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Abstract

Consider N cooperative agents such that for T turns, each agent n takes an ac-
tion an and receives a stochastic reward rn (a1, . . . , aN ). Agents cannot observe
the actions of other agents and do not know even their own reward function. The
agents can communicate with their neighbors on a connected graph G with diame-
ter d (G). We want each agent n to achieve an expected average reward of at least
λn over time, for a given quality of service (QoS) vector λ. A QoS vector λ is not
necessarily achievable. By giving up on immediate reward, knowing that the other
agents will compensate later, agents can improve their achievable capacity region.
Our main observation is that the gap between λnt and the accumulated reward
of agent n, which we call the QoS regret, behaves like a queue. Inspired by this
observation, we propose a distributed algorithm that aims to learn a max-weight
matching of agents to actions. In each epoch, the algorithm employs a consensus
phase where the agents agree on a certain weighted sum of rewards by commu-
nicating only O (d (G)) numbers every turn. Then, the algorithm uses distributed
successive elimination on a random subset of action profiles to approximately
maximize this weighted sum of rewards. We prove a bound on the accumulated
sum of expected QoS regrets of all agents, that holds if λ is a safety margin εT
away from the boundary of the capacity region, where εT → 0 as T → ∞. This
bound implies that, for large T , our algorithm can achieve any λ in the interior of
the dynamic capacity region, while all agents are guaranteed an empirical average
expected QoS regret of Õ (1) over t = 1, . . . , T which never exceeds Õ

(√
t
)

for
any t. We then extend our result to time-varying i.i.d. communication graphs.

1 Introduction

Consider a group of artificial cooperative agents interacting in a shared environment. Each agent
has a reward rn (a) that is a function of the actions of all agents a and represents a local perfor-
mance metric. Examples include wireless devices, robots in a facility, or autonomous vehicles. The
designer wants to program these agents with a distributed protocol that guarantees at least a certain
average reward for each agent, which we term its QoS. Wireless devices interact by transmitting and
interfering with each other over multiple channels, and the wireless protocol guarantees the adver-
tised throughput for all of them. Multitasking robots interact by cooperating to make progress on
their tasks at a certain rate, following a distributed learning algorithm with this objective in mind.
The main challenge in designing such a distributed protocol or algorithm is that the agents are local
and do not know enough about each other to guarantee the QoS of their peers.

In data-driven decision-making, agents do not know their reward function, and can only observe its
value at the current action profile a (t), known as bandit feedback. The agents also do not know the
reward functions of their peers, or even their bandit feedback. As a result, agents have to learn both
how to optimize their reward function, and when to prioritize other agents instead.
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The QoS is often measured over time. Throughput in communication networks is measured over
seconds, and progress in a factory is measured over minutes. In resource allocation, the optimal
policy is often dynamic and combines time-sharing and simultaneous access. For example, consider
four agents and one resource, such that each agent can access the resource or not. If Agents 1 and
2 access the resource simultaneously, they each get zero reward, and the same is true for Agents
3 and 4. Otherwise, an agent gets a reward of 1 by accessing the resource. This simple example
arises in many applications. In wireless networks, far away devices can share the same channel, but
nearby devices have to pick different channels. In cloud computing, a job that requires little RAM
can run simultaneously with a RAM-intensive one, but two RAM-intensive jobs cannot share the
CPU simultaneously. Similarly, we cannot charge too many electric vehicles that share a transformer
simultaneously. In all these cases, dynamic algorithms can achieve QoS vectors that static multiagent
algorithms cannot, where agents learn when to access, but also, who to access with.

The main objective of this paper is to design a distributed multiagent algorithm that can achieve any
dynamically feasible QoS vectors based only on bandit feedback and minimal communication.

1.1 Our Contributions

We define the QoS regret of agent n by Rn (t) = max
{
0, λnt−

∑t
τ=1 rn (a (τ))

}
, given a QoS

vector λ. Our main observation is that Rn (t) behaves like a queue, which inspires an algorithm
that learns to approximate a max-weight matching between agents to actions to guarantee the sta-
bility of these “queues”. A perfect centralized max-weight policy [1] plays the a that maximizes∑N

n=1 bnRn (t) rn (a) for some positive {bn}. To be able to learn this policy distributedly, our al-
gorithm divides the time horizon of length T into epochs of length ET . In each epoch, agents use
simultaneous distributed averaging (i.e., consensus) steps to agree on

∑N
n=1 bnRn (t) rn (a (t+ 1))

from recent turns, on a row stochastic communication matrix W . Then, agents use a distributed and
scalable successive elimination to approximately maximize

∑N
n=1 bnRn (t) rn (a). Our consensus

step does not require a doubly stochastic W and converges in finite time.

