture of a hallucinator in detail.

Traditional DD methods treat each synthetic sample independently and ignore the inner relationship
between different samples within a dataset, which results in poor data/information efficiency. Focusing
on such drawback, we study DD from a novel perspective and redefine it as a hallucinator-basis
factorization problem:

S = {Hθj}
|H|
j=1 ∪ {(x̂i, ŷi)}

|B|
i=1, (1)

where there are |H| hallucination networks and |B| bases. The j-th hallucinator is parameterized by
θi and we denote it by Hθi for 1 ≤ j ≤ |H|. For downstream training, a training data pair (x̃ij , ỹij)
is created online via sending the i-th basis, with any 1 ≤ i ≤ |B|, to the j-th hallucinator, with any
1 ≤ j ≤ |H|, i.e., x̃ij = Hθj (x̂i). In this paper, the label ỹij is simply taken as ŷi.

An overview of our method is shown in Fig. 3(Left). To go deeper into the technical details, we first
start with the introduction of our basis and data hallucination network in Sec. 3.1. Then, we propose
an adversarial contrastive constraint to increase data diversity in Sec. 3.2. Finally, we present the
whole training pipeline of the hallucinator-basis factorization for DD in Sec. 3.3.

3.1 Basis and Hallucinator

Basis: Typically, for an image classification dataset T = {(xi, yi)}|T |
i=1, xi ∈ Rh×w×c and yi ∈

{0, 1, ..., C−1} for each 1 ≤ i ≤ |T |, where each xi is a c-channel image with a resolution of h×w,
and C is the total number of classes. In previous DD methods, the format/shape of synthetic data
pairs (x̂, ŷ) has to be held the same as that of real data, so as to make sure the consistency between
input and output formats in the training and test time for downstream models. By contrast, since
hallucinator networks are capable of spatial-wise and channel-wise transformation, the shape of each
x̂i, 1 ≤ i ≤ |B|, denoted as h′ × w′ × c′, is not necessarily the same as that of original samples and
thus more flexible. And for a classification problem, we do not modify its label space in this paper
for simplicity and maintain the categorical format.

Hallucinator: Given a basis x̂ ∈ Rh′×w′×c′ , a data hallucination network, aims to create a new
image x̃ ∈ Rh×w×c based on x̂, which can be viewed as a conditional image generation problem.
Inspired by image style transfer [19, 16, 18, 26], a typical conditional image generation problem,
we devise an encoder-transformation-decoder based architecture for hallucinators, as shown in Fig.
3(Right). Specifically, the encoder, denoted as enc, is composed of CNN blocks, which non-linearly
maps an input x̂ to a feature space Rh′′×w′′×c′′ . Then, an affine transformation with scale σ and shift
µ is conducted on the derived feature, where σ and µ are treated as network parameters in this paper.
At last, the decoder dec under a symmetric CNN architecture with enc projects the transformed
feature back to the image space. Formally, this process can be written as:

f̂ = enc(x̂), f̃ = σ × f̂ + µ, x̃ = dec(f̃), (2)

where the multiplication is element-wise operation. There are |H| hallucinators in the whole factor-
ization pipeline and each would be trained to implicitly encode some sample-wise relations by its
network parameters.

3.2 Adversarial Contrastive Constraint

Ideally, the knowledge encoded by different hallucinators should be as different/orthogonal as possible
to get the most benefits for each individual. To instantiate such regularization, let’s consider two
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composed images x̃ij and x̃ik from two different hallucinators Hθj and Hθk but a common basis x̂i.
The divergence between x̃ij and x̃ik is expected to be large. To measure the divergence, a feature
extractor is required to map an input image to a feature space, and how to train such a feature extractor
to find an appropriate feature space is of great importance.

