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Abstract

Safe reinforcement learning is extremely challenging–not only must the agent
explore an unknown environment, it must do so while ensuring no safety constraint
violations. We formulate this safe reinforcement learning (RL) problem using the
framework of a finite-horizon Constrained Markov Decision Process (CMDP) with
an unknown transition probability function, where we model the safety require-
ments as constraints on the expected cumulative costs that must be satisfied during
all episodes of learning. We propose a model-based safe RL algorithm that we call
Doubly Optimistic and Pessimistic Exploration (DOPE), and show that it achieves
an objective regret Õ(|S|

p
|A|K) without violating the safety constraints during

learning, where |S| is the number of states, |A| is the number of actions, and K is
the number of learning episodes. Our key idea is to combine a reward bonus for
exploration (optimism) with a conservative constraint (pessimism), in addition to
the standard optimistic model-based exploration. DOPE is not only able to improve
the objective regret bound, but also shows a significant empirical performance
improvement as compared to earlier optimism-pessimism approaches.

1 Introduction

Constrained Markov Decision Processes (CMDPs) impose restrictions that pertain to resource or
safety constraints of the system. For example, the average radiated power in a wireless communication
system must be restricted due to user health and battery lifetime considerations or the frequency of
braking or accelerating in an autonomous vehicle must be kept bounded to ensure passenger comfort.
Since these systems have complex dynamics, a constrained reinforcement learning (CRL) approach
is attractive for determining an optimal control policy. But how do we ensure that safety or resource
availability constraints are not violated while learning such an optimal control policy?

Our goal is to develop a framework for safe exploration without constraint violation (with high
probability) for solving CMDP problems where the model is unknown. While there has been much
work on RL for both the MDP and the CMDP setting, ensuring safe exploration in the CRL setting
has received less attention. The problem is challenging, since we do not allow constraint violation
either during learning or deployment, while ensuring a low regret in terms of the optimal objective.
Our aim is to explore a model-based approach in an episodic setting under which the model (the
transition kernel of the CMDP) is empirically determined as samples from the system are gathered.

There has been much recent interest in model-based RL approaches to solving a constrained MDP,
the most relevant of which we have summarized in Table 1. The setup is of a finite horizon episodic
CMDP, with a state space of size |S|, an action space of size |A| and a horizon of length H. Regret
is measured over the first K episodes of the algorithm. Both the attained objective and constraint
satisfaction are computed in an expected sense for a given policy. Allowing constraint violations
during learning means that the algorithm suffers both an objective regret and a constraint regret.
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Table 1: Comparison of safe RL algorithms for CMDPs. The algorithms are: OptCMDP, OptCMDP-
Bonus [18], AlwaysSafe [36] and OptPessLP [28]. This table is presented for K � poly(|S|, |A|, H),
with polynomial terms independent of K omitted. Expected regret results are in high probability.

ALGORITHM MODEL REWARD CONSTRAINT OBJECTIVE CONSTRAINT EMPIRICAL
OPTIMISM OPTIMISM PESSIMISM REGRET REGRET PERF.

OPTCMDP 3 7 7 Õ(|S|
p

|A|H4K) Õ(|S|
p

|A|H4K) -
OPTCMDP-B 7 3 7 Õ(|S|

p
|A|H4K) Õ(|S|

p
|A|H4K) -

ALWAYSSAFE 3 7 HEURISTIC UNKNOWN 0 7

OPTPESS-LP 7 3 3 Õ( H
3

C̄�C̄
b

p
|S|3|A|K) 0 7

DOPE 3 3 3 Õ( H
3

C̄�C̄
b

|S|
p

|A|K) 0 3

Examples of algorithms following this method are OptCMDP, OptCMDP-Bonus [18]. The algorithms
use different ways of incentivizing exploration to obtain samples to build up an empirical system
model. OptCMDP uses the idea of optimism in the face of uncertainty from the model perspective
and solves an extended linear program to find the best model (highest reward) under the samples
gathered thus far. OptCMDP-Bonus uses a different approach of adding a bonus to the reward term to
incentivize exploration of state-action pairs that have fewer samples, which we consider as a form of
optimism from the reward perspective. While the objective regret of both these algorithms is Õ(

p
K),

the constraint regret too is of the same order, since constraints may be violated during learning.

An algorithm that begins with no knowledge of the model will have exploration steps during learning
that might violate constraints in expectation. Hence, safe RL approaches assume the availability of an
inexpert baseline policy that does not violate the constraints, but is insufficient to explore the entire
state action space. So it cannot be simply applied until a high-accuracy model is obtained. A heuristic
approach entitled AlwaysSafe [36] assumes a factored CMDP that allows the easy generation of a
safe baseline policy. It then combines the optimism with respect to the model of OptCMDP with a
heuristically chosen hardening of constraints. This guarantees no constraint violations, but does not
have regret guarantee with respect to the objective. Its empirical performance is variable and its use
is limited to factored CMDP problems.

