
7 Scalability in the Number of Players and Actions

As opposed to a single agent with K arms, the number of action profiles is KN which explodes for
a large-scale network. Successive elimination (or UCB), even with no noise, requires the agents to
go over all KN possible action profiles. This search does not affect the computational complexity,
which is O (νnDE + SE) for agent n that computes DE parallel consensus steps and goes over a
list of SE action profiles. However, this exhaustive search does affect the scalability of the algorithm
since it factors the QoS regret. Intuitively, we would need E ≥ KN to find the optimal action profile
even with no noise, which creates delays where agents have to wait for their average reward to go
above their λn. Next, we discuss two mechanisms that improve the scalability of our algorithm.

7.1 Stability yields scalability

Fortunately, the dynamic nature of our problem inherently improves scalability. During a normal
operation of a stable system, only a small portion of agents have Re

n > 0. All other agents with
Re

n = 0 do not care about their reward during epoch e. This fact dramatically shrinks the set of action
profiles that can be optimal. For example, when an represents the “demand” of agent n, agents with
Re

n = 0 will trivially play an = 0 in the action profile that maximizes
∑N

n=1 bnR
e
nµn (a). Hence,

the mean performance of the algorithm is considerably better when the QoS vector is deep inside the
interior of the capacity region. This is often the case with the advertised QoS in applications since
the infrastructure, and therefore the capacity, is typically designed for peak demand.

This is also the case in our numerical simulations of Section 5, which we used in our implementation.
In the channel access game, if agent n has Re

n = 0, then the optimal action profile a∗
e for this epoch

has to satisfy a∗e,n = 0. If λ is a safe margin away from the boundary of the capacity region C (G),
then most agents will have Re

n = 0 most of the time. Therefore, the effective number of action
profiles is reduced to K |{n|Re

n>0}|. In the multitasking robots game, if agent n has Re
n = 0, then

the optimal action profile a∗
e has to satisfy a∗e,m ̸= n for all m. If λ is a safe margin away from the

boundary of C (G), then most agents will have Re
n = 0 most of the time. Therefore, the effective

number of action profiles is reduced to |{n | Re
n > 0}|N , given that the agents in {n | Re

n > 0}
broadcast their indices at the beginning of the epoch.

7.2 Restricting the search to a limited random subset of action profiles

Inspired by [33], to improve scalability, our agents confine their search to a random subset SE of
action profiles they distributedly pick. Hence, their performance depends on the best action profile
in SE . In Section 4, we bound the probability that SE does not include an ∆E-optimal action
profile for some ∆E > 0 (not needed by the algorithm). For this reason, our εE bound in (5) uses
m∗ ≜ min

α∈∆N
|A∗ (α)|, which is the minimal number of ∆E-optimal solutions of

∑N
n=1 αnµn (a),

over all α in the N -dimensional simplex ∆N . This m∗ is a worst-case bound for |A∗
e| in (12),

and statistically most simplex vectors α ∈ ∆N are not common. In large-scale systems, |A∗
e| is

typically large. If most QoS regrets are zero then the effective dimension of the problem shrinks,
making |A∗

e| large. If on the other hand almost all QoS regrets are non-zero, then αn = O
(

1
N

)
for

most n and
∑N

n=1 αnµn (a) is robust to changes in µn for a few values of n, so |A∗
e| is again large.

Furthermore, symmetry in the problem leads to large m∗. As a simple example, with N identical
resources as the actions all permutations are optimal and m∗ ≥ N !.

For finite T , we can choose E to optimize the tradeoff between εE (capacity region) and (2 + εE)E
(delay). A large E makes εE small and therefore enlarges the approximated capacity region CεE (G),
but increases the expected QoS regret, which amounts to the time an agent has to wait to get its “fair
share”. A small E minimizes this delay, but shrinks CεE (G). Given some statistical knowledge
about the game, we can minimize εE which improves both capacity and delay. This can be done by
estimating a lower bound on m∗ and using it to pick the smallest S0 such that εE is small enough
(see (5)). This does not require knowing the reward functions, since large N can give concentration
results on the sum of weighted rewards. An example is knowing the distribution of the random
locations of the agents without knowing the locations themselves. Nevertheless, our main result in
Theorem 2 does not require any knowledge of the game and holds for all E (that can be a function
of T ).
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8 Proof of Lemma 1

By definition

L (t+ 1)− L (t) =

N∑
n=1

b1,n max

{
0,

(
λnt−

t∑
τ=1

rn (τ) + λn − rn (t+ 1)

)}2

−
N∑

n=1

b1,n max

{
0,

(
λnt−

t∑
τ=1

rn (τ)

)}2

≜
N∑

n=1

b1,nBn. (14)

If λnt−
∑t

τ=1 rn (τ) + λn − rn (t+ 1) > 0 and λnt−
∑t

τ=1 rn (τ) > 0 then

Bn = (λn − rn (t+ 1))
2
+ 2 (λn − rn (t+ 1))

(
λnt−

t∑
τ=1

rn (τ)

)

+

(
λnt−

t∑
τ=1

rn (τ)

)2

−

(
λnt−

t∑
τ=1

rn (τ)

)2

=

(λn − rn (t+ 1))
2
+ 2 (λn − rn (t+ 1))

(
λnt−

t∑
τ=1

rn (τ)

)+

. (15)

If λnt−
∑t

τ=1 rn (τ) + λn − rn (t+ 1) ≤ 0 and λnt−
∑t

τ=1 rn (τ) ≤ 0 then

Bn = 0 ≤ (λn − rn (t+ 1))
2
= (λn − rn (t+ 1))

2
+

2 (λn − rn (t+ 1))

(
λnt−

t∑
τ=1

rn (τ)

)+

(16)

since
(
λnt−

∑t
τ=1 rn (τ)

)+
= 0 in this case.

If λnt−
∑t

τ=1 rn (τ) + λn − rn (t+ 1) > 0 and λnt−
∑t

τ=1 rn (τ) ≤ 0 then

0 ≤ λnt−
t∑

τ=1

rn (τ) + λn − rn (t+ 1) ≤ λn − rn (t+ 1)

=⇒ Bn ≤ (λn − rn (t+ 1))
2
=

(λn − rn (t+ 1))
2
+ 2 (λn − rn (t+ 1))

(
λnt−

t∑
τ=1

rn (τ)

)+

(17)

since
(
λnt−

∑t
τ=1 rn (τ)

)+
= 0 in this case.