We show that for large T , our algorithm can achieve any λ in the interior of the dynamic capacity
region, where all agents have an empirical average expected QoS regret of Õ (1) over time which
never exceeds Õ

(√
t
)

for any t. Our algorithm only requires each agent to communicate O (d (G))
numbers each turn, where d (G) is the diameter of the communication graph G. Furthermore, for
finite T , we bound the accumulated expected sum of QoS regrets as a function the epoch length E,
and characterize the safety margin εE away from the boundary of the capacity region that is required
to make λ feasible. We then prove QoS regret guarantees for i.i.d. time-varying communication
graphs, modifying both the bound on the accumulated expected sum of QoS regrets and εE . For this
more complicated case, the communication overhead is O

(
log2 E

)
per agent per turn.

1.2 Related Work

Our work brings together game theory, learning, and queuing theory. Aspects of learning in queuing
were studied in [2–5]. Queuing games were studied in [6], where each agent chooses which queue
to join. In contrast, our analysis uses the observation that the QoS regret behaves like a queue, but
no real backlogs exist. We consider general discrete games that may have nothing to do with queues.

Multiplayer bandits is an emerging field that studies how agents can learn to achieve a common
goal [7–11] given bandit feedback of their unknown reward functions. Most works on multiplayer
bandits assume the collision model, in which when multiple agents choose the same arm, they all
receive zero reward [12–17]. Instead of the sum of rewards, our objective is to guarantee that the
empirical average reward of each agent is at least a certain QoS. Multiplayer QoS bandits were
studied in [18], assuming the collision model. However, [18] only achieves QoS vectors λ for
which there exists an a such that E {rn (a)} ≥ λn for all n. Compared to [18], our work considers
a general discrete game. But even for the collision model, for the example on the top of this page,
two agents get zero reward in any static solution like [18], while we can achieve λn = 0.5 for all n.

Dynamic multiplayer bandits, where agents can join at different times, were studied in [12, 15, 17]
under the collision model. More related to our work, [19], and recently [20], combined queuing with
multiplayer bandits. In [19, 20], each agent (queue) receives packets randomly, and each packet is
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transmitted to a server of choice, where servers have constant [19] or agent-dependent [20] service
rates. Each server can only process one received packet each turn, given a selection rule. In contrast,
our scenario has no actual queues or packets and considers a general (discrete) game, so the “service
rate” for each agent is an arbitrary function of the actions of all agents (i.e., its reward function).

In power control, [21] can achieve any target QoS vector that is achievable by a static transmission
power profile. The interaction between the wireless links, through the interference, is a game with
the transmission powers as the actions. From this point of view, our work generalizes [21] in two
ways: from power control to a general game (but discrete), and from a static to a dynamic solution.

2 Problem Formulation

We consider a general multiplayer multi-armed bandit game. At every turn t ≥ 1, for T turns, each
agent n in the set N = {1, ..., N} picks an action an (t) ∈ {0, . . . ,K − 1}. The expected reward
for agent n is an unknown function of the actions of all agents µn : {0, . . . ,K − 1}N → R. Each
agent n only observes a stochastic reward, rn (a (t)) ∈ [0, 1], such that µn (a) = E {rn (a)} and
zn (t) ≜ rn (a (t)) − µn (a (t)) is independent over time and between agents. Agents only know
the action they played and cannot observe the actions of others.

Our goal is to design a distributed algorithm for the cooperative agents, that dictates the actions
an (1) , . . . , an (T ) of each agent n, such that ideally

min
n

(
1

T

T∑
t=1

µn (a (t))− λn

)
≥ 0 (1)

i.e., the empirical average of the expected reward of agent n is at least λn for all n.

The objective in (1) is only possible for certain QoS vectors λ1, . . . , λN . The achievability region
of the dynamic problem in (1) can be much larger than the static one which includes all λ for
which max

a
min
n

(µn (a)− λn) ≥ 0. As an example, consider a game with N = 2 and K = 2,

such that µ1 (1, 0) = 1, µ1 (0, 0) = µ1 (0, 1) = µ1 (1, 1) = 0 and µ2 (0, 1) = 1, µ2 (0, 0) =
µ2 (1, 0) = µ2 (1, 1) = 0. Then λ∗ = max

a
min
n

µn (a) = 0 is obtained for any fixed a1, a2, and

no λ1, λ2 > λ∗ are feasible. However, if the agents play (1, 0) in even turns and (0, 1) in odd ones
then 1

T

∑T
t=1 µ1 (a (t)) = 1

T

∑T
t=1 µ2 (a (t)) = 1

2 > λ∗. This simple example arises often when
time-sharing of resources is better than simultaneous access. In general, the optimal strategies can
involve softer time-sharing or time-sharing between groups of agents, based on their characteristics.