The OptPessLP algorithm [28] formalizes the idea of coupling optimism and pessimism by starting
with OptCMDPBonus that has an optimistic reward, and systematically applying decreasing levels of
pessimism with respect to the constraint violations. The approach is successful in ensuring the twin
goals of a Õ(

p
K) objective regret, while ensuring no constraint violations. However, the authors

do not present any empirical performance evaluation results. When we implemented OptPessLP,
we found that the performance is singularly bad in that linear regret persists for a large number of
samples, and the tapering off to Õ(

p
K) regret behavior does not appear to happen quickly. The

problem with this algorithm is that it is so pessimistic with regard to constraints that it heavily
disincentivizes exploration and ends up choosing the base policy for long sequences.

The issue upon which algorithm performance depends is the choice of how to combine optimism and
pessimism to obtain both order optimal and empirically good objective regret performance, while
ensuring no constraint violations happen. Our insight is that optimism with respect to the model
is a key enabler of exploration, and can be coupled with the addition of optimism with respect to
the reward. This double dose of optimism—both with respect to model and reward—could ensure
that pessimistic hardening of constraints does not excessively retard exploration. Following this
insight, we develop DOPE, a doubly optimistic and pessimistic exploration approach. We are able
to show that DOPE not only attains Õ(

p
K) objective regret behavior with zero constraint regret

with high probability, it also reduces the objective regret bound over OptPessLP by a factor ofp
|S|. We conduct performance analysis simulations under representative CMDP problems and show

that DOPE easily outperforms all the earlier approaches. Thus, the idea of double optimism is not
only valuable from the order optimal algorithm design perspective, it also shows good empirical
regret performance, indicating the feasibility of utilizing the methodology in real-world systems.
The code for the experiments in this paper is located at: https://github.com/archanabura/
DOPE-DoublyOptimisticPessimisticExploration

Related Work: Constrained RL: Constrained Markov Decision Processes (CMDP) has been an ac-
tive area of research [2], with applications in domains such as power systems [39, 25], communication
networks [3, 38], and robotics [17, 11]. In [9], the author proposed an actor-critic RL algorithm for
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learning the asymptotically optimal policy for an infinite horizon average cost CMDP when the model
is unknown. This approach is also utilized in function approximation settings with asymptotic local
convergence guarantees [8, 12, 40]. Policy gradient algorithms for CMDPs have also been developed
[1, 44, 47, 35, 16, 27, 49]. However, none these works address the problem of safe exploration to
provide guarantees on the constraint violations during learning.

Safe Multi-Armed Bandits: The problem of safe exploration in linear bandits with stage-wise safety
constraint is studied in [4, 24, 31, 33]. Linear bandits with more general constraints have also been
studied [34, 29]. These works do not consider the more challenging RL setting which involves an
underlying dynamical system with unknown model.

Safe Online Convex Optimization: Online convex optimization [20] has been studied with stochas-
tic constraints [45, 10] and adversarial constraints [32, 46, 26]. These allow constraint violation
during learning and characterize the cumulative amount of violation. A safe Frank-Wolf algorithm for
convex optimization with unknown linear stochastic constraints has been studied in [41]. However,
these too do not consider the RL setting with an unknown model.

Exploration in Constrained RL: There has been much work in this area with constraint violations
during learning, including the work discussed in the introduction [18]. These include [37, 19, 23],
which derive bounds either on the objective and constraint regret or on the sample complexity of
learning an ✏-optimal policy. Other works on safe RL include [43, 42], where a model-free approach
is considered, and [5], that pertains to offline RL. These are complementary to our model-based
approach. The problem of learning the optimal policy of a CMDP without violating the constraints
was also studied in [48]. However, they assume that the model is known and only the cost functions
are unknown, whereas we address more difficult problem with unknown model and cost functions.

Notations: For any integer M , [M ] denotes the set {1, . . . ,M}. For any two real numbers a, b,
a _ b := max{a, b}. For any given set X , �(X ) denotes the probability simplex over the set X , and
|X | denotes the cardinality of the set X .

2 Preliminaries and Problem Formulation

2.1 Constrained Markov Decision Process

We address the safe exploration problem using the framework of episodic Constrained Markov
Decision Process (CMDP) [2]. We consider a CMDP, denoted as M = hS,A, r, c, P,H, C̄i with
r = (rh)Hh=1, c = (ch)Hh=1, P = (Ph)Hh=1, where S is the state space, A is the action space, H is the
episode length, rh : S ⇥A! R is the objective cost function at time step h 2 [H], ch : S ⇥A! R
is the constraint cost function at time step h 2 [H], Ph is the transition probability function with
Ph(s0|s, a) representing the probability of transitioning to state s0 when action a is taken at state s
at time h. In the RL context, the transition matrix P is also called the model of the CMDP. Finally,
C̄ is a scalar that specifies the safety constraint in terms of the maximum permissible value for the
expected cumulative constraint cost. We consider the setting where |S| and |A| are finite. Also,
without loss of generality, we assume that costs r and c are bounded in [0, 1].

