
A Linear Programming Method for Solving the CMDP Problem

Here we give a brief description on solving the CMDP problem (2) using the linear programming
method when the model P is known. The details can be found in [18, Section 2].

The first step is to reformulate (2) using occupancy measure [2, 50]. For a given policy ⇡ and an
initial state s1, the state-action occupation measure w⇡ for the MDP with model P is defined as

w⇡
h(s, a;P ) = E[ {sh = s, ah = a}|s1, P,⇡] = P(sh = s, ah = a|s1, P,⇡). (12)

Given the occupancy measure, the policy that generated it can easily be computed as

⇡h(s, a) =
w⇡

h(s, a;P )P
b w

⇡
h(s, b;P )

. (13)

The occupancy measure of any policy ⇡ for an MDP with model P should satisfy the following
conditions. We omit the explicit dependence on ⇡ and P from the notation of w for simplicity.X

a

wh(s, a) =
X

s0,a0

P (s|s0, a0)wh�1(s
0, a0), 8h 2 [H] \ {1} (14)

X

a

w1(s, a) = {s = s1}, 8s 2 S, wh(s, a) � 0, 8(s, a, h) 2 S ⇥A⇥ [H] (15)

From the above conditions, it is easy to show that
P

s,a wh(s, a) = 1. So, occupancy measures are
indeed probability measures. Since the set of occupancy measures for a model P , denoted as W(P ),
is defined by a set of affine constraints, it is straight forward to show that W(P ) is convex. We state
this fact formally below.
Proposition 6. The set of occupancy measures for an MDP with model P , denoted as W(P ), is
convex.

Recall that the value of a policy ⇡ for an arbitrary cost function l : S ⇥A ! R with a given initial
state s1 is defined as V ⇡

l (P ) = E[
PH

h=1 l(sh, ah)|s1 = s,⇡, P ]. It can then be expressed using the
occupancy measure as

V ⇡
l (P ) =

X

h,s,a

w⇡
h(s, a;P ) lh(s, a) = l>w⇡(P ),

where w⇡(P ) 2 RSAH with (s, a, h) element is given by w⇡
h(s, a;P ) and l 2 RSAH with (s, a, h)

element is given by lh(s, a). The CMDP problem (2) can then be written as
min
⇡

r>w⇡(P ) s.t. c>w⇡(P )  C̄. (16)

Using the properties of the occupancy measures, the reformulated CMDP problem (16) can be
rewritten as an LP, where the optimization variables are occupancy measures [50, 18] . More
precisely, the CMDP problem (2) and its equivalent (16) can be written as

min
w

X

h,s,a

wh(s, a)rh(s, a) (17a)

subject to
X

h,s,a

wh(s, a)ch(s, a)  C̄ (17b)

X

a

wh(s, a) =
X

s0,a0

Ph�1(s|s
0, a0)wh�1(s

0, a0), 8h 2 [H] \ {1} (17c)

X

a

w1(s, a) = {s = s1}, 8s 2 S (17d)

wh(s, a) � 0, 8(s, a, h) 2 S ⇥A⇥ [H] (17e)

From the optimal solution w⇤ of (17), the optimal policy ⇡⇤ for the CMDP problem (2) can be
computed using (13).

B Extended Linear Programming Method for Solving (7) and (10)

The OFU problem (7) and the DOP problem (10) may appear much more challenging than the CMDP
problem (2) because they involve a minimization over all models in Pk, which is non-trivial. However,
finding the optimistic model (and the corresponding optimistic policy) from a given confidence set
is a standard step in OFU style algorithms for exploration in RL [21, 18]. In the case of standard
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(unconstrained) MDP, this problem is solved using a approach called extended value iteration [21].
In the case of constrained MDP, (7) (and similarly (10) ) can be solved by an approach called
extended linear programming. The details are given in [18]. We give a brief description below for
completeness. Note that the description below mainly focus on solving (7). Solving (10) is identical,
just by replacing the constraint cost function ch(·, ·) with pessimist constraint cost function c̄h,k(·, ·),
8h 2 [H], and is mentioned at the end of this subsection.

Define the state-action-state occupancy measure z⇡ as z⇡h (s, a, s
0;P ) = Ph(s0|s, a)w⇡

h(s, a;P ). The
extended LP formulation corresponding to (7) is then given as follows:

max
z

X

s,a,s0,h

zh(s, a, s
0)rh(s, a) (18a)

s.t.
X

s,a,s0,h

zh(s, a, s
0)ch(s, a)  C̄ (18b)

X

a,s0

zh(s, a, s
0) =

X

s0,a0

zh�1(s
0, a0, s) 8h 2 [H] \ {1}, s 2 S (18c)

X

a,s0

z1(s, a, s
0) = {s = s1}, 8s 2 S (18d)

zh(s, a, s
0) � 0, 8(s, a, s0, h) 2 S ⇥A⇥ S ⇥ [H], (18e)

zh(s, a, s
0)� ( bPh,k(s

0
|s, a) + �p

h,k(s, a, s
0))
X

y

zh(s, a, y)  0,

8(s, a, s0, h) 2 S ⇥A⇥ S ⇥ [H] (18f)

� zh(s, a, s
0) + ( bPh,k(s

0
|s, a)� �p

h,k(s, a, s
0))
X

y

zh(s, a, y)  0,

8(s, a, s0, h) 2 S ⇥A⇥ S ⇥ [H] (18g)

The last two conditions ((18f) and (18g)) distinguish the extended LP formulation from the LP
formulation for CMDP. These constraints are based on the Bernstein confidence sets around the
empirical model bPk.

From the solutions z̃⇤ of the extended LP, we can obtain the solution of (7) as

Ph,k(s
0
|s, a) =

z̃⇤h(s, a, s
0)P

y z̃
⇤
h(s, a, y)

, ⇡h,k(s, a) =

P
s0 z̃

⇤
h(s, a, s

0)P
b,s0 z̃

⇤
h(s, b, s

0)
. (19)

C Useful Technical Results

Here we reproduce the supporting technical results that are required for analyzing our DOPE algorithm.
We begin by stating the following concentration inequality, known as empirical Bernstein inequality
[30, Theorem 4].

Lemma 7 (Empirical Bernstein Inequality). Let Z = (Z1, . . . Zn) be i.i.d random vector with values
in [0, 1]n, and let � 2 (0, 1). Then, with probability at least 1� �, it holds that

E[Z]�
1

n

nX

i=1

Zi 

s
2Vn(Z) log( 2� )

n
+

7 log( 2� )

3(n� 1)
,

where Vn(Z) is the sample variance.