In this paper, we formalize the training of hallucinators and the feature extractor as a min-max game
in a self-consistent manner, where the feature extractor desires to minimize the divergence between
x̃ij and x̃ik while hallucinators, as well as bases, are optimized to maximize it so that the two players
can reinforce each other. In specific, the feature extractor, denoted as F and parameterized by ψ, is
typically a CNN structure for the downstream task and we adopt features at the last hidden layer before
the output layer, denoted as F−1(x̃ij) and F−1(x̃ik). F is optimized to maximize the correlation
between the two feature vectors, which can be quantified by the metric of mutual information (MI).
Inspired by the lower bound of MI [45], the objective to minimize the divergence for F is given by
the following contrastive form:

Lcon. = −
1

|H|2
1

|B|
∑

1≤j,k≤|H|,
j ̸=k

|B|∑
i=1

log
exp {F⊤

−1(x̃ij)F−1(x̃ik)/τ}∑|B|
u=1 exp {F⊤

−1(x̃ij)F−1(x̃uk)/τ}
, (3)

where τ is a scalar temperature coefficient. For the classification problem, we can alternatively
adopt the supervised form of the contrastive loss Lcon., where x̃uk with the same class label as x̃ij
are also taken into consideration as positive samples in Eq. 3. The supervised contrastive loss can
benefit to increase the correlation of samples from the same class [20] for a more reasonable feature
representation.

In addition, the feature space is expected to reflect the task-specific property for a meaningful
representation. Thus, we also incorporate the task loss Ltask, e.g., cross-entropy loss in classification
tasks, over the synthetic dataset as a supervision signal for F . In this way, the overall training
objective for F is defined as:

min
ψ
LF = λcon.Lcon. + λtaskLtask, (4)

where λcon. and λtask are hyper-parameters controlling the weight for each term.

F acts as an adversary to minimize the divergence between x̃ij and x̃ik, while the synthetic dataset
is expected to maximize it to increase data diversity. To this ends, the similarity between F−1(x̃ij)
and F−1(x̃ik) becomes one loss term for hallucinator-basis factorization. In this paper, we adopt the
cosine-similarity and the objective Lcos. is given by:

Lcos. =
1

|H|2
1

|B|
∑

1≤j,k≤|H|,
j ̸=k

|B|∑
i=1

F⊤
−1(x̃ij)F−1(x̃ik)

∥F−1(x̃ij)∥2∥F−1(x̃ik)∥2
. (5)

During training, the feature extractor and the factorized components are updated alternately to play
this min-max game.

3.3 Factorization Training Pipeline

Following previous paradigms [55, 54, 5, 46], the synthetic dataset S is updated in an iterative
algorithm. In each iteration, we randomly sample a batch of hallucinators and bases and conduct
pair-wise combinations. The composed images are evaluated by the objective of dataset distillation
LDD and the similarity metric in Eq. 5:

min
S
LS = λDDLDD + λcos.Lcos., (6)

where hyper-parameters λDD and λcos. balance the loss.

Notably, the hallucinator-basis factorization is compatible with a variety of configurations of LDD
by previous arts, which makes it a versatile and effective strategy for DD. In this paper, we adopt
the trajectories matching loss in Cazenavette et al. [5] as LDD by default thanks to its superior
performance. The basic idea is to update a downstream model from a cached checkpoint ϕ∗t at
iteration t, using the synthetic dataset S for N times, and using the real dataset T for M times
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respectively. The updated parameters by the two cases, ϕ̂t+N and ϕ∗t+M are enforced to be consistent:

ϕ̂t+n+1 ← ϕ̂t+n − α∇ϕ̂t+n
Ltask(S), ϕ̂t ← ϕ∗t , 0 ≤ n < N,

ϕ∗t+m+1 ← ϕ∗t+m − β∇ϕ∗
t+m
Ltask(T ), 0 ≤ m < M,

LDD =
∥ϕ̂t+N − ϕ∗t+M∥22
∥ϕ∗t − ϕ∗t+M∥22

,

(7)

where α and β are learning rates with S and T respectively. α is learnable in the framework while β
is a hyper-parameter. In Sec. 4.2, we also experiment with other settings of LDD.

Based on the supervised signals in Eq. 6, the gradients are backward propagated to the composed
images and finally to the sampled hallucinators and bases so as to be updated using a decent algorithm
such as SGD. Since all the operations are differentiable, the training can be completed end-to-end.