A non-stationary randomized policy ⇡ = (⇡h)Hh=1,⇡h : S ! �(A) specifies the control action to
be taken at each time step h 2 [H]. In particular, ⇡h(s, a) denotes the probability of taking action
a when the state is s at time step h. For an arbitrary cost function l : [H]⇥ S ⇥A! R, the value
function of a policy ⇡ corresponding to time step h 2 [H] given a state s 2 S is defined as

V ⇡
l,h(s;P ) = E[

HX

⌧=h

l⌧ (s⌧ , a⌧ )|sh = s], (1)

where a⌧ ⇠ ⇡⌧ (s⌧ , ·), s⌧+1 ⇠ P⌧ (·|s⌧ , a⌧ ). Since we are mainly interested in the value of a policy
starting from h = 1, we simply denote V ⇡

l,1(s;P ) as V ⇡
l (s;P ). For the rest of the paper, we will

assume that the initial state is s1 is fixed. So, we will simply denote V ⇡
l (s1;P ) as V ⇡

l (P ), when it is
clear from the context. This standard assumption [18, 15] can be made without loss of generality.

The CMDP (planning) problem with a known model P can then be stated as follows:
min
⇡

V ⇡
r (P ) s.t. V ⇡

c (P )  C̄. (2)

We say that a policy ⇡ is a safe policy if V ⇡
c (P )  C̄, i.e., if the expected cumulative constraint cost

corresponding to the policy ⇡ is less than the maximum permissible value C̄. The set of safe policies,
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denoted as ⇧safe, is defined as ⇧safe = {⇡ : V ⇡
c (P )  C̄}. Without loss of generality, we assume that

the CMDP problem (2) is feasible, i.e., ⇧safe is non-empty. Let ⇡⇤ be the optimal safe policy, which
is the solution of (2).

The CMDP (planning) problem is significantly different from the standard Markov Decision Process
(MDP) (planning) problem [2]. Firstly, there may not exist an optimal deterministic policy for a
CMDP, whereas the existence of a deterministic optimal policy is well known for a standard MDP.
Secondly, there does not exist a Bellman optimality principle or Bellman equation for CMDP. So, the
standard dynamic programming solution approaches which rely on the Bellman equation cannot be
directly applied to solve the CMDP problem.

There are two standard approaches for solving the CMDP problem, namely the Lagrangian approach
and the linear programming (LP) approach. Both approaches exploit the zero duality gap property
of the CMDP problem [2] to find the optimal policy. In this work, we will use the LP approach,
consistent with model optimism. Details of solving (2) using the LP approach are in Appendix A.

2.2 Reinforcement Learning with Safe Exploration

The goal of the reinforcement learning with safe exploration is to solve (2), but without the knowledge
of the model P a priori. Hence, the learning algorithm has to perform exploration by employing
different policies to learn P . However, we also want the exploration for learning to have a safety
guarantee, i.e, the policies employed during learning should belong to the set of safe policies ⇧safe.
Since ⇧safe itself is defined based on the unknown P , the learning algorithm will not know ⇧safe a
priori. This makes the safe exploration problem extremely challenging.

We consider a model-based RL algorithm that interacts with the environment in an episodic manner.
Let ⇡k = (⇡h,k)Hh=1 be the policy employed by the algorithm in episode k. At each time step h 2 [H]
in an episode k, the algorithm observes state sh,k, selects action ah,k ⇠ ⇡h,k(sh,k, ·), and incurs the
costs rh(sh,k, ah,k) and ch(sh,k, ah,k). The next state sh+1,k is realized according to the probability
vector P (·|sh,k, ah,k). As stated before, for simplicity, we assume that the initial state is fixed for
each episode k 2 [K] := {1, . . . ,K}, i.e., s1,k = s1. We also assume that the maximum permissible
cost C̄ for any exploration policy is known and it is specified as part of the learning problem.

The performance of the RL algorithm is measured using the metric of safe objective regret. The safe
objective regret is defined exactly as the standard regret of an RL algorithm for exploration in MDPs
[21, 14, 6], but with an additional constraint that the exploration polices should belong to the safe set
⇧safe. Formally, the safe objective regret R(K) after K learning episodes is defined as

R(K) =
KX

k=1

(V ⇡k

r (P )� V ⇡⇤

r (P )), ⇡k 2 ⇧safe, 8k 2 [K]. (3)

Since ⇧safe is unknown, clearly it is not possible to employ a safe policy without making any additional
assumptions. We overcome this obvious limitation by assuming that the algorithm has access to a
safe baseline policy ⇡b such that ⇡b 2 ⇧safe. We formalize this assumption as follows.
Assumption 1 (Safe baseline policy). The algorithm knows a safe baseline policy ⇡b such that
V ⇡b

c (P ) = C̄b, where C̄b < C̄. The value C̄b is also known to the algorithm.
Remark 2. Knowing a safe policy ⇡b is necessary for solving the safe RL problem because we
require the constraint to always be satisfied. A similar assumption has been used in the case of safe
exploration in linear bandits [4, 24, 33], as well as in earlier work on safe RL [36, 28].