This motivates defining the dynamic capacity region [1]:
Definition 1. Let ε ≥ 0. The approximate dynamic capacity region of the game G =(
N , {0, . . . ,K − 1}n∈N , {µn}n∈N

)
is defined as the set:

Cε (G) =

{
(λ1, . . . , λN ) | ∃p ∈ ∆KN

s.t.
∑
a

p (a)µn (a) > λn + ε, ∀n

}
(2)

where p (a) is the probability of a and ∆KN

is the KN -th dimensional simplex. The (exact) dy-
namic capacity region is then C (G) ≜ C0 (G).

A learning algorithm that has no knowledge of the game will need time to achieve (1), so we can
only hope to achieve (1) up to some T -dependent error, which we term the QoS regret.
Definition 2. The QoS regret of agent n at turn t is defined as

Rn (t) ≜ max

{
0, λnt−

t∑
τ=1

rn (a (τ))

}
. (3)

The expected QoS regret encodes that an agent “regrets” the total accumulated reward it misses to
have an expected empirical reward of at least λn. On the other hand, an agent with an empirical
average reward of more than λn does not require anything more so it has zero QoS regret. Note that
if the expected QoS regret of all agents is zero then (1) holds with probability 1.
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Our contributions are a novel distributed algorithm that can learn to achieve a target QoS vector,
with the following performance guarantees:

Theorem 1. Let G be a multiplayer multi-armed bandit game, played for T turns. Let the agents
run Algorithm 1 on a connected communication graph G, with epoch length ET such that ET →∞
and ET

T → 0 as T → ∞. If λ ∈ C (G), then for large enough T , we have 1
T

∑T−1
t=0 E {Rn (t)} =

O (ET ) for all n and E {Rn (t)} = O
(√

tET

)
for all n and t, where the expectation is with respect

to the randomness of the algorithm and the rewards. To achieve this, each agent only needs to
communicate O (d (G)) numbers1 per turn, where d (G) is the diameter of G.

The QoS regret guarantees of Theorem 1 are asymptotic in T . For finite T , a tradeoff arises between
E {Rn (T )} and the safety margin εT we have to take from the boundary of C (G) to guarantee this
E {Rn (T )}. Theorem 2 in the next section analyzes this tradeoff explicitly and shows that εT → 0
as T →∞, which implies Theorem 1 above as a special case. By tuning the epoch length E, we can
make εT smaller for finite T , at the price of increasing the expected QoS regret, or vice versa. As
long as ET increases with T , then εT → 0 and our algorithm can achieve any λ ∈ C (G) for large
enough T . Hence, if ET = log T (or slower), then Theorem 1 implies that the empirical average
expected QoS regret of all agents is Õ (1) and no expected QoS regret exceeds Õ

(√
t
)

for any t. For
finite E, these two bounds slightly improve to O (1) and O

(√
t
)

respectively, as long λ ∈ CεE (G).
In Section 12 in the appendix, we generalize Theorem 1 for a stochastic time-varying i.i.d. commu-
nication graph where only the union of the support set is assumed to be connected. This requires
some slight modifications to our algorithm, detailed in Algorithm 2, among them using the delay
parameter DE = O

(
log2 E

)
. As a result, each agent needs to communicate O

(
log2 E

)
numbers

per turn.

It might look tempting to view (1) as the two-player zero-sum game
min

p∈∆KN
max
n

(λn −
∑

a p (a)µn (a)). Solving zero-sum games with bandit feedback is an

active field of research [22, Chapter 9]. The idea is that if the column and row players both use a
no-regret algorithm, then the empirical distribution of the action profiles is an ϵT -Nash equilibrium
(NE) with a vanishing ϵT , and the empirical average cost of the row player converges to the value
of the game. The convergence rate is then the regret of the row player, divided by T . It is an
open question whether a convergence rate better than O