4 Experiments

4.1 Datasets and Implementing Details

We conduct evaluations of our method on three standard image classification benchmarks: SVHN [28],
CIFAR10, and CIFAR100 [22]. There are 60,000 images for real-world digit recognition in SVHN.
For CIFAR10 and CIFAR100, there are 50,000 training images in total. The number of classes for
the three datasets are 10, 10, and 100 respectively. All the images are under 32× 32 resolution in
3-channel RGB format. Following previous works [5], we use ZCA for image preprocessing with
Kornia implementation [35] before all the experiments. Experiments with more datasets, including
images in larger spatial scales, can be found in the supplement.

In this paper, for convenience of comparisons with prior works, we maintain the same size with
images in original datasets, i.e., h′ = h, w′ = w, and c′ = 3 for bases. We also experiment with
other sizes of bases in Sec. 4.3. For hallucinators, the encoder and decoder contain 1 Conv-ReLU
blocks. The number of feature channel c′′ is 3. We use 5 hallucinators by default. The learning rates
of hallucinators and bases, ηH and ηB , are the same and for the feature extractor, the learning rate
ηF is 0.001. Hyper-parameters λcon., λtask, λDD, and λcos. are set as 0.1, 1, 1, and 0.1 empirically.
Sensitivities of these hyper-parameters are analyzed in Sec. 4.3. The adversary network has the same
architecture as that for computing LDD. In experiments on SVHN and CIFAR10, we incorporate all
the bases in each iteration, while in experiments on CIFAR100, we adopt a batch size of 300 when
the total number of bases is greater than 1,000. We only consider random 2 hallucinators in one
iteration for simplicity. The maximal configuration of computational resources is 4 24GB 3090 GPUs.
The GPU memory consumption is dependent on that of the baseline method for LDD and is slightly
higher than it due to the computation of Lcos. and Lcon.. The baseline method for LDD is MTT [5]
if not specified. Other settings related to DD hold the same as the baseline. All the quantitative
results are based on the mean and standard deviation over 5 repeated experiments. To make sure fair
comparisons, the dataset size in our method is equal to the number of bases |B| and the hallucinators
are treated as parameterized data augmentors working online in downstream training, just as general
data augmentations, which means that the dataset size does not increase compared with the baselines.

4.2 Comparisons

Comparisons with State of the Arts: We compare HaBa with previous state of the arts for DD
in standard settings, to synthesize 1, 10, and 50 images per class (IPC) respectively. In our setting,
the number of parameters in a hallucinator is is approximately equal to that for 2 synthetic images,
while the size of a basis is equal to that of an image. Taking the storage cost of 5 hallucinators
into consideration, we set the number of bases per class (BPC) as IPC minus 1 in each IPC con-
figuration when IPC is greater than 1, to make the comparisons as fair as possible. Candidates are
coreset based methods including Random [7, 31], Herding [4, 2], K-Center [10, 38], and Forget-
ting [43], meta learning based methods including DD [47] and LD [3], training matching based
methods including DC [55], DSA [53], and MTT [5], and distribution matching based methods
including DM [54] and CAFE [46]. The comparisons follow the standard protocol adopting a 3-layer
Conv-InstanceNorm-ReLU-AvgPool ConvNet with 128 channels in training and testing.

6



Dataset SVHN CIFAR10 CIFAR100

IPC 1 10 50 1 10 50 1 10 50
Ratio % 0.014 0.14 0.7 0.02 0.2 1 0.2 2 10

Coreset

Random 14.6±1.6 35.1±4.1 70.9±0.9 14.4±2.0 26.0±1.2 43.4±1.0 4.2±0.3 14.6±0.5 30.0±0.4
Herding 20.9±1.3 50.5±3.3 72.6±0.8 21.5±1.3 31.6±0.7 40.4±0.6 8.4±0.3 17.3±0.3 33.7±0.5
K-Center 21.0±1.5 14.0±1.3 20.1±1.4 21.5±1.3 14.7±0.9 27.0±1.4 8.3±0.3 7.1±0.2 30.5±0.3
Forgetting 12.1±1.7 16.8±1.2 27.2±1.5 13.5±1.2 23.3±1.0 23.3±1.1 4.5±0.3 9.8±0.2 -

Distillation

DD† [47] - - - - 36.8±1.2 - - - -
LD† [3] - - - 25.7±0.7 38.3±0.4 42.5±0.4 11.5±0.4 - -
DC [55] 31.2±1.4 76.1±0.6 82.3±0.3 28.3±0.5 44.9±0.5 53.9±0.5 12.8±0.3 25.2±0.3 -