If λnt−
∑t

τ=1 rn (τ) + λn − rn (t+ 1) ≤ 0 and λnt−
∑t

τ=1 rn (τ) > 0 then

0 ≤

(
λnt+ λn −

t∑
τ=1

rn (τ)− rn (t+ 1)

)2

=

(
λnt−

t∑
τ=1

rn (τ)

)2

+ (λn − rn (t+ 1))
2
+ 2 (λn − rn (t+ 1))

(
λnt−

t∑
τ=1

rn (τ)

)+

(18)
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and so

Bn = −

(
λnt−

t∑
τ=1

rn (τ)

)2

≤

(λn − rn (t+ 1))
2
+ 2 (λn − rn (t+ 1))

(
λnt−

t∑
τ=1

rn (τ)

)+

. (19)

We conclude that in any case, for all n,

Bn ≤ (λn − rn (t+ 1))
2
+ 2 (λn − rn (t+ 1))

(
λnt−

t∑
τ=1

rn (τ)

)+

. (20)

Hence we can bound the drift in the Lyapunov function as follows

L (t+ 1)− L (t) ≤
N∑

n=1

b1,n (λn − rn (t+ 1))
2
+ 2

N∑
n=1

b1,n (λn − rn (t+ 1))

(
λnt−

t∑
τ=1

rn (τ)

)+

≤
(a)

1 + 2

N∑
n=1

b1,nλn

(
λnt−

t∑
τ=1

rn (τ)

)+

− 2

N∑
n=1

b1,nrn (t+ 1)

(
λnt−

t∑
τ=1

rn (τ)

)+

=

1 + 2

N∑
n=1

b1,nλnRn (t)− 2

N∑
n=1

b1,nrn (t+ 1)Rn (t) (21)

where (a) uses that 0 ≤ rn (a) ≤ 1, 0 ≤ λn ≤ 1 and
∑N

n=1 b1,n = 1.

9 Proof of Lemma 2

Let λmax = max
n

λn. For all Te ≤ t ≤ Te + E − 1 we have

max
a

N∑
n=1

b1,nµn (a)R
e
n = max

a

[
N∑

n=1

b1,nµn (a) (Rn (t) +Re
n −Rn (t))

]
≥

max
a

N∑
n=1

b1,nµn (a)Rn (t)−max
a

[
N∑

n=1

b1,nµn (a) (Rn (t)−Re
n)

]
≥
(a)

N∑
n=1

b1,nµn (a
∗ (t+ 1))Rn (t)−

N∑
n=1

b1,nλnE ≥
N∑

n=1

b1,nµn (a
∗ (t+ 1))Rn (t)− λmaxE (22)

where in (a) we used that µn (a) ≤ 1 and that for all n, Rn (t) − Re
n ≤ λn (t− Te) ≤ λnE.

Summing over all t we obtain

T−1∑
t=0

N∑
n=1

b1,nµn

(
a∗
e(t)

)
Re(t)

n ≥
T−1∑
t=0

N∑
n=1

b1,nµn (a
∗ (t+ 1))Rn (t)− λmaxET. (23)

10 Proof of Lemma 3

At turn t during epoch e, each agent knows the value of
∑N

n=1 b1,nR
e
nrn (a (t− 2DE)), which

serves as the effective reward of the team, thinking of the action profiles as the arms of a single-
agent multi-armed bandit problem. Define Te = {Te, . . . , Te + E − 1}. We define the expected
effective reward of action profile a as

µ (a) =

N∑
n=1

b1,nR
e
nµn (a) . (24)
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Let rmax =
∑N

n=1 b1,nR
e
n, which bounds

∑N
n=1 b1,nR

e
nrn (a (t)) for all t in epoch e. With a slight

abuse of notation, we use vea (t) to denote the number of visits to action profile a during epoch e, and
up to turn t. We also define the estimated expected reward of action profile a at turn t > Te + 2DE

as

µ̂t (a) =

∑t−2DE−1
τ=Te

1{a(τ+1)=a}
∑N

n=1 b1,nR
e
nrn (a (τ + 1))

vea (t− 2DE)
. (25)

Let ∆E = E− 1
2 logE. Then the set of approximately optimal action profiles can also be written as

A∗
e = {a | µ (a) ≥ µ (a∗

e)− rmax∆E} . (26)

Define the regret of approximating a∗
e by

RE ≜
Te+E−1∑
t=Te

N∑
n=1

b1,nR
e
n (µn (a

∗
e)− rn (a (t+ 1))) (27)

and note that this is not the QoS regret.

10.1 Taking a random subset of action profiles

Define the good event AG that happens when the subset SE of SE = ⌈S0 logE⌉ action profiles
that the agents pick includes an approximately optimal action profile a ∈ A∗

e . Note that AG is
randomized at the beginning of epoch e and depends on the QoS regret values {Re

n} that are given
by Fe. Then

P (Ac
G | Fe) =

(a)

(
1− |A

∗
e|

KN

)⌈S0 logE⌉

= e
⌈S0 logE⌉ log

(
1−|A∗

e |
KN

)
≤ E−S0|A∗

e |
KN (28)

where (a) follows since the action profiles in the subset are chosen independently and uniformly at
random, so each has a probability of |A∗

e |
KN to be approximately optimal. In the trivial case where

SE = E ≤ ⌈S0 logE⌉, the bound on P (Ac
G | Fe) vanishes exponentially in E instead. In the other

trivial case where SE = KN , SE is non-random and includes all action profiles, so P (Ac
G | Fe) =

0.

10.2 Regret of successive elimination with fixed delay

Algorithm 1 is a distributed algorithm in which all agents effectively run together a single-agent
successive elimination on a random subset of action profiles as the set of arms, with a deterministic
delay of 2DE turns at epoch e. Next, we follow the proof of Theorem 2 in [29], with q = 1,
with slight modifications. We note that the analysis in [29] holds for general stochastic delays,
while there are only fixed delays in our case. We want to bound the regret of ∆E-optimal action
profiles (i.e., arms) separately. The effective maximal reward of our successive elimination depends
on the QoS regrets and is not bounded by a constant over epochs. Hence, using a bound of the
form

∑N
n=1 b1,nR

e
n is crucial to our analysis since it can be bounded by

∑N
n=1 b1,nRn (t), up to an

approximation error, as we do in the proof of Theorem 2. However, since
∑N

n=1 b1,nR
e
n changes

between epochs, the agents need to communicate to obtain it.

Define the confidence interval of action profile a as

ρa (t) =

√
2r2max logE

max {vea (t− 2DE) , 1}
(29)

and define the clean event as

Ac = {|µ̂t (a)− µ (a)| ≤ ρa (t) , ∀a ∈ SE , ∀t ∈ Te} . (30)
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Let ∆a ≜ µ (a∗
e) − µ (a), and let Ra be the accumulated regret from all the turns where agents

played a. We have

E {RE | AG,Fe} ≤

(1− P (Ac)) rmaxE + P (Ac)
∑
a∈SE

E {Ra | Ac, AG,Fe} ≤
(a)

2rmaxE
−1SE +

∑
a∈(A∗

e)
c∩SE

E {Ra | Ac, AG,Fe}+
∑

a∈A∗
e∩SE

E {Ra | Ac, AG,Fe} ≤
(b)

2rmaxE
−1SE +

∑
a∈(A∗

e)
c∩SE

E {∆av
e
a (TE + E − 1) | Ac, AG,Fe}+ rmax∆EE (31)

where (a) follows from Hoeffding’s inequality on 1−P (Ac) (see [22], Page 158) along with a union
bound on the SE action profiles. Inequality (b) follows by definition of A∗

e .