3 Algorithm and Performance Guarantee

DOPE builds on the optimism in the face of uncertainty (OFU) style exploration algorithms for RL
[21, 14], using such optimism, both in terms of the model, as well as to provide a reward bonus
for under-explored state-actions. However, a naive OFU-style algorithm may lead to selecting
exploration policies that are not in the safe set ⇧safe. So we modify the selection of exploratory policy
by incorporating pessimism in the face of uncertainty (PFU) on the constraints, making DOPE doubly
optimistic and pessimistic in exploration.

DOPE operates in episodes, each of length H . Define the filtration Fk as the sigma algebra generated
by the observations until the end of episode k 2 [K], i.e., Fk = (sh,k0 , ah,k0 , h 2 [H], k0 2 [k]). Let
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nh,k(s, a) =
Pk�1

k0=1 {sh,k0 = s, ah,k0 = a} be the number of times the pair (s, a) was observed
at time step h until the beginning of episode k. Similarly, define nh,k(s, a, s0) =

Pk�1
k0=1 {sh,k0 =

s, ah,k0 = a, sh+1,k0 = s0}. At the beginning of each episode k, DOPE estimates the model as
bPh,k(s0|s, a) = nh,k(s, a, s0)/(nh,k(s, a) _ 1). Similar to OFU-style algorithms, we construct a
confidence set Pk around bPk as Pk = \(s,a)2S⇥APk(s, a), where

Pk(s, a) = {P 0 : |P 0
h(s

0
|s, a)� bPh,k(s

0
|s, a)|  �p

h,k(s, a, s
0), 8h 2 [H], s0 2 S}, (4)

�p
h,k(s, a, s

0) =

s
4Var( bPh,k(s0|s, a))L

nh,k(s, a) _ 1
+

14L

3(nh,k(s, a) _ 1)
, (5)

where L = log( 2SAHK
� ), and Var( bPh,k(s0|s, a)) = bPh,k(s0|s, a)(1 � bPh,k(s0|s, a)). Using the

empirical Bernstein inequality, we can show that the true model P is an element of Pk for any
k 2 [K] with probability at least 1� 2� (see Appendix C).

Similarly, at the beginning of each episode k, DOPE estimates the unknown objective and constraint

costs as r̂h,k(s, a) =
P

k�1
k0=1

rh(s,a) {s
h,k0=s,a

h,k0=a}
nh,k(s,a)_1 , ĉh,k(s, a) =

P
k�1
k0=1

ch(s,a) {s
h,k0=s,a

h,k0=a}
nh,k(s,a)_1 .

In keeping with OFU, we construct confidence sets Rk and Ck around r̂k and ĉk respectively, as
Rk = {r̃ : |r̃h(s, a)� r̂h,k(s, a)|  �l

h,k(s, a), 8h, s, a 2 [H]⇥ S ⇥A},

Ck = {c̃ : |c̃h(s, a)� ĉh,k(s, a)|  �l
h,k(s, a), 8h, s, a 2 [H]⇥ S ⇥A},

�l
h,k(s, a) =

q
L0/(nk

h(s, a) _ 1),

(6)

where L0 = 2 log(6SAHK/�), and r̃ = (r̃h)Hh=1, c̃ = (c̃h)Hh=1. Using Hoeffding inequality, we can
show that the true costs belong to Rk and Ck for any k 2 [K] with probability at least 1 � � (see
Appendix C). We define Mk = Pk \Rk \ Ck to be the total confidence ball.

It is tempting to use the standard OFU approach for selecting the exploration polices since this
approach is known to provide sharp regret guarantees for exploration problems in RL. The standard
OFU approach will find the optimistic model P k and optimistic policy ⇡k, where

(⇡k, P k) = argmin
⇡0,(P 0,r0,c0)2Mk

V ⇡0

r0 (P
0), s.t. V ⇡0

c0 (P
0)  C̄. (7)

The OFU problem (7) is feasible since the true model M is an element of Mk (with high probability).
In particular, (⇡b, P ) and (⇡⇤, P ) are feasible solutions of (7). Moreover, (7) can be solved efficiently
using an extended linear programming approach, as described in Appendix B. The policy ⇡k ensures
exploration while satisfying the constraint V ⇡

k

c (P k)  C̄. However, this naive OFU approach
overlooks the important issue that ⇡k may not be a safe policy with respect to the true model P . More
precisely, it is possible to have V

⇡
k

c (P ) > C̄ even though V
⇡
k

c (P k)  C̄. So, the standard OFU
approach alone will not give a safe exploration strategy.