We can get the following result using empirical Bernstein inequality and union bound. This result is
widely used in the literature now, for example see [22, Proof of Lemma 2],

Lemma 8. With probability at least 1 � 2�, for all (h, s, a, s0) 2 [H] ⇥ S ⇥ A ⇥ S, k 2 [K], we
have

|Ph(s
0
|s, a)� bPh,k(s

0
|s, a)| 

s
4Var( bPh,k(s0|s, a)) log

�
2SAKH

�

�

nh,k(s, a) _ 1
+

14 log
�
2SAKH

�

�

3((nh,k(s, a)� 1) _ 1))
.
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Recall (from (4) - (5)) that

�p
h,k(s, a, s

0) =

s
4Var( bPh,k(s0|s, a)) log

�
2SAKH

�

�

nh,k(s, a) _ 1
+

14 log
�
2SAKH

�

�

3(nh,k(s, a) _ 1))
,

Ph,k(s, a) = {P 0 : |P 0
h(s

0
|s, a)� bPh,k(s

0
|s, a)|  �p

h,k(s, a, s
0), 8s0 2 S},

and define Pk =
T

(h,s,a)2[H]⇥S⇥A Ph,k(s, a).

Define the event
F p = {P 2 Pk, 8k 2 [K]} . (20)

Then, using Lemma 8, we can get the following result immediately.

Lemma 9. Let F p be the event defined as in (20). Then, P(F p) � 1� 2�.

Define the events F c
k = {8(h, s, a) : |ĉh,k(s, a) � ch(s, a)|  �l

h,k(s, a)}, and F r
k = {8h, s, a :

|r̂h,k(s, a)� rh(s, a)|  �l
h,k(s, a)}, and define

F l =
\

k

F c
k \ F r

k (21)

The following is a standard result, and can be obtained by Hoeffding’s inequality, and using a union
bound argument on all h, s, a and all possible values of nh,k(s, a), for all k 2 [K].

Lemma 10. P(F l) � 1� 2�.

We now define the event Fw as follows
Fw

=

8
<

:nh,k(s, a) �
1

2

X

j<k

wh,j(s, a)�H log
SAH

�
, 8(h, s, a, s0, k) 2 [H]⇥ S ⇥A⇥ S ⇥ [K]

9
=

; ,

(22)
where wh,j is the occupancy measure corresponding to the policy chosen in episode j. We have the
following result from [14, Corollary E.4.]

Lemma 11 (Corollary E.4., [14]). Let Fw be the event defined as in (22). Then, P(Fw) � 1� �.

We now define the good event G = F p
\ Fw

\ F l. Using union bound, we can show that
P(G) � 1� 5�. Since our analysis is based on this good event, we formally state it as a lemma.

Lemma 12. Let F p is defined as in (20) and F l defined in (21), Fw is defined as in (22). Let the
good event G = F p

\ Fw
\ F l. Then, P(G) � 1� 5�.

We will also use the following results for analyzing the performance of our DOPE algorithm.

Lemma 13 (Lemma 36, [18]). Under the event Fw,
KX

k=1

HX

h=1

E
"

1p
nh,k(sh,k, ah,k) _ 1

|Fk�1

#
 Õ(

p

SAH2K + SAH).

Lemma 14 (Lemma 37, [18]). Under the event Fw,
KX

k=1

HX

h=1

E


1

nh,k(sh,k, ah,k) _ 1
|Fk�1

�
 Õ(SAH2).

Lemma 15 (Lemma 8,[22]). Under the event G, for all k, h, s, a, s0, and for all P 0
2 Pk, there exists

constants C1, C2 > 0 such that |P 0
h(s

0
|s, a)� Ph(s0|s, a)|  C1

q
Ph(s0|s,a)L
nh,k(s,a)_1 + C2

L
nh,k(s,a)_1 .
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Lemma 16 (Value difference lemma). Consider two MDPs M = (S,A, l, P ) and M 0 =
(S,A, l0, P 0). For any policy ⇡, state s 2 S , and time step h 2 [H], the following relation holds.

V ⇡
l,h(s;P )� V ⇡

l0,h(s;P
0)

= E
"

HX

⌧=h

(l⌧ (s⌧ , a⌧ )� l0⌧ (s⌧ , a⌧ )) + ((P⌧ � P 0
⌧ )(·|s⌧ , a⌧ ))

>V ⇡
l,⌧+1(·;P )|sh = s,⇡, P 0

#

= E
"

HX

⌧=h

(l0⌧ (s⌧ , a⌧ )� l⌧ (s⌧ , a⌧ )) + ((P 0
⌧ � P⌧ )(·|s⌧ , a⌧ ))

>V ⇡
l,⌧+1(·;P

0)|sh = s,⇡, P

#
.

D Proof of the Main Results

All the results we prove in this section are conditioned on the good event G defined in Section C. So,
the results hold true with a probability greater than 1 � 5� according to Lemma 12. We will omit
stating this conditioning under G in each statement to avoid repetition.

D.1 Proofs of Proposition 4

First note that

E[
HX

h=1

c̄h,k(sh, ah)|⇡
0, P 0,Fk�1] = E[

HX

h=1

⇣
ĉh,k(sh, ah) + �l

h,k(sh, ah) +H�̄p
h,k(sh, ah)

⌘
|⇡0, P 0]

= V ⇡0

ĉk (P
0) + ⌘⇡

0

k (P 0) + ✏⇡
0

k (P 0), (23)

E[
HX

h=1

r̄h,k(sh, ah)|⇡
0, P 0,Fk�1] = E[

HX

h=1

✓
r̂h,k(sh, ah) +

3H

C̄ � C̄b
�l
h,k(s

h, ah)

�
H2

C̄ � C̄b
�̄p
h,k(sh, ah)

◆
|⇡0, P 0]

= V ⇡0

r̂k (P
0)�

3H

C̄ � C̄b
⌘⇡

0

k (P 0)�
H

C̄ � C̄b
✏⇡

0

k (P 0), (24)

where equations (23), (24) are due to linearity of expectation.

Lemma 17. Let ✏⇡
0

k (P 0) and ⌘⇡
0

k (P 0) be as defined in (11). Also, let {⇡k} be the sequence of policies
generated by DOPE algorithm. Then, for any K 0

 K, each of the following relations hold with a
probability greater than 1� 5�.

K0X

k=1

✏⇡k

k (P )  Õ(S
p

AH4K 0), and,
K0X

k=1

⌘⇡k

k (P )  Õ(S
p

AH2K 0).