Let ne
a (t) be the number of times action profile a was played during epoch e and between turn

t − 2DE and turn t (not including t). Then at turn t, if action profile a was visited vea (t) times,
we only know vea (t)− ne

a (t) reward values due to the delay. Under the clean event Ac, an optimal
action profile a∗

e is never eliminated. In the following, let t ≤ TE + E − 1 be the last turn where a
non-optimal action profile a was not eliminated. Then for this t

µ (a) + 2ρa (t) ≥
(a)

µ̂t (a) + ρa (t) ≥
(b)

µ̂t (a
∗
e)− ρa∗

e
(t) ≥

(c)
µ (a∗

e)− 2ρa∗
e
(t) (32)

where (a) uses that under the clean event, µ (a) ≥ µ̂t (a)− ρa (t) and (b) uses that action profile a
was not eliminated. Inequality (c) uses that under the clean event µ (a∗

e) ≤ µ̂t (a
∗
e) + ρa∗

e
(t).

Hence

∆a = µ (a∗
e)− µ (a) ≤ 2

(
ρa (t) + ρa∗

e
(t)
)
=

2

√
2r2max logE

max {vea (t− 2DE) , 1}
+ 2

√√√√ 2r2max logE

max
{
vea∗

e
(t− 2DE) , 1

} ≤
(a)

4

√
2r2max logE

max {vea (t− 2DE)− 1, 1}
=
(b)

4

√
2r2max logE

max {vea (t)− 1− ne
a (t) , 1}

(33)

where (a) uses that vea∗
e
(t− 2DE) ≥ vea (t− 2DE) − 1 since we are going over all the non-

eliminated action profiles in a round-robin manner, and (b) uses that vea (t− 2DE) = vea (t)−ne
a (t).

Therefore, (33) yields that for every non-optimal action profile a

vea (TE + E − 1)− ne
a (TE + E − 1)− 1 ≤ 32r2max logE

∆2
a

. (34)

Plugging in (34) in (31), we obtain

E {RE | AG,Fe} ≤

2rmaxE
−1SE +

∑
a∈(A∗

e)
c∩SE

(
∆a

32r2max logE

∆2
a

+∆a (ne
a (TE + E − 1) + 1)

)
+ rmax∆EE ≤

(a)

rmax

(
2
SE

E
+ SE

32 logE

∆E
+ 2DE + SE +∆EE

)
≤
(b)(

33 (S0 + 1) logE
√
E + 2DE

) N∑
n=1

b1,nR
e
n (35)

where (a) uses ∆a ≥ rmax∆E for all a ∈ (A∗
e)

c, and also that ∆a ≤ rmax and then that∑
a∈(A∗

e)
c∩SE

ne
a (TE + E − 1) ≤ 2DE which follows since we played exactly 2DE action pro-

files between turn TE + E − 1 − 2DE and turn TE + E − 1, and in the worst case they are all
in (A∗

e)
c. Inequality (b) uses that rmax =

∑N
n=1 b1,nR

e
n, 2SE

E + SE ≤
√
ESE for E ≥ 3 and

SE ≤ S0 logE + 1.
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10.3 Concluding the proof

We can now conclude by bounding the expected regret RE as follows

E

{
Te+E−1∑
t=Te

N∑
n=1

b1,nR
e
n (µn (a

∗
e)− rn (a (t+ 1))) | Fe

}
=

E {RE | AG,Fe}P (AG | Fe) + E {RE | Ac
G,Fe}P (Ac

G | Fe) ≤
(a)(

33 (S0 + 1) logE
√
E + 2DE + E1−S0|A∗

e |
KN

) N∑
n=1

b1,nR
e
n (36)

where in (a) we used that E {RE | Ac
G,Fe} ≤

[∑N
n=1 b1,nR

e
n

]
E, the bound in (28), and (35).

11 Proof of Theorem 2

Throughout the proof, we use ET to denote the epoch length, to emphasize that it can depend on T .
We want to bound the total drift of the Lyapunov function, E {L (T )− L (0)}. Define the filtration

F (t) = σ
({

a (τ) , {zn (τ)}n∈N | τ ≤ t
})

. (37)

Hence Rn (t) is F (t)-measurable for all n and t. Let

εET
=

33 (S0 + 1) logET√
ET

+ 2
DET

ET
+ E

−
S0 min

α∈∆N
|A∗(α)|

KN

T (38)

where min
α∈∆
|A∗ (α)| is the minimal number of action profiles that approximately maximize∑N

n=1 αnµn (a), taken over all α in the N -dimensional simplex (see (4)).

Recall that

δ (λ, ET ) = max
p∈∆KN

min
n

(∑
a

p (a)µn (a)− λn − εET

)
. (39)

11.1 Proof Sketch

Lemma 3 shows that Algorithm 1 incurs an error of εEE
∑N

n=1 b1,nR
e
n for some εE that vanishes

with E. However, an error of εEE
∑N

n=1 b1,nR
e
n depends on the QoS regrets Rn (t). Hence,

we bound εEE
∑N

n=1 b1,nR
e
n with εE

∑N
n=1 b1,n (1− λn)E

2 +
∑Te+E−1

t=Te

∑N
n=1 b1,nεET

Rn (t),
which follows since in the worst case Re

n is lagging behind Rn (t) by (1− λn)E for all t in epoch
e. Summing all the errors, we get the bound in (7) on

∑T−1
t=0

∑N
n=1 b1,nE {Rn (t)}. For λ ∈

CεE (G), this bound implies that all agents have an O (1) empirical average expected QoS regret,
over t = 1, . . . , T . We then prove that if λ ∈ CεE (G), then E {Rn (t)} = O

(√
ET t

)
for all t

and n, by arguing that if E {Rn (t)} is too large for any t and n, it would violate the bound on∑T−1
t=0

∑N
n=1 b1,nE {Rn (t)} since E {Rn (t− τ)} for the recent turns is also large. Finally, by

taking ET to be increasing sublinearly with T , the latter bound implies that for large enough T , we
have for all λ ∈ C (G) both 1

T

∑T−1
t=0 E {Rn (t)} = O (ET ) for all n and E {Rn (t)} = O

(√
tET

)
for all t and n.