In order to ensure that the exploration policy employed at any episode is safe, we add a pessimistic
penalty to the empirical constraint cost to get the pessimistic constraint cost function c̄k as

c̄h,k(s, a) = ĉh,k(s, a) + �l
h,k(s, a) +H�̄p

h,k(s, a), (8)
where �̄p

h,k(s, a) =
P

s02S �p
h,k(s, a, s

0). Since �̄p
h,k(s, a) is Õ(1/

p
nh,k(s, a)), (s, a) pairs that are

less observed have a higher penalty, disincentivizing their exploration. However. such a pessimistic
penalty may prevent the exploration that is necessary to learn the optimal policy. To overcome this
issue, we also modify the empirical objective cost function by subtracting a term to incentivize
exploration, to obtain an optimistic objective cost function

r̄h,k(s, a) = r̂h,k(s, a)�
3H

C̄ � C̄b
�l
h,k(s, a)�

H2

C̄ � C̄b
�̄p
h,k(s, a). (9)

Since �̄p
h,k(s, a) is Õ(1/

p
nh,k(s, a)), (s, a) pairs that are less observed will have a lowered cost to

incentivize their exploration.

We select the policy ⇡k for episode k by solving the Doubly Optimistic-Pessimistic (DOP) problem:
(⇡k, Pk) = argmin

⇡0,P 02Pk

V ⇡0

r̄k (P
0) s.t. V ⇡0

c̄k (P
0)  C̄. (10)

Notice that DOPE is doubly optimistic by considering both the optimistic objective cost function
in (9) and the optimistic model Pk from the confidence set Pk in (10), while being pessimistic on the
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constraint in (10). Later, in Lemma 18 in the appendix, we prove that (⇡k, Pk) is indeed an optimistic
solution. This is in contrast with [28], where the optimism is solely limited to the objective cost. We
will show that our approach carefully balances double optimism and pessimism, yielding a regret
minimizing learning algorithm with episodic safe exploration guarantees.

We note that the DOP problem (10) may not be feasible, especially in the first few episodes of
learning. This is because, �̄p

h,k(s, a) and �l
h,k(s, a) may be large during the initial phase of learning

so that there may not be a policy ⇡0 and a model P 0
2 Pk that can satisfy the constraint V ⇡0

c̄k (P
0)  C̄.

We overcome this issue by employing a safe baseline policy ⇡b (as defined in Assumption 1) in the
first Ko episodes, a value provided by Proposition 4. Since ⇡b is safe by definition, DOPE ensures
safety during the first Ko episodes. We will later show that the DOP problem (10) will have a feasible
solution after the first Ko episodes (see Proposition 4). For any episode k � Ko, DOPE employs
policy ⇡k, which is the solution of (10). We will also show that ⇡k from (10) (once it becomes
feasible) will indeed be a safe policy (see Proposition 5). We present DOPE formally in Algorithm 1.

Algorithm 1 Doubly Optimistic and Pessimistic Exploration (DOPE)
1: Input: � 2 (0, 1) , r, c,⇡b, C̄b, C̄,Ko

2: Initialization: nh,k(s, a) = nh,k(s, a, s0) = 0 8s, s0 2 S, a 2 A, h 2 [H].
3: for episodes k = 1, . . . ,K do
4: Compute the estimates bPk, r̂k, ĉk and the confidence set Mk according to (4) - (5), and (6).
5: if k  Ko then
6: Select the exploration policy ⇡k = ⇡b

7: else
8: Select the exploration policy ⇡k according to (10)
9: end if

10: for h = 1, 2, . . . , H do
11: Observe state sh,k, select action ah,k ⇠ ⇡h,k(sh,k, ·), incur the cost rh(sh,k, ah,k) and

ch(sh,k, ah,k), and observe next state sh+1,k ⇠ Ph(·|sh,k, ah,k)
12: Update the counts: nh,k(sh,k, ah,k)  nh,k(sh,k, ah,k) + 1, nh,k(sh,k, ah,k, sh+1,k)  

nh,k(sh,k, ah,k, sh+1,k) + 1
13: end for
14: end for

We now present our main result, which shows that the DOPE algorithm achieves Õ(
p
K) regret

without violating the safety constraints during learning, with high probability.
Theorem 3. Fix any � 2 (0, 1). Consider the DOPE algorithm with Ko as specified in Proposition
4. Let {⇡k, k 2 [K]} be the sequence of policies generated by the DOPE algorithm. Then, with
probability at least 1 � 5�, ⇡k 2 ⇧safe for all k 2 [K]. Moreover, with probability at least 1 � 5�,
the regret of the DOPE algorithm satisfies

R(K)  Õ(
SH3

(C̄ � C̄b)

p

AK).

4 Analysis

We now provide the technical analysis of DOPE, concluding with the proof outline of Theorem 3.