DSA [53] 27.5±1.4 79.2±0.5 84.4±0.4 28.8±0.7 52.1±0.5 60.6±0.5 13.9±0.3 32.3±0.3 42.8±0.4
DM [54] - - - 26.0±0.8 48.9±0.6 63.0±0.4 11.4±0.3 29.7±0.3 43.6±0.4

CAFE [46] 42.6±3.3 75.9±0.6 81.3±0.3 30.3±1.1 46.3±0.6 55.5±0.6 12.9±0.3 27.8±0.3 37.9±0.3
CAFE+DSA [46] 42.9±3.0 77.9±0.6 82.3±0.4 31.6±0.8 50.9±0.5 62.3±0.4 14.0±0.3 31.5±0.2 42.9±0.2

MTT [5] 58.5±1.4 70.8±1.8 85.7±0.1 46.3±0.8 65.3±0.7 71.6±0.2 24.3±0.3 39.0±0.1 46.1±0.2

Factorization
BPC 1 9 49 1 9 49 1 9 49

Ratio % 0.028 0.14 0.7 0.04 0.2 1 0.22 1.82 9.82
HaBa 69.8±1.3 83.2±0.4 88.3±0.1 48.3±0.8 69.9±0.4 74.0±0.2 33.4±0.4 40.2±0.2 47.0±0.2

Whole Dataset 95.4±0.1 84.8±0.1 56.2±0.3

Table 1: The performance (test accuracy %) comparison to state-of-the-art methods. LD† and DD†

use AlexNet for CIFAR10, while the rest use ConvNet for training and testing. IPC: Number of
Images Per Class; BPC: Number of Bases Per Class; Ratio (%): the ratio of distilled images to
whole training set. Underline denotes results by our implementation.

(a) Bases (b) Images by H1 (c) Images by H2 (d) Images by Baseline
Figure 4: Visualization of factorized results by our HaBa (70.27% test acc.) and baseline MTT
(65.92% test acc.). Zoom-in for better comparisons.

The comparison results are shown in Tab. 1 and we can observe that HaBa achieves state-of-the-art
performance in all datasets and settings. Especially when the ratio of distilled images to the whole
training set is less than 1%, our method can yield significant improvement over all the candidate
methods, which demonstrates that the scheme of hallucinator-basis factorization improves the data
efficiency for the task of dataset distillation.

Qualitative Comparisons: We visualize the factorized results by our method as well as the baseline
on CIFAR10 dataset with 10 BPC in Fig. 4. Due to the space limitation, we only provide images
generated by 2 hallucinators here. More results can be found in the supplement. As shown in the
figure, we can find that bases mainly store some main structures and contour information. Different
hallucinators would render a basis with diverse styles and details. Thanks to the dataset factorization
scheme, the diversity of distilled images by our method is higher than that by the baseline.

Building upon Different Baselines: To reflect the versatility of the insight, we implement HaBa
on multiple state-of-the-art training pipelines of DD, including DC, DM, and MTT. We evaluate
the performance of synthetic datasets on CIFAR10 and maintain the IPC of baseline methods as
BPC plus 1, which makes storage costs for synthetic datasets as close as possible for fairness. As
shown in Tab. 2, when training and testing on ConvNet, the strategy of HaBa can make a consistent
improvement over all the baselines, which demonstrates that factorization is a general idea to improve
the data efficiency in DD.

Cross-Architecture Performance: For DD, a satisfactory distilled dataset should have similar
training effects to the original one on downstream models with arbitrary architectures. Thus, cross-
architecture generalization performance is an important metric for DD. We use the synthetic datasets
trained on ConvNet to train models with different structures including ResNet [14], VGG [41], and
AlexNet [23]. The results can be found in Tab. 2. Benefiting from the increased data diversity, HaBa
can improve the across-architecture accuracy significantly with a performance gain up to 17.57%.
The consistent and significant improvement validates the superior ability of our method to capture the
informative features and thus original datasets can be replaced by the synthetic ones better.
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Method DC [55] DM [54] MTT [5]