11.2 Lower bound on the weighted sum of rewards of a max-weight matching

Let λmin, λmax be the minimal and maximal values of λ, respectively. If (λ1, . . . , λN ) ∈ CεET
(G)

then δ (λ, ET ) > 0, and by definition there exists a policy that assigns a probability function p (a)
to all action profiles a ∈ A such that for all n:

Ep {µn (a)} ≥ λn + δ (λ, ET ) + εET
. (40)
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However, the max-weight matching a∗ (t+ 1) = argmax
a

∑N
n=1 b1,nRn (t)µn (a) minimizes the

drift among all policies, even if they take into account Rn (t). Hence

N∑
n=1

b1,nRn (t)E {µn (a
∗ (t+ 1)) | F (t)} ≥

N∑
n=1

b1,nRn (t)Ep {µn (a) | F (t)} =
(a)

N∑
n=1

b1,nRn (t)Ep {µn (a)} ≥
N∑

n=1

(λn + δ (λ, ET ) + εET
) b1,nRn (t) (41)

where (a) follows since p is independent of the past actions (and the QoS regrets).

11.3 Additive error of replacing Rn (t) by R
e(t)
n

The QoS regret of agent n at turn t cannot be too far from its QoS regret at the beginning of epoch
e = e (t):

Rn (t) ≥ Re
n −

t∑
τ=Te

(rn (a (τ))− λn) ≥ Re
n − (1− λn)ET , (42)

so by summing over all turns in epoch e, we obtain

Te+ET−1∑
t=Te

b1,nRn (t) ≥ b1,nETR
e
n − b1,n (1− λn)E

2
T (43)

which yields

b1,nR
e
nεET

ET ≤ b1,n (1− λn) εET
E2

T +

Te+ET−1∑
t=Te

b1,nεET
Rn (t) . (44)

Since 0 ≤ rn (a (t)) ≤ 1, we get from (42) that

T−1∑
t=0

N∑
n=1

b1,nE
{
rn (a (t+ 1))

(
Rn (t)−Re(t)

n

)}
≥

− ET

T−1∑
t=0

N∑
n=1

b1,n (1− λn)E {rn (a (t+ 1))} ≥ − (1− λmin)ETT. (45)

11.4 Bounding the sum of QoS regrets

We can now bound from below the expected weighted reward as follows:

T−1∑
t=0

N∑
n=1

b1,nE {Rn (t) rn (a (t+ 1))} =

T−1∑
t=0

N∑
n=1

(
b1,nE

{
Re(t)

n rn (a (t+ 1))
}
+ b1,nE

{
rn (a (t+ 1))

(
Rn (t)−Re(t)

n

)})
≥
(a)

T−1∑
t=0

N∑
n=1

b1,nE
{
µn

(
a∗
e(t)

)
Re(t)

n

}
− (1− λmin)ETT − εET

ET

⌈
T

ET

⌉∑
e=1

N∑
n=1

b1,nE {Re
n} ≥

(b)

T−1∑
t=0

N∑
n=1

b1,nE {Rn (t)µn (a
∗ (t+ 1))}−(1 + λmax − λmin)ETT−εET

ET

⌈
T

ET

⌉∑
e=1

N∑
n=1

b1,nE {Re
n}

(46)
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where (a) uses (45) and Lemma 3 with the tower rule on E
{
· | Fe(t)

}
. We also used the definition

of εET
in (38), along with the fact that |A∗

e| ≥ min
α∈∆
|A∗ (α)| for all e. Inequality (b) uses Lemma 2.

Next, by taking the expectation on Lemma 1 we obtain

E {L (T )− L (0)} =
T−1∑
t=0

E {L (t+ 1)− L (t)} ≤

2T + 2

T−1∑
t=0

N∑
n=1

λnb1,nE {Rn (t)} − 2

T−1∑
t=0

N∑
n=1

b1,nE {Rn (t) rn (a (t+ 1))} ≤
(a)

2T + 2

T−1∑
t=0

N∑
n=1

λnb1,nE {Rn (t)} − 2

T−1∑
t=0

N∑
n=1

b1,nE {Rn (t)µn (a
∗ (t+ 1))}

+ 2 (1 + λmax − λmin)ETT + 2ET εET

⌈
T

ET

⌉∑
e=1

N∑
n=1

b1,nE {Re
n} ≤

(b)

2T − 2 (δ (λ, ET ) + εET
)

T−1∑
t=0

N∑
n=1

b1,nE {Rn (t)}

+ 2 (1 + λmax − λmin)ETT + 2ET εET

⌈
T

ET

⌉∑
e=1

N∑
n=1

b1,nE {Re
n} ≤

(c)

2T − 2δ (λ, ET )

T−1∑
t=0

N∑
n=1

b1,nE {Rn (t)}+ 2 (1 + λmax − λmin)ETT + 2 (1− λmin)ETTεET

(47)

where (a) uses (46), (b) uses (41) and (c) uses (44).

Next, (47) implies

2δ (λ, ET )

T−1∑
t=0

N∑
n=1

b1,nE {Rn (t)} ≤

2T + 2 (1 + λmax − λmin)ETT + 2 (1− λmin) εET
ETT + E {L (0)− L (T )} ≤

(a)

2T + 2 (1 + λmax − λmin)ETT + 2 (1− λmin) εET
ETT (48)

where (a) uses that L (0) = 0 and L (T ) ≥ 0.

We conclude that if (λ1, . . . , λN ) ∈ CεET
(G) then

1

T

T−1∑
t=0

N∑
n=1

b1,nE {Rn (t)} ≤
1 + ((1 + λmax − λmin) + εET

(1− λmin))ET

δ (λ, ET )
. (49)

11.5 Sublinear Expected QoS Regret

For t ≤ ET we have E {Rn (t)} ≤ λnt ≤ λn

√
ET t for all n. Now, assume that for some t > ET

and some n we have that E {Rn (t)} ≥M for some M > 0. Then, using that Rn (t)−Rn (t− 1) ≤
λn, we know that

E {Rn (t− 1)} = E {Rn (t)}+ E {Rn (t− 1)−Rn (t)} ≥M − λn (50)

and iterating over (50) for t− τ times we get that for τ ≥ t−
⌊

M
λn

⌋
E {Rn (τ)} ≥M − (t− τ)λn. (51)
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Therefore,

t∑
τ=0

E {Rn (τ)} ≥
t∑

τ=t−⌊ M
λn
⌋
E {Rn (τ)} ≥M

(⌊
M

λn

⌋
+ 1

)
− λn

⌊ M
λn
⌋∑

τ=0

τ =

M

(⌊
M

λn

⌋
+ 1

)
− λn

⌊
M
λn

⌋(⌊
M
λn

⌋
+ 1
)

2
=

(⌊
M

λn

⌋
+ 1

)(
M − λn

2

⌊
M

λn

⌋)
≥ M2

2λn
. (52)

We know that if (λ1, . . . , λN ) ∈ CεET
(G), then δ (λ, ET ) > 0 and, by (48), there exists a constant

B0 > 0 such that

b1,n

t∑
τ=0

E {Rn (τ)} ≤
t∑

τ=0

N∑
m=1

b1,mE {Rm (τ)} ≤ B0ET t (53)

where we used that 0 < b1,m ≤ 1 for all m, which only depends on the communication matrix
W and DE . We also used that εET

decreases with T , and hence δ (λ, ET ) increases with T . Thus,
ET t

δ(λ,ET ) = O (ET t).