4.1 Preliminaries

For an arbitrary policy ⇡0 and transition probability function P 0, define ✏⇡
0

k (P 0) and ⌘⇡
0

k (P 0) as

✏⇡
0

k (P 0) = HE[
HX

h=1

�̄p
h,k(sh,k, ah,k)|⇡

0, P 0,Fk�1], ⌘
⇡0

k (P 0) = E[
HX

h=1

�l
h,k(sh,k, ah,k)|⇡

0, P 0,Fk�1].

(11)

Then, it is straightforward to show that (see (23) - (24) in the Appendix) V ⇡0

c̄k (P
0) = V ⇡0

ĉk
(P 0) +

⌘⇡
0

k (P ) + ✏⇡
0

k (P 0), V ⇡0

r̄k (P
0) = V ⇡0

r̂k
(P 0)� 3H

C̄�C̄b

⌘⇡
0

k (P 0)� H
C̄�C̄b

✏⇡
0

k (P 0). The analysis utilizes this
decomposition of V ⇡0

c̄k (P
0) and V ⇡0

r̄k (P
0), and the properties of ✏⇡

0

k (P 0) and ⌘⇡
0

k (P 0). Under the good
event G defined as in Lemma 12, we can show, V ⇡0

ĉk
(P 0)�⌘⇡

0

k (P 0)  V ⇡0

c (P 0)  V ⇡0

ĉk
(P 0)+⌘⇡

0

k (P 0).

6



4.2 Feasibility of the OP Problem

Even though (⇡b, P ) is a feasible solution to the original CMDP problem (2), it may not be a
feasible for the DOP problem (10) in the initial phase of learning. To see this, note that V ⇡b

c̄k (P ) =
V ⇡b

ĉk
(P ) + ⌘⇡b

k (P ) + ✏⇡b

k (P ), and since V ⇡b

c (P ) � V ⇡b

ĉk
(P ) � ⌘⇡b

k (P ) under the good event, and
V ⇡b

c (P ) = C̄b, we will have V ⇡b

c̄k (P )  C̄ if 2⌘⇡b

k (P )+✏⇡b

k (P )  (C̄�C̄b). So, (⇡b, P ) is a feasible
solution for (10) if 2⌘⇡b

k (P ) + ✏⇡b

k (P )  (C̄ � C̄b). This sufficient condition may not be satisfied
for initial episodes. However, since ✏⇡b

k (P ) and ⌘⇡b

k (P ) are decreasing in k, if (⇡b, P ) becomes a
feasible solution for (10) at episode k0, then it will remain feasible for all episodes k � k0. Also,
since �̄p

h,k and �l
h,k decrease with k, one can expect that (10) becomes feasible after some number of

episodes. We use these intuitions, along with some technical lemmas to show the following result.
Proposition 4. Under the DOPE algorithm, with a probability greater that 1 � 5�, (⇡b, P ) is a
feasible solution for the DOP problem (10) for all k � Ko, where Ko = Õ( S2AH4

(C̄�C̄b)2
).

4.3 Safety Exploration Guarantee

We show that the DOPE algorithm provides a safe exploration guarantee, i.e., ⇡k 2 ⇧safe for all
k 2 [K] with high probability, where ⇡k is the exploration policy employed by DOPE in episode k.
This is achieved by the carefully designed pessimistic constraint of the DOP problem (10).

For any k  Ko, since ⇡k = ⇡b, and it is safe by Assumption 1. For k � Ko, (10) is feasible
according to Proposition 4. Since (⇡k, Pk) is the solution of (10), we have V ⇡k

c̄k (Pk) = V ⇡k

ĉk
(P k) +

⌘⇡k

k (Pk) + ✏⇡k

k (Pk)  C̄. This implies that V ⇡k

ĉk
(Pk) + ⌘⇡k

k (Pk)  C̄ � ✏⇡k

k (Pk). We have that
V ⇡k

c (Pk)  V ⇡k

ĉk (Pk) + ⌘⇡k

k (Pk) under the good event, and hence, the above equation implies that
V ⇡k

c (Pk)  C̄� ✏⇡k

k (Pk), i.e., ⇡k satisfies a tighter constraint with respect to the model Pk. However,
it is not obvious that the policy ⇡k will be safe with respect to the true model P because V ⇡k

c (P ) may
be larger than V ⇡k

c (Pk) due to the change from Pk to P .

We, however, show that V ⇡k

c (P ) cannot be larger than V ⇡k

c (Pk) by more than ✏⇡k

k (Pk), i.e., V ⇡k

c (P )�
V ⇡k

c (Pk)  ✏⇡k

k (Pk). This will then yield that V ⇡k

c (P )  V ⇡k

c (Pk) + ✏⇡k

k (Pk)  C̄, which is the
true safety constraint. The key idea is in the design of the pessimistic cost function c̄k(·, ·) such that
its pessimistic effect will balance the change in the value function (from V ⇡k

c (Pk) to V ⇡k

c (P )) due to
the optimistic selection of the model Pk. We formally state the safety guarantee of DOPE below.
Proposition 5. Let {⇡k, k 2 [K]} be the sequence of policies generated by the DOPE algorithm.
Then ⇡k is safe 8k 2 [K], i.e., V ⇡k

c (P )  C̄, for all k 2 [K], with a probability greater than 1� 5�.