Proof.
K0X

k=1

✏⇡k

k (P ) = H
K0X

k=1

HX

h=1

E[
X

s0

�p
h,k(sh,k, ah,k, s

0)|⇡k, P,Fk�1]

(a)
 H

K0X

k=1

E
"

HX

h=1

s
4L

nh,k(sh,k, ah,k) _ 1

X

s02S

q
bPh,k(s0|sh,k, ah,k)|⇡k, P,Fk�1

#

+HS
K0X

k=1

E
"

HX

h=1

(14/3)L

nh,k(sh,k, ah,k) _ 1
|⇡k, P,Fk�1

#

(b)
 2H

p

S
p

L
K0X

k=1

E
"

HX

h=1

s
1

nh,k(sh,k, ah,k) _ 1
|⇡k, P,Fk�1

#

+ (14/3)HSL
K0X

k=1

E
"

HX

h=1

1

nh,k(sh,k, ah,k) _ 1
|⇡k, P,Fk�1

#

(c)
 H

p

S
p

LÕ(
p

SAH2K 0 + SAH) +HSLÕ(SAH)  Õ(S
p

AH4K 0). (25)
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Here, we get inequality (a) by the definition of �p
h,k (c.f. (5)). To get (b), note that

P
s02S

q
bPh,k(s0|(sh,k, ah,k)) 

qP
s0
bPh,k(s0|(sh,k, ah,k))

p
S by Cauchy-Schwarz inequality

and
P

s0
bPh,k(s0|(sh,k, ah,k)) = 1. We get (c) using Lemma 13 and Lemma 14.

The other part can also be obtained similarly from Lemma 13.

We now give the proof of Proposition 4.

Proof of Proposition 4. First note that even though (⇡b, P ) is a feasible solution for the original
CMDP problem (2), it may not feasible for the DOP problem (10). To see this, note that since
V ⇡b

c̄k (P ) = V ⇡b

ĉk
(P ) + ⌘⇡b

k (P ) + ✏⇡b

k (P ) and V ⇡b

ĉk
(P )  V ⇡b

c (P ) + ⌘⇡b

k (P ), and V ⇡b

c (P ) = C̄b, we
will have V ⇡b

c̄k (P )  C̄ if 2⌘⇡b

k (P ) + ✏⇡b

k (P )  (C � C̄b). So, (⇡b, P ) is a feasible solution for (10)
if, 2⌘⇡b

k (P ) + ✏⇡b

k (P )  (C � C̄b). This is a sufficient condition for the feasibility of (⇡b, P ). This
condition may not be satisfied in the initial episodes.

However, since ⌘⇡b

k (P ) and ✏⇡b

k (P ) are decreasing in k, if (⇡b, P ) becomes a feasible solution for
(10) at episode k0, then it will remain to be a feasible solution for all episodes k � k0.

Suppose ⇡k = ⇡b for all k  K 0. Also, suppose the above condition is not satisfied in the algorithm
until episode K 0 + 1. Then, 2⌘⇡b

k (P ) + ✏⇡b

k (P ) > C � C̄b for all k  K 0. So, we should get

K 0(C̄ � C̄b) <
K0X

k=1

2⌘⇡b

k (P ) + ✏⇡b

k (P ) =
K0X

k=1

2⌘⇡k

k (P ) + ✏⇡k

k (P )Õ(S
p

AH4K 0),

where the last inequality is from Lemma 17. However, this inequality is violated for K 0
�

Õ( S2AH4

(C̄�C̄b)2
). So, (⇡b, P ) is a feasible solution for (10) for any episode k � Ko = Õ( S2AH4

(C̄�C̄b)2
)

provided that ⇡k = ⇡b for all k  Ko.

The above result, however, only shows that ⇡b becomes a feasible policy after some finite number of
episodes. A natural question is, is ⇡b the only feasible policy? In such a case, the DOPE algorithm
may not provide enough exploration to learn the optimal policy.

We alleviate the concerns about the above possible issue by showing that for all k � Ko, there exists a
feasible solution (⇡0, P ) for the OP problem (10) such that w⇡0

h (s, a;P ) > 0 for every (s, a) 2 S⇥A

with w⇡⇤

h (s, a;P ) > 0. Informally, this implies that ⇡0 will visit all state-action pairs that will be
visited by the optimal policy ⇡⇤. This result can be derived as a corollary for Proposition 4.

D.2 Proof of Proposition 5

Proof. For any episode k  Ko, we have ⇡k = ⇡b, and it is safe by Assumption 1. For k � Ko, (10)
is feasible according to Proposition 4. Since (⇡k, Pk) is the solution of (10), we have V ⇡k

c̄k (Pk)  C̄.
We will now show that V ⇡k

c (P )  C̄, conditioned on the good event G.

By the value difference lemma (Lemma 16), we have

V ⇡k

c (P )� V ⇡k

c (Pk) = E[
HX

h=1

((Ph � Ph,k)(·|sh,k, ah,k))
>V ⇡k

c,h+1(·;P )|⇡k, Pk,Fk�1]

(a)
 E[

HX

h=1

k((Ph � Ph,k)(·|sh,k, ah,k))k1kV
⇡k

c,h+1(·;P )k1|⇡k, Pk,Fk�1]

(b)
 HE[

HX

h=1

�̄p
h,k(sh,k, ah,k)|⇡k, Pk,Fk�1] = ✏⇡k

k (Pk). (26)

Here, we get (a) by Holder’s inequality inequality. To get (b), we make use of two observations. First,
note that kV ⇡k

c,h+1(·;P )k1  H because the expected cumulative cost cannot be grater than H since
|c(·, ·)|  1 by assumption. Second, under the good event G,

P
s0 |Ph(s0|s, a) � Ph,k(s0|s, a)| P

s0 �
p
h,k(s, a, s

0) = �̄p
h,k(s, a).
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From (26), we get

V ⇡k

c (P )  V ⇡k

c (Pk) + ✏⇡k

k (Pk)
(c)
 V ⇡k

ĉk
(Pk) + ⌘⇡k

k (Pk) + ✏⇡k

k (Pk) = V ⇡k

c̄k (Pk)
(d)
 C̄,

where (c) is by definition of good event and (d) is from the fact that (⇡k, Pk) is the solution of (10).
So, V ⇡k

c (P )  C̄, and hence ⇡k is safe, under the good event G. So, this statement holds with a
probability greater than 1� 5�, according to Lemma 12.