Hence, (52) implies that for any M such that M2

2λn
> B0

b1,n
ET t, the assumption that E {Rn (t)} ≥M

contradicts (53). Thus, we must have

M2

2λn
≤ B0

b1,n
ET t =⇒M ≤

√
2λnB0

b1,n
ET t. (54)

Therefore, E {Rn (t)} ≤ B1

√
ET t for some constant B1 > 0, and so for all T and every n,

E {Rn (T )}
T

≤ B1

√
ET

T
(55)

which, if ET

T → 0 as T →∞, implies that

lim
T→∞

E {Rn (T )}
T

= 0. (56)

If ET = E instead (i.e., the epoch size is constant with respect to T ), and (λ1, . . . , λN ) ∈ CεE (G),
then by taking the limit of (53) for t = T − 1 and summing over n, we conclude that

lim sup
T→∞

1

T

T−1∑
t=0

N∑
n=1

E {Rn (t)} <
N∑

n=1

B0E

b1,n
<∞. (57)
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12 Time-Varying Stochastic Communication Graph

In this section, we extend our results to the case of a time-varying communication graph. In practice,
agent mobility, obstacles, and link failures all induce a time-varying communication graph that hin-
ders the coordination between the agents, so proving QoS regret guarantees for this case is important
to establish the robustness of our distributed algorithm.

This scenario requires slight modifications to our algorithm, as detailed in Algorithm 2. Obviously,
Algorithm 2 can be used in the special case of a fixed communication graph as well. However, for a
fixed communication graph, the tuning of Algorithm 1 results in better performance overall.

Instead of a fixed communication graph, we assume the following:

Definition 5. We consider a sequence of graphs G (t) = (N , E (t)) where the set of edges E (t)
is stochastic and i.i.d. over time, and G (t) takes values in {G1, . . . , GM} for some M > 0. We
assume that

⋃M
i=1 Gi is connected, where the union is over the sets of edges. The communication

matrix at turn t is W (t) = Wi if G (t) = Gi, such that wi,n,m > 0 if and only if Gi,n,m = 1 and∑N
m=1 wi,n,m = 1 for all n. We also assume that the sequence G (t) is independent of the sequence

zn (t) = rn (a (t))− µn (a (t)) for all n.

Extending our result to this case of time-varying stochastic graphs involves several interesting tech-
nical issues. First, with a stochastic communication graph, the coefficients in our weighted sum
of rewards are no longer constant. We define b1,n (t) as the n-th element in the first row of∏t−DE

τ=t−2DE+1 W (τ). Since W (t) is i.i.d., we also use the notation E {b1,n} = E {b1,n (t)} to
emphasize that E {b1,n (t)} is fixed with time. While G (t) is i.i.d. and therefore memoryless, our
weighted sum of rewards

∑N
n=1 b1,n (t+ 2DE)Rn (t) rn (a (t+ 1)) is no longer memoryless. This

follows since b1,n (t) and b1,n (t− 1) both depend on G (t−DE − 1) , . . . , G (t− 2DE + 1). As a
result, bounding the error probability of the clean event, where all the estimated rewards are within
their confidence intervals, requires special attention. We use the fact that b1,n (t) is independent of
b1,n (t−DE) to obtain an alternative error bound, that requires a larger confidence interval.

To obtain a bound on the maximal effective reward
∑N

n=1 b1,n (t+ 2DE)Rn (t) rn (a (t+ 1)) of
the successive elimination step, agents in Algorithm 2 propagate the maximal initial QoS regret Re

m
they received from others, for the first DE turns of every epoch. Agents append the symbol ’-1’ to
Re

m to distinguish these messages from the consensus averaging messages.

With our time-varying communication graph model, G (t) does not have to be connected and may
even be disconnected for every t. This fact complicates the communication step of Algorithm 2,
which can now fail for three different reasons, as we detail next.
Remark 1. For the communication step of Algorithm 2 to be successful, the following conditions
have to hold:

1. E {b1,n (t)} ≥ κ0 > 0 for all n, for a constant κ0 that is independent of E. Without this,
our expected QoS regret bound does not include the QoS regrets of all agents.

2. The messages from agent 1 will reach all other agents in no more than DE turns with high
probability. Without this, agents do not agree on their effective rewards and do not compute
the same estimated expectations, LCB or UCB for the “arms”.

3. R̃e
n = R̃e

m for all n,m. At the beginning of epoch e, agents agree on the value of rmax =
max
n

Re
n that they all need to compute their confidence radius.

To bound the regret in learning an approximately optimal weighted sum of rewards, we have to
prove that E {b1,n (t)} > 0 for all n and to bound the probability of the two failure events above.
The analysis suggests that we now have to pick DE =

⌈
S1 log

2 E
⌉
, as opposed to the constant

DE = d (G) that is sufficient for a fixed communication graph. This makes the communication
overhead of Algorithm 2 O

(
log2 E

)
per agent per turn. This increased communication overhead

reflects the fact that with a time-varying graph that does not have to be connected every turn, in the
worst case more attempts and turns are needed to deliver the same amount of information.

Finally, we need to redefine the Lyapunov function, which now has time-varying coefficients.
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Definition 6. Define the matrix B (t) =
∏t−DE

τ=t−2DE+1 W (τ), and denote its (i, j) element by
bi,j (t). Define the following Lyapunov function such that L (0) = 0 and for all t ≥ 1

L (t) ≜
N∑

n=1

b1,n (t+ 2DE)R
2
n (t) . (58)

We prove the following result, generalizing Theorem 2.

Theorem 3. Let G be a multiplayer multi-armed bandit game, played for T turns. Let λ ∈ C (G).
Let the agents run Algorithm 2 with epochs of length E, a random subset of action profiles of size
SE ≤ ⌈S0 logE⌉ for some S0 > 0 and a delay of DE =

⌈
S1 log

2 E
⌉

for some S1 > 0 such that
DE ≥ N . Assume that G (t) is an i.i.d. sequence taking values in {G1, . . . , GM} such that

⋃M
i=1 Gi

is connected. Assume that there is a communication matrix Wi corresponding to Gi for every i (see
Definition 5). Define the set of approximately optimal action profiles

A∗ (α) =

{
a |

N∑
n=1

αnµn (a) ≥ max
a′

N∑
n=1

αnµn (a
′)− logE

√
DE

E

}
(59)

and

εE =
1

κ1

[√
2S1 (64S0 + 1) log2 E√

E
+

14S0S1 log
3 E

E

+ E1−S1κ0 logE + E−
S0 min

α∈∆N
|A∗(α)|

KN

]
(60)

for some constants κ0, κ1 > 0 that depend on the distribution of W (t). Define

δ (λ, E) = max
p∈∆KN

min
n

(∑
a

p (a)µn (a)− λn − εE

)
. (61)

If λ ∈ CεE (G) then the QoS regrets (Definition 2) satisfy

1

T

T−1∑
t=0

N∑
n=1

E {b1,n}E {Rn (t)} ≤
1 + (2 + εET

)λmaxET

δ (λ, ET )
(62)

where E {·} is over the rewards, the communication graphs, and the random subsets, and E {b1,n} ≥
κ0 > 0 for all n, for a constant κ0 that is independent of E.