(
T− 1

2

)
is possible [23, 24], which is

achievable if both players use EXP3. To employ this technique in our scenario, one agent will have
to operate as a leader that virtualizes the row player that picks p and the column player that picks
n. This leader agent then broadcasts the chosen action profiles, which are propagated over G, so
each agent sends O (N) numbers every turn. This approach, however, would fail to provide any
QoS regret guarantees. First, the average cost of the row player is not the QoS regret of any of
the agents in our game. Second, the fact that the distribution of play p (T ) is an ϵT -NE does not
provide any Euclidean distance convergence rate of p (T ) to the exact NE. Hence, there is no bound
on the incurred QoS regret of p (T ). Remarkably, our queuing approach to solving (1) not only
circumvents these issues but achieves, for any λ ∈ C (G), an Õ (1) empirical average expected QoS
regret over t = 1, . . . , T for all agents, while the expected QoS regret is never worse than Õ

(√
t
)

for any t and n. Furthermore, our communication overhead is only O (d (G)) per agent per turn.

3 Dynamic Multiplayer Bandit Algorithm

To tackle the problem in (1), we exploit the similarity between the QoS regret and a queue. We can
think of a deterministic arrival flow with rate λn and a service rate of rn (a (t)) for agent n at turn t.
Then we can employ ideas from queuing theory to design our algorithm. In particular, max-weight
matching of queues to service rates is a centralized algorithm that achieves optimal throughput [25].
Note that in our case the service rate (the reward) is a function of the actions of all agents. Hence,
our algorithm has to learn to approximate a max-weight matching distributedly for our game model.

1These numbers are convex combinations of rewards, and their timestamps. They can be quantized with
finite resolution without affecting our analysis since we only approximately optimize the weighted sum of
rewards anyway. The communication overhead is reported for comparison purposes with other schemes that
communicate rewards.
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Our algorithm, detailed as Algorithm 1, divides the horizon into epochs. In each epoch, the agents
treat their QoS regrets as fixed on their initial value, which is an approximation (Step 1). Based
on these values the agents distributedly learn to maximize

∑N
n=1 bnRn (t)µn (a) for some positive

{bn}, using successive elimination (see Lemma 3). Much of the algorithm’s efficiency stems from
the fact that we do not care what {bn} are, as long as they are positive and constant over epochs.
For stochastic time-varying i.i.d. communication graphs (Section 12 in the appendix), bn (t) will be
time-varying as well, and then we need its expectation to be positive and constant over epochs.

Algorithm 1 has a low runtime complexity per turn of O (νnDE + SE) for agent n, which only
computes linear combinations of values from its νn neighbors for DE turns simultaneously, and
goes over a list of SE action profiles.

Algorithm 1 Dynamic Multiplayer Bandit QoS Learning
Initialization: Set the epoch index to e = 0 and the successive elimination index to l = 0. Let W be
the communication matrix (Definition 3). Let SE = min

{
⌈S0 logE⌉ ,KN , E

}
, for some S0 > 0,

be the random subset size and DE > 0 be the delay parameter. Let bi,j =
{
WDE

}
i,j

for all i, j.
Input: λn ≥ 0 and agent index n
For each epoch e ≥ 0, each agent n runs:

1. Compute the QoS regret for epoch e, Re
n = max

{
0, λnt−

∑t
τ=1 rn (a (τ))

}
.

2. Randomize actions a1n, . . . , a
SE
n , uniformly and independently over {0, . . . ,K − 1}. Store

their indices in the ordered set B = {1, . . . , SE}, where B (l) is the l-th element.
3. Set vi = µ̂i = 0 for all i = 1, . . . , SE , set r̃n = 1 and Te = eE + 1.
4. For Te ≤ t ≤ Te + E − 1 (E turns):

(a) Set θ0n = r̃nR
e
n and θ0m = 0 for all m ̸= n.

(b) Broadcast {(θτn, τ)}
DE−1
τ=0 to neighbors and receive {(θτm, τ)}DE−1

τ=0 from neighbors.

(c) Parallel DE Consensus Steps: Set θτ+1
n =

∑N
m=1 wn,mθτm, ∀τ = 0, . . . , DE − 1.

(d) Agreement: If you know θτ1 for DE ≤ τ ≤ 2DE − 1 then broadcast (θτ1 , τ).
(e) If you receive (θτ1 , τ) for DE ≤ τ ≤ 2DE − 1 then set the weighted sum of rewards

from τ turns ago as S (t− τ) = θτ1 .

(f) Play an (t) = a
B(l)
n and set r̃n = rn (a (t)).

(g) Update the number of visits vk ← vk+1 to ak =
(
ak1 , . . . , a

k
N

)
for k = B (l − 2DE).