D.3 Proof of Theorem 3

We first prove an important lemma.
Lemma 18 (Optimism). Let (⇡k, Pk) be the optimal solution corresponding to the DOP problem
(10). Then,

V ⇡k

r̄k (Pk)  V ⇡⇤

r (P ).

Proof. We will first consider a more general version of the DOP problem (10) as
(⇡̃k, P̃k) = argmin

⇡0,P 02Pk

V ⇡0

r̃k (P
0) subject to V ⇡0

c̄k (P
0)  C̄, (27)

where we change r̄k in (10) to r̃k above, with r̃kh(s, a) = r̂h(s, a) � 3b�l
h,k(s, a) � bH�̄p

h,k(s, a),
for b > 0. Note that (27) reduces to (10) for b = H

C̄�C̄b

and hence it is indeed a general version.

Using the occupancy measures w⇡b

h and w⇡⇤

h , define a new occupancy measure w̃h(s, a) = (1 �

↵k)w
⇡b

h (s, a;P ) + ↵kw⇡⇤

h (s, a;P ) for an ↵k > 0.

Note that w̃ is a valid occupancy measure since the set of occupancy measure is convex (c.f. Propo-
sition 6). Let ⇡̃ be the policy corresponding to the occupancy measure w̃, which can be obtained
according to (13) so that w̃ = w⇡̃ .

Claim 1: (⇡̃, P ) is a feasible solution for (27) when ↵k satisfies the sufficient condition

↵k 
C̄ � C̄b � (✏⇡b

k (P ) + 2⌘⇡b

k (P ))

C̄ � C̄b + (✏⇡
⇤

k (P ) + 2⌘⇡
⇤

k (P ))� (✏⇡b

k (P ) + 2⌘⇡b

k (P ))
. (28)

Proof of Claim 1: Since value function is a linear function of the occupancy measure, we have
V ⇡̃
c̄k(P ) = (1� ↵k)V

⇡b

c̄k (P ) + ↵kV
⇡⇤

c̄k (P )

= (1� ↵k)(V
⇡b

ĉk
(P ) + ⌘⇡b

k (P ) + ✏⇡b

k (P )) + ↵k(V
⇡⇤

ĉk (P ) + ⌘⇡
⇤

k (P ) + ✏⇡
⇤

k (P ))

(a)
 (1� ↵k)(V

⇡b

c (P ) + 2⌘⇡b

k (P ) + ✏⇡b

k (P )) + ↵k(V
⇡⇤

c (P ) + 2⌘⇡
⇤

k (P ) + ✏⇡
⇤

k (P ))

(b)
 (1� ↵k)(C̄b + 2⌘⇡b

k (P ) + ✏⇡b

k (P )) + ↵k(C̄ + 2⌘⇡
⇤

k (P ) + ✏⇡
⇤

k (P )),
where inequality (a) is due to the good event that c is within the confidence interval, V ⇡

ĉk
(P ) �

⌘⇡k (P )  V ⇡
c (P ), for any ⇡ and inequality (b) is due to the fact that V ⇡b

c (P ) = C̄b, and V ⇡⇤

c (P )  C̄.

For (⇡̃k, P ) to be a feasible solution for (27), it must be true that V ⇡̃
c̄k(P )  C̄. Hence, it is sufficient

to get an ↵k such that
(1� ↵k)(C̄b + 2⌘⇡b

k (P ) + ✏⇡b

k (P )) + ↵k(C̄ + 2⌘⇡
⇤

k (P ) + ✏⇡
⇤

k (P ))  C̄.
This yields a sufficient condition (28). Note that ↵k is non-negative because 2⌘⇡b

k (P ) + ✏⇡b

k (P ) 
C̄ � C̄b for k � Ko, as shown in the proof of Proposition 4. This concludes the proof of Claim 1.

Claim 2: V ⇡̃k

r̃k
(P̃k)  V ⇡⇤

r (P ) if b satisfies the sufficient condition

b �
H

C̄ � C̄b
. (29)

Proof of Claim 2: Selecting an ↵k that satisfies the condition (28), (⇡̃, P ) is a feasible solution of (27).
Since (⇡̃k, P̃k) is the optimal solution of (27), we have V ⇡̃k

r̃k
(P̃k)  V ⇡̃

r̃k
(P ). So, it is sufficient to find

a b such that V ⇡̃
r̃k
(P )  V ⇡⇤

r (P ). Using the linearity of the value function w.r.t. occupancy measure,
this is equivalent to (1�↵k)(V

⇡b

r̂k
(P )�3b⌘⇡b

k (P )�b✏⇡b

k (P ))+↵k(V ⇡⇤

r̂k
(P )�3b⌘⇡

⇤

k (P )�b✏⇡
⇤

k (P )) 

V ⇡⇤

r (P ).

Since V ⇡
r̂k
(P )� b⌘⇡k (P )  V ⇡

r̂k
(P )�⌘⇡k (P )  V ⇡

r (P ) for any ⇡ under the good event, it is sufficient
if we find a b such that (1�↵k)(V ⇡b

r (P )�2b⌘⇡b

k (P )�b✏⇡b

k (P ))+↵k(V ⇡⇤

r �2b⌘⇡
⇤

k (P )�b✏⇡
⇤

k (P )) 
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V ⇡⇤

r (P ). This will yield the condition b � V
⇡
b

r (P )�V ⇡
⇤

r
(P )

[✏
⇡
b

k
(P )+2⌘

⇡
b

k
(P )]+

↵
k

1�↵
k
[✏⇡

⇤
k

(P )+2⌘⇡⇤
k

(P )]
. Now, we choose

↵k that satisfies the condition (28) as, ↵k

1�↵k

=
C̄�C̄b�[✏

⇡
b

k
(P )+2⌘

⇡
b

k
(P )]

✏⇡
⇤

k
(P )+2⌘⇡⇤

k
(P )

. Using this in the previous

inequality for b, we get the sufficient condition b �
V

⇡
b

r (P )�V ⇡
⇤

r
(P )

C̄�C̄b

. Since V ⇡b

r (P )  H and
V ⇡⇤

r (P ) � 0, we get the sufficient condition (29). This concludes the proof of Claim 2.

Now, let b = H
C̄�C̄b

. So, r̃k = r̄k and (⇡̃k, P̃k) = (⇡k, Pk). Hence, by Claim 2, we have V ⇡k

r̄k (Pk) 

V ⇡⇤

r (P ). Hence, we have the desired result.

We now present the proof of Theorem 3.