IPC 2 11 51 2 11 51 2 11 51
BPC 1 10 50 1 10 50 1 10 50

ConvNet
Baseline 31.36±0.16 45.29±0.30 54.24±0.61 34.57±0.52 50.35±0.36 62.03±0.29 50.59±0.95 63.90±0.29 69.81±0.48
w. HaBa 34.11±0.47 49.88±0.52 58.91±0.23 37.32±0.13 56.83±0.11 64.44±0.40 56.76±0.38 69.48±0.26 73.25±0.21

Gain +2.75 +4.59 +4.67 +2.75 +6.48 +2.41 +6.17 +5.58 +3.44

ResNet
Baseline 18.10±0.76 18.36±0.36 22.14±0.38 22.25±1.00 40.00±1.49 53.40±0.68 35.15±0.96 45.05±1.46 54.47±0.95
w. HaBa 24.49±0.55 24.27±0.56 31.08±0.32 31.34±0.72 47.57±0.49 59.61±0.35 47.39±0.71 57.97±0.88 64.35±0.60

Gain +6.39 +6.11 +8.94 +9.09 +7.57 +6.21 +12.24 +12.92 +9.88

VGG
Baseline 28.02±0.26 35.88±0.67 38.73±0.48 22.28±1.03 41.64±0.64 55.17±0.54 38.04±1.19 50.49±1.02 61.36±0.30
w. HaBa 29.42±0.93 37.03±0.42 41.91±0.55 26.93±0.62 49.41±0.36 67.47±0.43 48.26±0.54 60.47±0.56 67.47±0.43

Gain +1.40 +1.15 +3.18 +4.65 +7.77 +12.30 +10.22 +9.98 +6.11

AlexNet
Baseline 20.02±1.31 22.42±1.35 29.48±0.87 20.67±3.64 37.04±0.92 49.14±0.94 26,06±1.01 35.95±1.52 49.20±1.27
w. HaBa 22.24±1.14 33.02±0.91 33.42±1.39 32.14±0.60 44.14±0.67 53.09±0.89 43.63±1.46 48.96±3.00 60.07±1.37

Gain +2.22 +10.60 +3.94 +11.47 +7.10 +3.95 +17.57 +13.01 +10.87

Table 2: Cross-architecture performance (test accuracy %) comparison to different baseline methods
of DD HaBa built upon.

Comparisons under the Same Number of Final Images: In the default comparison protocol, we
compare our method with the baselines using the same budget of storage, where our method can store
information of exponentially more images than the baselines with the same number of parameters.
In this part, we also examine the performance of HaBa under the condition that the number of final
images, i.e., |H| × |B|, is equal to that used by the baseline. Intuitively, given that the objective
functions of our method and the baseline are the same exactly, the performance of the baseline can be
viewed as an upper bound of ours, since there are significantly less parameters in our method to carry
the information of final images in this case. Therefore, we first remove the term Lcos. from the loss
function of DD in Eq. 6 to guarantee a consistent optimization objective with the baseline. Then,
we compare the performance of HaBa and the baseline using 10, 20, 30, 40, and 50 final images
respectively. Here, the number of hallucinators |H| is 2 and the number of bases is thus half of the
number of final images. As shown in the red and green curves in Fig. 7, performance of the baseline
can be well approximated by ours with only half of the number of parameters, especially when the
number of images is relatively large. Remarkably, with the proposed adversary contrastive constraint,
our method can even outperform the baseline consistently, as shown in the blue curve, which further
demonstrates the effectiveness of the proposed solution.

Comparisons with Concurrent Works on Efficient Distilled Dataset Parameterization: As a
concurrent work on efficient distilled dataset parameterization, IDC [21] is proposed to store 4×
number of 2× down-sample synthetic images compared with the baseline. The core is to reduce
the spatial size for efficient parameterization. For HaBa of this paper, instead, we do not modify
the spatial size of bases in the default setting for better qualitative explainablity and more intuitive
comparisons with the baselines. In this sense, IDC and HaBa are in fact two orthogonal techniques
and they can readily join force to enhance the baseline performance. Here, we try using the technique
of IDC and adopting 2× down-sample synthetic images on the baseline MTT, based on which we
further consider adding our HaBa and involving 5 hallucinators. As shown in Tab. 3, with the efficient
parameterization of IDC, the performance of baseline can be improved. With HaBa in this paper,
the performance can even be further improved a lot: 5.14%, 1.29%, and 4.30% in the three settings
respectively, which demonstrates that IDC and HaBa work in different ways.