Therefore, for any λ ∈ CεE (G), Algorithm 2 achieves O (1) empirical average expected QoS regret
for all n ,i.e., lim sup

T→∞

1
T

∑T−1
t=0

∑N
n=1 E {Rn (t)} <∞ (strong stability) and E {Rn (t)} = O

(√
t
)

for all n, t. Furthermore, if we pick ET such that ET → ∞ and ET

T → 0 as T → ∞, then
for any λ ∈ C (G), Algorithm 2 achieves 1

T

∑T−1
t=0

∑N
n=1 E {Rn (t)} = O (ET ) for all n and

E {Rn (t)} = O
(√

ET t
)

for all n, t (mean rate stability).
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Algorithm 2 Dynamic Multiplayer Bandit QoS Learning (time-varying communication graph)

Initialization: Let e, l = 0. Let W (t) be a sequence of communication matrices that follows
Definition 5. Let SE = min

{
⌈S0 logE⌉ ,KN , E

}
and DE =

⌈
S1 log

2 E
⌉

for some S0, S1 > 0.
Input: λn ≥ 0 and agent index n
For each e ≥ 0, each agent n runs:

1. Compute Re
n = max

{
0, λnt−

∑t
τ=1 rn (a (τ))

}
. ▷ QoS regret for epoch e

2. Randomize actions a1n, . . . , a
SE
n , uniformly and independently over {0, . . . ,K − 1}. Store

their indices in the ordered set B = {1, . . . , SE}, where B (l) is the l-th element.

3. Set vi = µ̂i = 0 for all i = 1, . . . , SE and R̃max,n = Re
n.

4. For E turns (from t = Te to t = Te + E − 1):

(a) Play an (t) = a
B(l)
n and receive reward rn (a (t)). ▷ action step

(b) If Te ≤ t ≤ Te +DE − 1 then receive
(
R̃max,m,−1

)
from all neighbors m ∈ Nn,

set R̃max,n = max
m∈Nn

R̃max,m and broadcast
(
R̃max,n,−1

)
. ▷ rmax initialization

(c) Set θ0n = rn (a (t))Re
n and θ0m = 0 for all m ̸= n.

(d) Broadcast {(θτn, τ)}
DE−1
τ=0 to neighbors and receive {(θτm, τ)}DE−1

τ=0 from neighbors.

(e) Set θτ+1
n =

∑N
m=1 wn,m (t) θτm, ∀τ = 0, . . . , DE − 1. ▷ DE parallel consenus steps

(f) If you know θτ1 for DE ≤ τ ≤ 2DE − 1 then broadcast (θτ1 , τ). ▷ reaching agreement
(g) If you receive (θτ1 , τ) for DE ≤ τ ≤ 2DE − 1 then set S (t− τ) = θτ1 .
(h) Let k = B (l − 2DE) and update vk ← vk + 1.

(i) Compute the confidence radius ρk =

√
2R̃2

max,nDE logE

max{vk,1} and

µ̂k ←
(
1− 1

vk

)
µ̂k +

S (t− 2DE)

vk
, Lk = µ̂k − ρk , Uk = µ̂k + ρk

(j) If l = |B| then delete from B all i such that Ui < max
j∈B

Lj , and set l = 0. ▷ elimination

(k) update l← l + 1.
5. Update e← e+ 1

End

12.1 Proof of Theorem 3

In the following, we explain how to modify the proofs of Lemma 3 and Theorem 2 for stochastic
time-varying communication graphs. Note that Lemma 1 still holds with b1,n (t+ 2DE) replacing
b1,n, and Lemma 2 holds with E {b1,n (t)} replacing b1,n.

12.1.1 Communication failure events

Define Te = [Te, Te + E − 1]. The two communication failure events detailed in Remark 1 are
avoided if a message from agent 1 reaches all other agents in no more than DE turns, and if agent
1 receives a message from all other agents in no more than DE turns. For the learning in the epoch
to succeed, we have to avoid a communication failure of one of the two types for almost E times
- once for the initialization of rmax = max

n
Re

n, and E − 2DE times for the first E − 2DE turns

for which the agents are able to obtain
∑N

n=1 b1,n (t+ 2DE)Rn (t) rn (a (t+ 1)) before the end
of the epoch. We define SC as the communication success event for epoch e, where none of these
communication failures occurred.

Let Wi be the communication matrix associated with Gi (see Definition 5). Since
⋃M

i=1 Gi is con-
nected and each Gi has self-loops, it means that

⋃M
i=1 Gi has a path of length N between any two of
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the N nodes. Hence, there exists a sequence of length N3 such that
∏N3

j=1 Wp(j) has only positive
elements, where p (j) ∈ {1, . . . ,M} is the type of the j-th graph in the sequence. Starting from
turn t, there is some probability pC > 0 that the next N3 graphs are Wp(1), . . . ,Wp(N3). We denote
this event by Ψ (t). In t− 2DE + 1 ≤ τ ≤ t−DE , we have at least

⌊
DE

N3

⌋
independent attempts to

generate this sequence. Hence for some shift 1 ≤ l0 ≤ N

P

(
t−DE⋂

τ=t−2DE+1

Ψ c (τ)

)
≤ P


⌊

DE
N3

⌋
−1⋂

j=0

Ψ c
(
jN3 + l0

) ≤ (1− pC)

⌊
DE
N3

⌋
≤ E−S1κ0 logE (63)

where κ0 > 0 is a constant that depends on the distribution of W (t).