Proof of Theorem 3. The regret for the DOPE algorithm after K episodes can be written as,

R(K) =
KoX

k=1

(V ⇡k

r (P )� V ⇡⇤

r (P )) +
KX

k=Ko

(V ⇡k

r (P )� V ⇡⇤

r (P )). (30)

We will bound the first term in (30) as
KoX

k=1

(V ⇡k

r (P )� V ⇡⇤

r (P ))  HK0  Õ(
S2AH5

(C̄ � C̄b)2
), (31)

where we get the first inequality because (V ⇡k

r (P ) � V ⇡⇤

r (P ))  H , and the second inequality
follows from the bound on Ko in Proposition 4.

The second term in (30) can be bounded as
KX

k=Ko

(V ⇡k

r (P )� V ⇡⇤

r (P )) =
KX

k=Ko

(V ⇡k

r (P )� V ⇡k

r̄k (Pk)) +
KX

k=Ko

(V ⇡k

r̄k (Pk)� V ⇡⇤

r (P ))

(a)


KX

k=Ko

(V ⇡k

r (P )� V ⇡k

r̄k (Pk)) =
KX

k=Ko

(V ⇡k

r (P )� V ⇡k

r̂k
(P )) +

KX

k=Ko

(V ⇡k

r̂k
(P )� V ⇡k

r̄k (Pk))

(b)


KX

k=Ko

⌘⇡k

k (P ) +
KX

k=Ko

(V ⇡k

r̂k
(P )� V ⇡k

r̄k (Pk))

(c)


KX

k=Ko

⌘⇡k

k (P ) +
KX

k=K0

(V ⇡k

r̄k (P )� V ⇡k

r̄k (Pk)) +
H

C̄ � C̄b

KX

k=K0

(3⌘⇡k

k (P ) + ✏⇡k

k (P ))

(d)


KX

k=Ko

(V ⇡k

r̄k (P )� V ⇡k

r̄k (Pk)) + Õ(
H3

C̄ � C̄b
S
p

AK), (32)

where (a) is due to the fact that V ⇡k

r̄k (Pk)  V ⇡⇤

r (P ) from Lemma 18, (b) is due to the fact that
|rh(s, a)� r̂h,k(s, a)|  �l

h,k(s, a) conditioned on the good event set G (see Lemma 10), (c) follows
from the definition of r̄k, and (d) follows from Lemma 17.

We will now bound the first term in (32) as
KX

k=K0

(V ⇡k

r̄k (P )� V ⇡k

r̄k (Pk))

(e)
=

KX

k=K0

HX

h=1

E[
X

s0

(Ph � Ph,k)(s
0
|sh,k, ah,k)V

⇡k

r̄k,h+1(s
0;Pk)|⇡k, P,Fk�1]



KX

k=K0

HX

h=1

E[
X

s0

|(Ph � Ph,k)(s
0
|sh,k, ah,k)||V

⇡k

r,h+1(s
0;P )||⇡k, P,Fk�1] +

KX

k=K0

HX

h=1

E[|
X

s0

(Ph � Ph,k)(s
0
|sh,k, ah,k)(V

⇡k

r̄k,h+1(s
0;Pk)� V ⇡k

r,h+1(s
0;P ))||⇡k, P,Fk�1] (33)
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Now, for the first term in (33),
KX

k=K0

HX

h=1

E[
X

s0

|(Ph � Ph,k)(s
0
|sh,k, ah,k)||V

⇡k

r,h+1(s
0;P )||⇡k, P,Fk�1]



KX

k=K0

✏⇡k

k (P )
(f)
 Õ(S

p

AH4K 0), (34)

where (e) is obtained from the value difference lemma (Lemma 16), and (f) is from Lemma 17.

In order to now bound the second term in (33), we proceed in similar lines to the proof of Lemma 32
from [18].

Consider,
KX

k=K0

HX

h=1

E[|
X

s0

(Ph � Ph,k)(s
0
|sh,k, ah,k)(V

⇡k

r̄k,h+1(s
0;Pk)� V ⇡k

r,h+1(s
0;P ))||⇡k, P,Fk�1]

=
X

k,h,s,a

w⇡k

h (s, a;P )
X

s0

(Ph � Ph,k)(s
0
|sh,k, ah,k) (V

⇡k

r̄k,h+1(s
0;Pk)� V ⇡k

r,h+1(s
0;P ))



X

k,h,s,a

w⇡k

h (s, a;P )
X

s0

p
Ph(s0|s, a)p

nh,k(s, a) _ 1
|V ⇡k

r̄k,h+1(s
0;Pk)� V ⇡k

r,h+1(s
0;P )|

| {z }
(A)

+
X

k,h,s,a

w⇡k

h (s, a;P )
1

nh,k(s, a) _ 1
|V ⇡k

r̄k,h+1(s
0;Pk)� V ⇡k

r,h+1(s
0;P )|

| {z }
(B)

, (35)

where the last inequality is obtained from Lemma 15. We will bound the term (B) in (35) as

(B) 
H3SL

C̄ � C̄b

X

k,h,s,a

w⇡k

h (s, a;P )
1

nh,k(s, a) _ 1


H5S2AL

C̄ � C̄b
, (36)

where the first inequality is from bounding |V ⇡k

r̄k (Pk) � V ⇡k

r (P )| by H3SL
C̄�C̄b

. This is ob-

tained by noting that V ⇡k

r̄k (Pk) = V ⇡k

r̂k
(Pk) �

H
C̄�C̄b

⌘⇡k

k (Pk) �
H2

C̄�C̄b

✏⇡k

k (Pk)  V ⇡k

r̂k
(Pk) +

H
C̄�C̄b

E[
PH

h=1 �
l
h,k(sh,k, ah,k)|⇡k, Pk] +

H2

C̄�C̄b

E[
PH

h=1

P
s0 �

p
h,k(sh,k, ah,k, s

0)|⇡k, Pk] 
H3SL
C̄�C̄b

,
since

PH
h=1

P
s0 �

p
h,k(sh,k, ah,k, s

0)  HSL, from the definition. The second inequality is from
Lemma 17.

We now bound the term (A) in (35) as follows.