4.4 Regret Analysis

The regret analysis for most OFU style RL algorithms follows the standard approach of decomposing
the regret into two terms as Rk = V ⇡k

r (P ) � V ⇡⇤

r (P ) = (V ⇡k

r (P ) � V ⇡k

r (Pk)) + (V ⇡k

r (Pk) �
V ⇡⇤

r (P )), where Rk denotes the regret in episode k. The first term is the difference between
value functions of the selected policy ⇡k with respect to the true model P and optimistic model
Pk. Bounding this term is the key technical analysis part of most of the OFU algorithms for the
unconstrained MDP [21, 13] and also the CMDP [18]. In the standard OFU style analysis for the
unconstrained problem, since P 2 Pk for all k, it can be easily observed that (⇡⇤, P ) is a feasible
solution for the OFU problem (7) for all k 2 [K]. Moreover, since (⇡k, Pk) is the optimal solution in
kth episode, we get V ⇡k

r (Pk)  V ⇡⇤

r (P ). So, the second term will be non-positive, and hence can
be dropped from the regret analysis. However, in our setting, the second term can be positive since
(⇡⇤, P ) may not be a feasible solution of the DOP problem (10) due to the pessimistic constraint. This
necessitates a different approach for bounding the regret. Existing work [28] only considers optimism
in the objective cost, and hence their proof closely follows that of OptCMDP-Bonus algorithm in [18]
with pessimistic constraints. In analyzing the regret of DOPE, we need to handle the optimism in
objective cost as well as the model in regret terms, along with the pessimistic constraints. This make
the analysis particularly challenging. The full proof is detailed in the appendix.

5 Experiments

We now evaluate DOPE via experiments. We have two relevant metrics, namely, (i) objective regret,
defined in (3) that measures the optimality gap of the algorithm, and (ii) constraint regret, defined
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as
PK

k=1 max{0, V ⇡k

c (P )� C̄}, where ⇡k is the output of the algorithm in question at episode k.
This measures the safety gap of the algorithm. Our candidate algorithms are (i) OptCMDP, (ii)
AlwaysSafe, (iii) OptPessLP and (iv) DOPE, all described in the introduction. OptCMDP is expected
to show constraint violations, while the other three should show zero constraint regret. We consider
two environments here, with a third environment presented in the appendix. AlwaysSafe can directly
be used only with a factored CMDP, and only applies to the first environment presented. We simulate
both variants of this algorithm, referred to as AlwaysSafe ⇡T and AlwaysSafe ⇡↵, respectively [36].

Factored CMDP: We first consider a CMDP where the safety relavant features of the model can
be separated, as shown in [36]. This CMDP has states {1, 2, 3} arranged in a circle, and 2 actions
{1, 2} in each state, to move right or stay put, respectively. The transitions move the agent to its
right state with probability 1, if action 1 is taken. If action 2 is taken, it remains in the same state
with probability 1. Action 1 does not incur any objective cost or constraint cost. Action 2 incurs
an objective cost equals to the state number, and a constraint cost of 1. We choose episode length
H = 6, and constraint as C̄ = 3. The structure of this CMDP allows AlwaysSafe to extract a safe
baseline policy from it.

Media Streaming CMDP: Our second environment represents media streaming to a device from
a wireless base station, which provides high and low service rates at different costs. These service
rates have independent Bernoulli distributions, with parameters µ1 = 0.9, and µ2 = 0.1, where µ1

corresponds to the fast service. Packets received at the device are stored in a media buffer and played
out according to a Bernoulli process with parameter �. We denote the number of incoming packets
into the buffer as Ah, and the number of packets leaving the buffer Bh. The media buffer length is
the state and evolves as sh+1 = min{max(0, sh +Ah �Bh), N}, where N = 20 is the maximum
buffer length. The action space is {1, 2}, where action 1 corresponds to using the fast service. The
objective cost is r(s, a) = {s = 0}, while the constraint cost is c(s, a) = {a = 1}, i.e., we desire
to minimize the outage cost, while limiting the usage of fast service. We consider episode length
H = 10, and constraint C̄ = H

2 .

Experiment Setup: OptCMDP and OptPessLP algorithms have not been implemented earlier. For
accurate comparison, we simulate all the algorithms true to their original formulations of cost
functions and confidence intervals. Our experiments are carried out for 20 random runs, and averaged
to obtain the regret plots. For DOPE, we choose K0 to be as specified in Proposition 4. Full details
on the algorithm parameters and experiment settings are provided in Appendix E.