Hence if Ψ (τ) occurred for some t − 2DE + 1 ≤ τ ≤ t −DE then thanks to positive diagonal of
W (t),

∏t−DE

τ=t−2DE+1 W (τ) has only positive elements. This implies that a message from agent 1
will reach all other agents in this period of time, and messages from all other agents will reach agent
1 in this period of time. We can therefore obtain from the union bound that

1− P (SC) ≤ Emax
t∈Te

P

(
t−DE⋂

τ=t−2DE+1

Ψ c (τ)

)
≤ E1−S1κ0 logE . (64)

12.1.2 E {b1,n (t)} is bounded from below by a positive constant

Let U = E {W (t)}, which is fixed in time since W (t) is i.i.d.. We have

E

{
t−DE∏

τ=t−2DE+1

W (τ)

}
=

t−DE∏
τ=t−2DE+1

E {W (τ)} = UDE . (65)

Since U = E {W (t)} is a weight matrix of the connected graph
⋃M

i=1 Gi, then Uq0 has only positive
elements for some integer 0 < q0 ≤ N ≤ DE (the diameter of this graph). Since U is stochastic,
so is UDE−q0 , and hence the minimal element of UDE = UDE−q0Uq0 is at least as large as the
minimal element of Uq0 . Therefore, we conclude that for some positive constant κ1 that depends on
the distribution of W (t):

E {b1,n (t)} = E


[

t−DE∏
τ=t−2DE+1

W (τ)

]
1,n

 ≥ min
i,j

Uq0
i,j ≜ κ1 > 0. (66)

12.1.3 Clean event for stochastic “arms” with memory

Define the filtration

Fe = σ
({

a (t) , {zn (t)}n∈N | t < Te

})
(67)

so Re
n = Rn (Te − 1) is Fe-measurable. We define the effective reward at turn t by

r (a (t)) =

N∑
n=1

b1,n (t+ 2DE − 1)Re
nrn (a (t)) . (68)

Then, given a (t) = a, the expectation of r (a) with respect to both b1,n (t+ 2DE − 1) and rn (a)
is

µ (a) = E

{
N∑

n=1

b1,n (t+ 2DE − 1)Re
nrn (a) | Fe

}
=
(a)

N∑
n=1

Re
nE {b1,n (t+ 2DE − 1)}µn (a)

(69)
where (a) uses that zn (t) = rn (a (t)) − µn (a (t)) is independent of b1,n (t+ 2DE − 1), and
both are independent of Fe since b1,n (t+ 2DE − 1) only depends on G (t+DE − 1) , . . . , G (t).

26



Hence, given that a (t) = a, µ (a (t)) and E {b1,n (t)} are fixed in time since W (t) is i.i.d. and

b1,n (t) =
[∏t−DE

τ=t−2DE+1 W (τ)
]
1,n

. We can now redefine the approximate max-weight action

profile for epoch e as:

a∗
e = argmax

a

N∑
n=1

E {b1,n (t)}Re
nµn (a) . (70)

Let rmax = max
n

Re
n and note that r (a (t)) ≤ rmax for all t ∈ Te. As explained above, if the

communication succeeded (i.e., SC occurred) in epoch e, then all agents know rmax. For shorthand,
denote the number of visits to action profile a up to time t−2DE by V = vea (t− 2DE), and denote
the corresponding turns by t1, . . . , tV . The sequence of stochastic rewards r (a (t1)) , . . . , r (a (tV ))
is not independent, since adjacent rewards depend on the same random communication graphs.
While the visit turns t1, . . . , tV are random, in the worst case they are consecutive. Hence, we divide
this sequence into DE groups: the first starts from τ = 1 and proceeds with jumps of DE turns,
the second starts from τ = 2 and proceeds with jumps of DE turns and so on for i = 1, . . . , DE .
We also denote the number of visits to a in group i by Vi, and note that either Vi =

⌊
V
DE

⌋
or

Vi =
⌊

V
DE

⌋
+ 1, such that

∑DE

i=1 Vi = V . Then, each such subsequence is i.i.d. and we can apply
Hoeffding’s inequality on the subsequences separately regardless of the values of t1, . . . , tV .

Therefore we have for every a that

P

(∣∣∣∣∣ 1V
V∑

τ=1

r (a (τ))− µ (a)

∣∣∣∣∣ ≥ ρa (t)

)
=

P

∣∣∣∣∣∣ 1V
DE∑
i=1

Vi−1∑
j=0

r (a (jDE + i))− µ (a)

∣∣∣∣∣∣ ≥ ρa (t)

 ≤
(a)

DEmax
i

P

∣∣∣∣∣∣ 1Vi

Vi−1∑
j=0

r (a (jDE + i))− µ (a)

∣∣∣∣∣∣ ≥ ρa (t)

 ≤
(b)

2DEe
− 2ρ2a(t)

r2max

⌊
ve
a(t−2DE)

DE

⌋
≤
(c)

2DEE
−2 (71)

where (a) is the union bound, since for

DE∑
i=1

Vi−1∑
j=0

rn (a (jDE + i)) ≥ V (µ (a) + ρa (t)) (72)

at least one of the DE inner sums needs to be at least Vi (ρa (t) + µ (a)), with the same argument
on

DE∑
i=1

Vi−1∑
j=0

rn (a (jDE + i)) < V (µ (a)− ρa (t)) . (73)

Inequality (b) is then Hoeffding’s inequality for i.i.d. bounded random variables, and (c) uses

ρa (t) =
√

2r2maxDE logE
max{ve

a(t−2DE),1} .

12.1.4 Regret of learning an approximately optimal action profile

Define the regret of approximating a∗
e by

RE ≜
Te+E−1∑
t=Te

N∑
n=1

b1,n (t+ 2DE)R
e
n (µn (a

∗
e)− rn (a (t+ 1))) . (74)

Repeating the argument in (33) on the new confidence interval yields
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∆a = µ (a∗
e)− µ (a) ≤ 4

√
2r2maxDE logE

max {vea (TE + E − 1)− 1− ne
a (TE + E − 1) , 1}

=⇒ vea (TE + E − 1)− ne
a (TE + E − 1)− 1 ≤ 32r2maxDE logE

∆2
a

. (75)

For A∗
e as defined in (26) but for the new rmax, we now obtain

E {RE | SC ∩AG,Fe} ≤
(a)

2DESErmax + rmax∆EE +
∑

a∈(A∗
e)

c∩SE

(
32r2maxDE logE

∆a
+∆a (ne

a (TE + E − 1) + 1)

)
≤
(b)

rmax

(
SE

32DE logE

∆E
+ 2DE (1 + SE) + SE +∆EE

)
≤
(c)(

(64S0 + 1) log2 E
√
2S1E + 14S0S1 log

3 E
)
max
n

Re
n (76)

where (a) uses (71) along with the union bound over the SE actions profiles and E turns. In-
equality (b) uses ∆a ≥ ∆Ermax for all a ∈ (A∗

e)
c, and also that ∆a ≤ rmax and then that∑

a∈(A∗
e)

c∩SE
ne
a (TE + E − 1) ≤ 2DE which follows since we played exactly 2DE action pro-

files between turn TE + E − 1 − 2DE and turn TE + E − 1, and in the worst case they are all

in (A∗
e)

c. Inequality (c) uses that rmax = max
n

Re
n, ∆E = logE

√
DE

E , SE ≤ 2S0 logE and

DE ≤ 2S1 log
2 E.