(A)
(a)


X

k,h,s,a

w⇡k

h (s, a;P )

q
S
P

s0 Ph(s0|s, a)(V
⇡k

r̄k,h+1(s
0;Pk)� V ⇡k

r,h+1(s
0;P ))2

p
nh,k(s, a) _ 1

(b)


p

S

0

@
X

k,h,s,a

w⇡k

h (s, a;P )

nh,k(s, a) _ 1

1

A
1/20

@
X

k,h,s,a,s0

w⇡k

h (s, a;P )Ph(s
0
|s, a)(V ⇡k

r̄k,h+1(s
0;Pk)�V ⇡k

r,h+1(s
0;P ))2

1

A
1/2

(c)
=

p

S

0

@
X

k,h,s,a

w⇡k

h (s, a;P )

nh,k(s, a) _ 1

1

A
1/20

@
X

k,h,s0,a

w⇡k

h+1(s
0, a;P )(V ⇡k

r̄k,h+1(s
0;Pk)� V ⇡k

r,h+1(s
0;P ))2

1

A
1/2

(d)


p

S
p

SAH2

0

@
X

k,h,s,a

w⇡k

h+1(s, a;P )(V ⇡k

r,h+1(s;P )� V ⇡k

r̄k,h+1(s;Pk))
2

1

A
1/2
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(e)


p

S
p

SAH2
H3SL

C̄ � C̄b

0

@
X

k,h,s,a

w⇡k

h+1(s, a;P )(V ⇡k

r,h+1(s;P )� V ⇡k

r̄k,h+1(s;Pk))

1

A
1/2

(f)


S2H4.5
p
AL

C̄ � C̄b

 
X

k

(V ⇡k

r (s1;P )� V ⇡k

r̄k (s1;Pk))

+
X

k,h,s,a

w⇡k

h (s, a;P )|h(Ph � Ph,k)(.|s, a), (V
⇡k

r̄k,h+1(·;Pk)� V ⇡k

r,h+1(·;P ))i|

1

A
1/2

(g)


S2H4.5
p
AL

C̄ � C̄b

 
X

k

(V ⇡k

r (s1;P )� V ⇡k

r̄k (s1;Pk))

!1/2

+
S2H4.5

p
AL

C̄ � C̄b

0

@
X

k,h,s,a

w⇡k

h (s, a;P )|h(Ph � Ph,k)(.|s, a), (V
⇡k

r̄k,h+1(.;Pk)� V ⇡k

r,h+1(.;P ))i|

1

A
1/2

.

(37)
Here, (a) is obtained by Jensen’s inequality, (b) is by cauchy schwartz inequality, (c) is from the prop-
erty of the occupancy measure, i.e.,

P
s,a Ph(s0|s, a)wh(s, a, P ) =

P
a wh+1(s0, a, P ), (d) is ob-

tained from Lemma 14. To get (e), we use the result from Lemma 19 that V ⇡k

r̄k,h+1(Pk)  V ⇡k

r,h+1(P ),
and hence obtain, (V ⇡k

r̄k,h+1(Pk) � V ⇡k

r,h+1(P )(s))2 
H3SL
C̄�C̄b

(V ⇡k

r,h+1(P ) � V ⇡k

r̄k,h+1(Pk)(s)). We
prove (e) from Lemma 33 of [18]. The step is to get (f) is more involved and we prove it separately
in Lemma 20, following a similar result from Lemma 33 of [18]. The inequality (g) holds from the
fact that

p
a+ b 

p
a+

p
b.

Using the above obtained bounds on (A) and (B) in (35), we getX

k,h,s,a

w⇡k

h (s, a;P )|h(Ph � Ph,k)(.|s, a), (V
⇡k

r̄k,h+1(·;Pk)� V ⇡k

r,h+1(·;P ))i|


H5S2AL

C̄ � C̄b
+

S2H4.5
p
AL

C̄ � C̄b

 
X

k

(V ⇡k

r (s1;P )� V ⇡k

r̄k (s1;Pk))

!1/2

+
S2H4.5

p
AL

C̄ � C̄b

0

@
X

k,h,s,a

w⇡k

h (s, a;P )|h(Ph � Ph,k)(.|s, a)(V
⇡k

r̄k,h+1(·;Pk)� V ⇡k

r,h+1(·;P ))i|

1

A
1/2

.

Let X =
P

k,h,s,a w
⇡k

h (s, a, P )|h(Ph � Ph,k)(.|s, a)(V
⇡k

r̄k,h+1(·;Pk) � V ⇡k

r,h+1(·;P )i|. Then,
the above bound takes the form 0  X  a + b

p
X , where a = H5S2AL

C̄�C̄b

+

S2H4.5
p
AL

C̄�C̄b

�P
k(V

⇡k

r (s1;P )� V ⇡k

r̄k (s1;Pk))
�1/2, and b = S2H4.5

p
AL

C̄�C̄b

.

Now, using the fact that, if 0  X  a + b
p
X , then X  a + b2 (Lemma 38 from [18]), we can

obtain the boundX

k,h,s,a

w⇡k

h (s, a;P )|h(Ph � Ph,k)(.|s, a), (V
⇡k

r̄k,h+1(·;Pk)� V ⇡k

r,h+1(·;P ))i|


4H5S2AL

C̄ � C̄b
+

4S2H4.5
p
AL

C̄ � C̄b

 
X

k

(V ⇡k

r (s1;P )� V ⇡k

r̄k (s1;Pk))

!1/2
+

S4H9AL

(C̄ � C̄b)2
. (38)

Substituting the above bound and (34) in (33), we obtain,X

k

V ⇡k

r̄k (P )� V ⇡k

r̄k (Pk) 

S
p

AH4K +
H5S2AL

C̄ � C̄b
+

S2H4.5
p
AL

C̄ � C̄b

 
X

k

(V ⇡k

r (s1;P )� V ⇡k

r̄k (s1;Pk))

!1/2
+

S4H9AL

(C̄ � C̄b)2
.
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Using the above bound in (32), we obtain,
X

k

V ⇡k

r (P )� V ⇡k

r̄k (Pk)  S
p

AH4K +
H5S2AL

C̄ � C̄b

+
S2H4.5

p
AL

C̄ � C̄b

 
X

k

(V ⇡k

r (s1;P )� V ⇡k

r̄k (s1;Pk))

!1/2
+

S4H9AL

(C̄ � C̄b)2
+

S
p
AH6K

C̄ � C̄b
. (39)

The left hand side of the above inequality is non-negative, since V ⇡k

r̄k (Pk)  V ⇡⇤

r (P ), from lemma 18,
and V ⇡⇤

r (P )  V ⇡k

r (P ), since ⇡⇤ is the optimal policy on P . This equation is again of the form
0  X  a + b

p
X , where X =

P
k V

⇡k

r (P ) � V ⇡k

r̄k (Pk). Using the same result we used to get
(38), we deduce that X  a+ b2, and hence,
X

k

V ⇡k

r (P )� V ⇡k

r̄k (Pk) 
S
p
AH6K

C̄ � C̄b
+ S

p

AH4K +
H5S2AL

C̄ � C̄b
+

S4H9AL

(C̄ � C̄b)2
+

S4H9AL

(C̄ � C̄b)2

 Õ(
H

C̄ � C̄b
S
p

AH4K).

and hence, from (32),
P

k V
⇡k

r (P )� V ⇡⇤

r (P )  Õ( H
C̄�C̄b

S
p
AH4K 0).