Baseline Policies: Both OptPessLP and DOPE require baseline policies. We select the baseline
policies as the optimal solutions of the given CMDP with a constraint C̄b = 0.2C̄. We choose the
same baseline policies for both the algorithms. This choice is to showcase the efficacy of DOPE,
despite starting with a conservative baseline policy.

Results for Factored CMDP: Fig. 1(a) shows the objective regret of the algorithms in this environ-
ment. OptCMDP has a good objective regret performance as expected, but shows constraint violations.
AlwasySafe fails to achieve Õ(

p
K) regret in the episodes shown for both variants, although the

⇡↵ variant has smaller regret as compared to the ⇡T variant. OptPessLP takes a long time to attain
p
K behavior, which means that is chooses the baseline policy for an extended period, and shows

high empirical regret. This suggests that reward optimism of OptPessLP is insufficient to balance the
pessimism in the constraint. DOPE not only achieves the desired Õ(

p
K) regret, but also does so

in fewer episodes compared to the other two algorithms. Furthermore, it has low empirical regret.
Fig. 1(b) shows that the constraint violation regret is zero for all the episodes of learning for all the
safe algorithms, while OptCMDP shows a large constraint violation regret.

Results for Media Streaming CMDP: Fig.2(a) compares the objective regret across algorithms.
The value of DOPE over OptPessLP is more apparent here. After a linear growth phase, the objective
regret of DOPE changes to a square-root scaling. OptPessLP has not explored sufficiently at this
point, and hence suffers high linear regret. Finally, OptCMDP also has square-root regret scaling, but
is fastest, since it is not constrained by safe exploration. Fig.2(b) compares the regret in constraint
violation for these algorithms. As expected, DOPE and OptPessLP do not violate the constraint,
while the OptCMDP algorithm significantly violates the constraints during learning.

Effect of Baseline Policy: We compare the objective regret of DOPE under different baseline policies
in Fig.1(c) and Fig.2(c). We see that less conservative (but safe) baselines result in lower regret, but
the difference is not excessive, implying that the exact baseline policy chosen is not crucial.
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(a) Objective Regret (b) Constraint Regret (c) DOPE Objective Regret, vary-
ing C̄b

Figure 1: Illustrating the Objective Regret and Constraint Regret for a Factored CMDP environment.

(a) Objective Regret (b) Constraint Regret (c) DOPE Objective Regret, vary-
ing C̄b

Figure 2: Illustrating the Objective Regret and Constraint Regret for the Media Streaming Environ-
ment.

Summary: DOPE has two valuable properties: (i) Faster rate of shift to
p
K behavior, since the

linear regret phase where it applies the baseline policy is relatively short, and (ii) Õ(
p
K) regret

with respect to optimal, which together mean that the empirical regret is lower than other approaches.

Limitations: Our goal is to find an RL algorithm with no constraint violation with high probability
in the tabular setting. Since safe exploration is a basic problem, we follow the usual approach in the
literature of first establishing the fundamental theory results for the tabular setting [21, 14, 6]. We
also note that most of the existing work on exploration in safe RL is in the tabular setting [18, 37, 28].
In our future work, we plan to employ the DOPE approach in a function approximation setting.

6 Conclusion

We considered the safe exploration problem in reinforcement learning, wherein a safety constraint
must be satisfied during learning and evaluation. Earlier approaches to constrained RL have proposed
optimism on the model, optimism on reward, and pessimism on constraints as means of modulating
exploration, but none have shown order optimal regret, no safety violation, and good empirical
performance simultaneously. We started with the conjecture that double optimism combined with
pessimism is the key to attaining the ideal balance for fast and safe exploration, and design DOPE that
carefully combines these elements. We showed that DOPE not only attains order-optimal Õ(

p
K)

regret without violating safety constraints, but also reduces the best known regret bound by a factor
of

p
|S|. Furthermore, it has significantly better empirical performance than existing approaches. We

thus make a case for adoption of the approach for real world use cases and extension to large scale
RL problems using function approximation.
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Societal Impact and Ethics Statement

Reinforcement learning has much potential for application to a variety of cyber-physical systems,
such as the power grid, robotics and other systems where guarantees on the operating region of
the system must be met. Our work provides a theoretical basis for the design of controllers that
can be applied in such scenarios. The approaches presented in the paper were tested on simulated
environments, and did not involve any human interaction. We do not see any ethical concerns with
our research approach.

A note of caution with our approach is that the policy generated is only as good as the training
environment, and many examples exist wherein the policy generated is optimal according to its
training, but violates basic truths known to human operators and could fail quite badly. Indeed, our
approach does not provide sample-path guarantees, and the system could well move into deleterious
states for a small fraction of the time, which might be completely unacceptable and trigger hard fail
safes, such as breakers in a power system. Understanding the right application environments with
excellent domain knowledge is hence needed before any practical success can be claimed.
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