Applications in Continual Learning: To further demonstrate the advantage of the proposed method
for improving data efficiency, following the setting of DM [54], we conduct experiments on the
setting of continual learning on CIFAR-100, with 20 random classes per stage. The average number
of parameters per class is 20× 32× 32× 3. The synthetic datasets are trained with a ConvNet with
3 blocks. We evaluate synthetic datasets by our method and the DM baseline on the same ConvNet
architecture and ResNet18. The results in Fig. 5 demonstrate that the proposed method increases the
informativeness of synthetic datasets and thus produce significantly better performance, especially in
the cross-architecture setting.

4.3 Ablation Studies

Loss Terms: To validate the effectiveness of the proposed adversarial contrastive constraints, we
design ablation studies on the CIFAR10 dataset over three loss terms: Lcos. in Eq. 5, Lcon. in Eq. 3,
and the task-specific loss Ltask. Through the results in Tab. 4, we can find that deleting any one of
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# of Param. / Class 2×32×32×3 11×32×32×3 51×32×32×3

Baseline 49.89±0.95 65.92±0.62 70.73±0.52
w. IDC 56.13±0.38 70.85±0.43 71.01±0.41

w. IDC & HaBa 61.27±0.34 72.14±0.22 75.31±0.27

Table 3: Comparisons with concurrent work
IDC [21] on efficient synthetic parameterization.
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Figure 5: Comparisons on the setting of con-
tinual setting. Results on the ConvNet3 (Left)
and ResNet18 (Right) architectures are shown.

BPC 1 10 50

HaBa w/o Lcos. 54.56±0.61 70.16±0.44 73.93±0.21
HaBa w/o Lcon. 54.91±0.49 70.07±0.48 72.50±0.39
HaBa w/o Ltask 54.62±0.42 70.07±0.16 72.74±0.20

HaBa Full 55.66±0.29 70.27±0.63 74.04±0.16

HaBa w Lcon. Downstream 56.78±0.22 70.44±0.15 75.00±0.52

Table 4: Results of ablation study on loss terms
in HaBa: Lcos., Lcon., and Ltask.
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Figure 6: Impacts of different λcos. and λcon. on
the test accuracy.

them would hurt the performance. We also experiment with involving Lcon. for downstream training,
to enforce the similarity among images composed of different hallucinators and a common basis.
Observed from the last row of Tab. 4, the performance can be further improved, since Lcon. helps the
representation learning of related samples [20]. Note that we do not use this loss term for downstream
training in other experiments for fair and standard comparison.

We examine the sensitivities of hyper-parameters λcos. and λcon. used to balance the weights of
loss terms Lcos. and Lcon. respectively in Fig. 6. The results are evaluated on the CIFAR10 dataset
with 10 BPC. We can observe that the overall performance is not sensitive to the selection of these
hyper-parameters and our method makes a consistent improvement over the baseline with 11 IPC.

Class-Independent Hallucinators v.s. Shared Hallucinators: In the default setting of HaBa, each
class maintains a certain number of bases independently and all the classes share the same set of
hallucinators. But what about the case that hallucinators are also made class-independent? We study
this problem experimentally in Tab. 5. Given the same BPC, class-independent hallucinators can
indeed somehow improve the performance when there are fewer synthetic samples, e.g., 1 BPC.
However, when BPC is higher, equipping each class with an independent set of hallucinators would
not benefit the performance. There are probably two reasons: (1) shared hallucinators across all
the classes extract global information of the whole dataset, which encodes more representative and
universal knowledge; and (2) the class-independent case would make the number of hallucinators 10
times for the CIFAR10 dataset, which leaves a heavy burden for the optimization process. Thus, as
indicated in Tab. 5, a better solution is to make room for more bases using the memory allocated to
store class-independent hallucinators initially, which would result in more satisfactory data efficiency.