Moreover, from proposition (5), we have that ⇡k 2 ⇧safe for all k 2 [K], with probability 1� 5�.

Lemma 19 (Bonus optimism). For any (s, a, h, k), conditioned on good event, we have that
rh(sh, ah) � r̄h,k(sh, ah) +

⇣
< Ph(.|sh, ah)� Ph,k(.|s1, a1), V

⇡k

r,h+1(.;P ) >
⌘
� 0, and, for any

⇡, s, h, k, it holds that V ⇡
r̄k,h

(s;Pk)  V ⇡
r,h(s;P ).

Proof. Consider
r̄h,k(sh, ah)� rh(sh, ah)+ < Ph,k(.|sh, ah)� Ph(.|sh, ah), V

⇡k

r,h+1(.;P ) >



X

s0

|(Ph,k � Ph)(s
0
|s, a)||V ⇡k

r,h+1(s
0)|�

H

C̄ � C̄b
�r
h,k(sh, ah)�

H2

C̄ � C̄b
�̄p
h,k(s1, a1)

 H�̄p
h,k(sh, ah)�

H2

C̄ � C̄b
�̄p
h,k(sh, ah)�

H

C̄ � C̄b
�r
h,k(sh, ah)

 0,
where the last inequality is due to the fact that C̄ � C̄b  H .

Similarly, by value difference lemma 16, we have,
V ⇡
r̄k,h(s;Pk)� V ⇡

r,h(s;P )

= E
"

HX

h0=h

r̄h0,k(sh0 , ah0)� rh0(sh0 , ah0)� (Ph0 � Ph0,k)(.|sh0 , ah0)V ⇡
h0+1,r(.;P )|sh = s,⇡, Pk

#

 0,
where the last inequality is obtained just earlier.

Lemma 20. We prove inequality (e) in bounding term (i), i.e., we prove that,X

h,s,a

w⇡k

h+1(s, a, P )(V ⇡k

r,h+1(s;P )� V ⇡k

r̄k,h+1(s;Pk))  H(V ⇡k

r (s1;P )� V ⇡k

r̄k (s1;Pk))

+H
X

h,s,a

w⇡k

h (s, a, P )| < (Ph � Ph,k)(.|s, a), (V
⇡k

r̄k,h+1(·;Pk)� V ⇡k

r,h+1(·;P )) > |.

Proof. Let us start with,
V ⇡k

r,1 (s1;P )� V ⇡k

r̄k,1
(s1;Pk)

= E
⇥
V ⇡k

r,1 (s1;P )� r1(s1, a1)� hP1(.|s1, a1), V
⇡k

r̄k,2
(.;Pk)i|⇡k, P

⇤
+

+ E
⇥
r1(s1, a1) + hP1(.|s1, a1), V

⇡k

r̄k,2
(.;Pk)� V ⇡k

r̄k,1
(s1;Pk)i|⇡k, P

⇤

= E
⇥
hP1(.|s1, a1), (V

⇡k

r,2 (.;P )� V ⇡k

r̄k,2
(.;Pk))i|⇡k, P

⇤

+ E
⇥
r1(s1, a1) + hP1(.|s1, a1)V

⇡k

r̄k,2
(.;Pk)i � r̄1,k(s1, a1)� hP1,k(.|s1, a1)V

⇡k

r̄k,2
(s1;Pk)i|⇡k, P

⇤
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= E
⇥
hP1(.|s1, a1), (V

⇡k

r,2 (.;P )� V ⇡k

r̄k,2
(.;Pk))i|P,⇡k

⇤
+

E
⇥
h(P1 � P1,k)(.|s1, a1), (V

⇡k

r̄k,2
(.;Pk)� V ⇡k

r,2 (.;P ))i
⇤
+

E
⇥
r1(s1, a1)� r̄1,k(s1, a1) + h(P1 � P1,k)(.|s1, a1), V

⇡k

r,2 (s1;P )i|⇡k, P
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where inequality (a) is from Lemma 19. Iterating this relation, for h times, we get,
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Summing this relation for h 2 {2, . . . , H}, we get,
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Hence, we obtain,
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E Detailed Description of Experiment Environments and Algorithm
Implementation

E.1 Experiment Environments

Factored CMDP environment: The factored CMDP is represented in Fig. 3. The state space is
S = {1, 2, 3}, and the action space is A = {1, 2}, where action 1 corresponds to moving one
step to the right and 2 corresponds to staying put. Objective cost is r(s, 1) = 0, 8s 2 S, and
r(s, 2) = s, 8s 2 S. The constraint cost is, c(s, 1) = 0, 8s 2 S, and c(s, 2) = 1, 8s 2 S. The

probability transition matrix under action 1 is,

 
0 1 0
0 0 1
1 0 0

!
, and under action 2, it is

 
1 0 0
0 1 0
0 0 1

!
.
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Figure 3: Illustrating the Factored CMDP environment. Environment transitions to next state with
action 1, and stays put with action 2.

Media Streaming Environment: Here, we model the media streaming control from a wireless base
station. The base station provides two types of service to a device, a fast service and a slow service.
The packets received are stored in a media buffer at the device. The goal is to minimize the cost of
having an empty buffer (which may result in stalling of the video), while keeping the utilization of
fast service below certain level.

We denote by Ah, the number of incoming packets into the buffer, and by Bh, the number of packets
leaving the buffer. The state of the environment, denoted as sh in hth step, is the media buffer length.
It evolves as, sh+1 = min{max(0, sh + Ah � Bh), N}. We consider N = 20 as the maximum
buffer length in our experiment. The action space is A = {1, 2}, i.e., the action is to use either fast
server 1 or slow server 2. We assume that the service rates of the servers have independent Bernoulli
distributions, with parameters µ1 = 0.9, and µ2 = 0.1, where µ1 corresponds to the fast service. The
media playback at the device is also Bernoulli with parameter �. Hence, Ah is a random variable
with mean either µ1 or µ2 depending on the action taken, and Bh is a random variable with mean �.
These components constitute the unknown transition dynamics of our environment.