We conclude that

E {RE | Fe} = E

{
Te+E−1∑
t=Te

N∑
n=1

b1,n (t+ 2DE)R
e
n (µn (a

∗
e)− rn (a (t+ 1))) | Fe

}
=

E {RE | SC ∩AG,Fe}P (SC ∩AG | Fe) + E {RE | Sc
C ∪Ac

G,Fe}P (Sc
C ∪Ac

G | Fe) ≤
(a)(

(64S0 + 1) log2 E
√

2S1E + 14S0S1 log
3 E
)
max
n

Re
n+(

E2−S1κ0 logE + E1−S0|A∗
e |

KN

)
max
n

Re
n =

(b)
κ1εEEmax

n
Re

n (77)

where in (a) we used that E {RE | Sc
C ∪Ac

G,Fe} ≤ Emax
n

Re
n, the error bounds in (28) and (64),

and (76). In equality (b) we used the definition of εT in (60).

12.1.5 Lyapunov Analysis

We repeat the proof of Theorem 2, with b1,n (t+ 2DE) replacing b1,n, and detail the necessary
modifications. Let λmin, λmax be the minimal and maximal values of λ, respectively. As before,
the QoS regret of agent n at turn t cannot be too far from its QoS regret at the beginning of epoch
e = e (t):

Rn (t) ≥ Re
n −

t∑
τ=Te

(rn (a (τ))− λn) ≥ Re
n − (1− λn)ET , (78)

so by summing over all turns in epoch e and all agents, we obtain
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Te+ET−1∑
t=Te

N∑
n=1

E {b1,n (t+ 2DE)}Rn (t) ≥

Te+ET−1∑
t=Te

N∑
n=1

E {b1,n (t+ 2DE)}Re
n − ET

Te+ET−1∑
t=Te

N∑
n=1

E {b1,n (t+ 2DE)} (1− λn) ≥
(a)

κ1ETmax
n

Re
n − (1− λmin)E

2
T (79)

where (a) uses that
∑N

n=1 E{b1,n(t)}Re
n

max
n

Re
n

≥ κ1 for the constant κ1 = min
n

E {b1,n (t)} > 0.

We can now bound from below the expected weighted reward as follows:

T−1∑
t=0

N∑
n=1

E {b1,n (t+ 2DE)Rn (t) rn (a (t+ 1))} =

T−1∑
t=0

N∑
n=1

E
{
b1,n (t+ 2DE) rn (a (t+ 1))

(
Re(t)

n +Rn (t)−Re(t)
n

)}
≥
(a)

T−1∑
t=0

N∑
n=1

E {b1,n (t+ 2DE)}E
{
Re(t)

n µn

(
a∗
e(t)

)}

− (1− λmin)ETT − κ1εET
ET

⌈
T

ET

⌉∑
e=1

E
{
max
n

Re
n

}
≥
(b)

T−1∑
t=0

N∑
n=1

E {b1,n (t+ 2DE)}E {Rn (t)µn (a
∗ (t+ 1))}

− (1 + λmax − λmin)ETT − κ1εET
ET

⌈
T

ET

⌉∑
e=1

E
{
max
n

Re
n

}
(80)

where (a) uses (78) and (77) with the tower rule on E
{
· | Fe(t)

}
, so

E
{
E
{
b1,n (t+ 2DE)R

e(t)
n µn

(
a∗
e(t)

)
| Fe(t)

}}
=

E {b1,n (t+ 2DE)}E
{
Re(t)

n µn

(
a∗
e(t)

)}
. (81)

In (a), we also used the definition of εET
in (60), along with the fact that |A∗

e| ≥ min
α∈∆
|A∗ (α)| for

all e. Inequality (b) uses Lemma 2 with E {b1,n (t+ 2DE)} replacing b1,n.

29



Therefore, by using Lemma 1 with b1,n (t+ 2DE) replacing b1,n we obtain

E {L (T )− L (0)} =
T−1∑
t=0

E {L (t+ 1)− L (t)} ≤
(a)

2T − 2

T−1∑
t=0

N∑
n=1

E {b1,n (t+ 2DE)}E {Rn (t)µn (a
∗ (t+ 1))}

+ 2

T−1∑
t=0

N∑
n=1

λnE {Rn (t) b1,n (t+ 2DE)}

+ 2 (1 + λmax − λmin)ETT + 2κ1εET
ET

⌈
T

ET

⌉∑
e=1

E
{
max
n

Re
n

}
≤
(b)

2T − 2 (δ (λ, ET ) + εET
)

T−1∑
t=0

N∑
n=1

E {Rn (t)}E {b1,n (t+ 2DE)}

+ 2 (1 + λmax − λmin)ETT + 2κ1εET
ET

⌈
T

ET

⌉∑
e=1

E
{
max
n

Re
n

}
≤
(c)

2T − 2δ (λ, ET )

T−1∑
t=0

N∑
n=1

E {Rn (t)}E {b1,n (t+ 2DE)}

+ 2 (1 + λmax − λmin)ETT + 2εET
(1− λmin)ETT (82)

where (a) uses Lemma 1 and (80). Inequality (b) uses that if λ ∈ CεET
(G), then

N∑
n=1

E {b1,n (t+ 2DE)}Rn (t)E {µn (a
∗ (t+ 1)) | F (t)} ≥

N∑
n=1

E {b1,n (t+ 2DE)}Rn (t)Ep {µn (a)} ≥

N∑
n=1

E {b1,n (t+ 2DE)}Rn (t) (λn + δ (λ, ET ) + εET
) (83)

and also that
E {Rn (t) b1,n (t+ 2DE)} = E {Rn (t)}E {b1,n (t+ 2DE)} (84)

since Rn (t) and b1,n (t+ 2DE) are independent: Rn (t) isF (t)-measurable, while b1,n (t+ 2DE)
depends on G (t+DE) , . . . , G (t+ 1) that were generated after the action profile a (t) was played.
Finally, inequality (c) in (82) uses (79).

Since L (0) = 0 and L (T ) ≥ 0, we conclude from (82) that

2δ (λ, ET )

T−1∑
t=0

N∑
n=1

E {Rn (t)}E {b1,n (t+ 2DE)} ≤

2T + 2 (1 + λmax − λmin)ETT + 2εET
(1− λmin)ETT (85)

so if (λ1, . . . , λN ) ∈ CεET
(G) then

1

T

T−1∑
t=0

N∑
n=1

E {b1,n}E {Rn (t)} ≤
1 + (2 + εET

)ET

δ (λ, ET )
(86)

and the rest of the proof follows like that of Theorem 2 since we showed that E {b1,n} ≥ κ1 > 0 for
all n, and

∑N
n=1 b1,n (t) = 1 with probability 1.
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