Number of Channels Used by Basis: By default, the shape of a basis is the same as that of a real
image, which is generally in RGB 3-channel format. In fact, in Fig. 8(Left), we also verify that it is
also possible to use single-channel basis, which can reduce the memory cost by nearly 2/3 without
hurting the performance too much. Interestingly, if the memory cost is held the same, we can choose
to use 3 times BPC to store single-channel bases, rather than 3-channel ones. This would yield
impressive improvement on the test accuracy when BPC is small. Note that for baseline results, IPC
is set as the corresponding BPC plus 1.

Number of Hallucinators: We study the impact of the number of hallucinators, i.e., |H|, in Fig.
8(Right). We can observe that when BPC is small, including more hallucinators is helpful for the
performance. Nevertheless, when BPC is 10 or 50, the performance would not improve with more
hallucinators when |H| > 10. One reason is that when |H| is large, the sampling of hallucinators in
each iteration is sparse, which makes the joint optimization of all the hallucinators more difficult.

Data Augmentation: The similarity between our hallucinator set and data augmentation lies that
both of them can contribute to generating more samples and increasing the diversity. However, the
essential difference is that our hallucinators are optimized to encode sample-wise relationships in
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Figure 8: Study on the number of channels used
by bases and the number of hallucinators.

BPC 1 10 50

w/o Share 55.96±0.51 69.00±0.20 69.81±0.56
Share 55.66±0.29 70.27±0.63 74.04±0.16

Baseline (IPC=BPC) 45.29±0.86 62.77±0.56 71.09±0.34

Share (Same Memory) 70.27±0.63 72.17±0.30 74.89±0.15
Baseline (Same Memory) 65.92±0.62 68.58±0.49 73.55±0.48

Table 5: Study on whether all the classes should
share the same set of hallucinators.

ConvNet ResNet VGG AlexNet

w/o aug. 60.63±0.21 43.24±0.83 48.02±0.53 30.58±1.44
Baseline 63.90±0.29 45.05±1.46 50.49±1.02 35.95±1.52

w/o aug. 68.08±0.23 56.37±0.11 59.04±0.50 48.27±3.04
Ours 69.48±0.26 57.97±0.88 60.47±0.56 48.96±3.00

Table 6: Impact of data augmentation.

a dataset, while data augmentation is based on some prior and heuristic knowledge of images. By
default, both our method and the baseline adopt the data augmentation strategy DSA [53]. To study
the relationship between the two schemes experimentally, we attempt to remove DSA from baseline
and our method and report the corresponding results in Tab. 6. The evaluation is on CIFAR10 with 11
IPC for baseline and 10 BPC for ours. Through the results, we can find that (1) our method without
data augmentation can also outperform the baseline method with augmentation significantly, which
means that the mechanism of HaBa can benefit the dataset distillation task more with the learning of
global information of a dataset in hallucinators; and (2) with data augmentation, our performance can
be further improved, which indicates that HaBa and DSA work in different manners.

5 Conclusions, Limitations, and Future Works

This paper proposes a novel hallucinator-basis factorization method dubbed HaBa for dataset dis-
tillation (DD). It uses hallucinators to encode inner relations between different samples in original
datasets, which can largely improve the data efficiency of distilled results. To diversify the knowledge
captured by different hallucinators, a pair of adversarial contrastive constraints is further introduced.
Extensive evaluations and comparisons on multiple benchmark datasets demonstrate that HaBa is
capable of significantly improving the performance of downstream models trained on the synthetic
dataset, using only 35% cost of memory for storage. Moreover, it is a versatile strategy that is
compatible with different configurations of DD frameworks and yields consistent improvement.

Despite the superior performance of the proposed hallucinator-basis factorization (HaBa) scheme,
there are also some potential limitations. On the one hand, compared with the baseline method HaBa
built upon, the process of online pairwise combination between hallucinators and bases in training
increases the cost of time and GPU memory slightly, although light-weight hallucinators are adopted.
On the other hand, it may inherited the limitations of baseline methods. For example, when the
number of images is large, further increasing the number would produce limited performance gain.

For future works, beyond the training efficiency of HaBa, introducing class-wise relationship may
also be a potential research direction. For example, it is probably optimal that one class shares
hallucinators with some specific classes but does not share with others. It is also promising to explore
more advance factorization for a dataset to further improve the performance.
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