The objective cost is r(s, a) = {s = 0}. i.e., it has a value of 1, when the buffer hits zero, and is
zero everywhere else. Our constraint cost is c(s, a) = {a = 1}, i.e., there is a constraint cost of 1
when the fast service is used, and is zero otherwise. We then constrain the expected number of times
the fast service is used to C̄ = H/2, in a horizon of length H = 10.

Inventory Control Environment: We consider a single product inventory control problem [7]. Our
environment evolves according to a finite horizon CMDP, with horizon length H = 7, where each
time step h 2 [H] represents a day of the week. In this problem, our goal is to maximize the expected
total revenue over a week, while keeping the expected total costs in that week below a certain level.
We do not backlog the demands.

The storage has a maximum capacity N = 6, which means it can store a maximum of 6 items. We
denote by sh, the state of the environment, as the amount of inventory available at hth day. The
action ah is the amount of inventory the agent purchases such that the inventory does not overflow.
Thus, the action space As 2 {0, . . . , N � s}, for the state s. The exogenous demand is represented
by dh, which is a random variable representing the stochastic demand for the inventory on the hth

day. We assume dh to be in {0, · · · , N} with distribution [0.3, 0.2, 0.2, 0.05, 0.05]. If the demand is
higher than the inventory and supply, the excess demand will not be met. The state evolution then
follows as sh+1 = max{0, sh + ah � dh}.

We define the rewards and costs as follows. The revenue is generated as, f(s, a, s0) = 8(s+ a� s0),
when s0 > 0, and is 0 otherwise. The reward obtained in state (s, a) is then the expected revenue over
all next states s0, r(s, a) = E[f(s, a, s0)]. The cost associated with the inventory has two components.
Firstly, there is a purchase cost when the inventory is brought in, which is a fixed cost of 4 units, plus
a variable cost of 2a, which increases with the amount of purchase. Secondly, we also have a non
decreasing holding cost s, for storing the inventory. Hence, the cost in (s, a) is c(s, a) = 4 + 2a+ s.
We normalize the rewards and costs to be in the range [0, 1]. Our goal is to maximize the expected
total revenue over a week (H = 7), while keeping the expected total costs in that week below a
threshold C̄ = H/2.
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E.2 Details of the Implementation

We now describe the algorithms described in the introduction.

AlwaysSafe: AlwaysSafe [36] shows empirical results that only depict the expected cost of various
policies deduced from their linear programs versus the optimal expected cost. We note that this
comparison is not a reasonable measure of regret, since cumulative regret can be linear even though
the expected costs are close.

We consider a factored CMDP environment described previously. For implementing this algorithm,
in each episode, we solve the LP4 linear program described in [36], based on the observations.
For solving LP4, one also needs an abstract CMDP as described in Section 3 of [36]. We follow
their description to construct such a model for the factored CMDP. The confidence intervals for
AlwaysSafe algorithm are same as the ones for OptCMDP algorithm from [18] and of DOPE. We
notice that the regret of Always safe algorithms indeed grow at a linear rate.

OptPessLP: We implement Algorithm 1 from [28]. We choose the baseline policy by solving the
corresponding CMDP with a more conservative constraint. For the factored CMDP and Media
Control environment, we choose the constraint as 0.1C̄, and solve the MDP to obtain ⇡b and the
corresponding cost C̄b. Similarly, for the inventory control environment, we choose the constraint as
0.2C̄. These choices of ⇡b are the same for both OptPessLP and DOPE, for a fair comparison. We
play ⇡b when the condition in Equation 9 from [28] is met, otherwise we choose the maximizing
policy from their linear program. We choose the confidence intervals as specified in their work,
without any scaling. Despite the results suggested by theory, we notice that its empirical performance
is very poor in every environment we consider.

OptCMDP: We implement Algorithm 1 from [18]. This algorithm solves the linear program that
minimizes the objective cost with optimism in the model. Since this algorithm does not consider
zero-violation setting, we expect to see constraint violation of the same order as the regret. We use
the confidence intervals as specified in their work, without any scaling.

DOPE: We implement Algorithm 1 from our work. The choice of baseline policy ⇡b is exactly the
same as that for OptPessLP for each environment. ⇡b is played until K0 episodes, as provided by
Proposition 4. Then, the algorithm solves the linear program given by Equation (10) to obtain ⇡k in
episode k.

The details for the linear program formulations are given in Appendices A and B. DOPE, AlwaysSafe
and OptCMDP algorithms use the Extended LP formulations, while OptPessLP uses the regular LP
formulation.

For each environment, each of these algorithms are run for 20 random seeds, and are averaged to
obtain the regret plots in the figures.

E.3 Experiment Results for Inventory Control Environment

We show the performance of our DOPE algorithm in Inventory Control Environment. As before, we
compare it against the OptCMDP Algorithm 1 in [18], and and OptPess-LP algorithm from [29]. Also,
we choose the optimal policy from a conservative constrained problem (with a stricter constraint) as
the baseline policy. We use C̄b = 0.1C̄.

Fig. 4(a) compares the objective regret for the inventory control environment incurred by each
algorithm with respect to the number of episodes. As we see in this figure, in the initial episodes, the
objective regret of DOPE grows linearly with number of episodes. Later, the growth rate of regret
changes to square root of number of episodes. We see that this change of behavior happens after
K0 episodes specified by Proposition 4. Hence, the linear growth rate indeed corresponds to the
duration of time in which the base policy is employed. In conclusion, the regret for DOPE algorithm
depicted in Figures 4(a) matches the result of Theorem 3. Next, the OptPess-LP algorithm performs
quite badly in terms of objective regret, as it fails to achieve

p
K regret performance within the

chosen number of episodes. It thus shows the same issue of excessive pessimism observed in the
other environments. Finally, we observe that the objective regret of OptCMDP is lower than DOPE.
This behavior can be attributed to the fact that in order to perform safe exploration, DOPE includes a
pessimistic penalty in the constraint (8).
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(a) Objective Regret (b) Constraint Regret (c) Objective Regret, varying C̄b

Figure 4: Illustrating the Objective Regret and Constraint Regret for the Inventory Control Environ-
ment.

Fig. 4(b) compares the regret in constraint violation for DOPE, OptPess-LP and OptCMDP algorithms
for the inventory control setting. Here, we see that DOPE and OptPess-LP do not violate the constraint,
while OptCMDP incurs a regret that grows sublinearly. This figure shows that DOPE does indeed
perform safe exploration as proved, while OptCMDP violates the constraints during learning.

Finally, Fig. (4(c)) compares the optimality regret for various baseline policies. Again, the takeaway
here is that a good baseline policy is helpful, although the variation across different baseline policies
is not very large.

27