(h) Compute the confidence radius ρk =

√
2(

∑N
n=1 b1,nRe

n)
2
logE

max{vk,1} and

µ̂k ←
(
1− 1

vk

)
µ̂k +

S (t− 2DE)

vk
, Lk = µ̂k − ρk , Uk = µ̂k + ρk.

(i) Elimination: If l = |B| then delete from B all i such that Ui < max
j∈B

Lj , and set l = 0.

(j) Update the successive elimination index l← l + 1.
5. Update the epoch index e← e+ 1.

End

3.1 Communication

To know the reward values of others, agents need to communicate. We assume that agents can send
numbers over a communication graph G, weighted by a row-stochastic communication matrix W :
Definition 3. Let G be the adjacency matrix of an undirected connected graph, such that Gn,m = 1
if agent n and agent m can communicate or that n = m. Let νn be the degree of agent n in G. Let
W be a matrix such that wn,m > 0 if and only if Gn,m = 1 and

∑N
m=1 wn,m = 1 for all n.

A key design question is how much should agents know about each other to achieve (1). A max-
weight matching at turn t is an a that maximizes

∑N
n=1 bnRn (t)µn (a) for some positive {bn}. A
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naive choice is to guarantee that all agents know all rewards before taking an action. This would re-
quire each agent to send O (N) numbers per turn, so it is infeasible in large-scale networks. Instead,
our algorithm requires a communication overhead of O (d (G)), without sacrificing performance.
This dramatic save in communication is possible since to guarantee stability, agents do not need to
have the same coefficient bn in the sum. Hence, in Algorithm 1, agents run the consensus only until
all local averages include all {Re

nrn (a (t))}n (where Re
n ≈ Rn (t)), even if not with equal bn.

In contrast to the distributed optimization literature [26], we do not need the communication matrix
W to be doubly stochastic, which is hard to guarantee distributedly [27]. Since W is not doubly
stochastic, our consensus cannot converge to the average reward. In fact, since we stop the consensus
early after exactly DE turns, it does not converge at all. However, after our consensus step, each
agent has a weighted sum of rewards that includes all agents that have a positive QoS, with weights
that depend on W . In the next DE turns, agents propagate (Steps 4(d) and 4(e)) the weighted sum
of rewards that Agent 1 obtained, such that they all eventually know it with zero error.

Our algorithm introduces delays so that agents can agree on
∑N

n=1 b1,nR
e
nrn (a (t+ 1)), that

Agent 1 obtained after the distributed averaging step (Steps 4(b) and 4(c)). If the diameter of G
is d (G), then a minimum of d (G) turns is necessary to guarantee that all agents contributed to∑N

n=1 b1,nR
e
nrn (a (t+ 1)). However, it is unnecessary to continue the consensus after this point,

which is a major advantage of our consensus scheme over the classical one.

In Steps 4(b)-4(e), agents pipeline DE simultaneous consensus algorithms that cannot be mixed
since they are on the rewards generated at different turns from different action profiles.

In a connected graph d (G) ≤ N so DE = N is always sufficient. However, usually, a tighter bound
on d (G) is available. For a random Erdős–Rényi graph G (N, p), d (G) = O

(
logN

log(Np)

)
with high

probability [28], and G (N, p) is connected with high probability for p = c logN
N with c > 1.

In our scenario, an apriori bound on
∑N

n=1 b1,nR
e
nrn (a), the effective reward for the successive

elimination, is unknown to the agents but is needed to adjust the confidence radius ρk. Hence, at
the beginning of each epoch (Step 4(a)), agents start a consensus averaging on {Re

n}n to obtain∑N
n=1 b1,nR

e
n, which bounds

∑N
n=1 b1,nR

e
nrn (a), but varies between epochs.

3.2 Distributed and Scalable Successive Elimination

In the second part of every epoch (Steps 4(f)-4(j)), agents use the values they got in the commu-
nication step to run distributed successive elimination on a random subset of the action profiles.
In our case, the effective reward of “arm” a at epoch e is

∑N
n=1 b1,nR

e
nrn (a). In Step 2, each

agent prepares a sequence of SE actions independently and uniformly at random. This induces a
sequence of SE action profiles that all agents agree on their indices B = {1, . . . , SE} (which can
include duplicates). Therefore, all agents count the same number of visits va (t) for all a in Step
4(g). Moreover, all agents agree on the same weighted sum of rewards for the action profile they
played 2DE turns ago, denoted by µ̂k for k = B (l − 2DE). Hence, all agents compute the same
confidence radius ρk in Step 4(h), for all the action profiles indexed in B. As a result, all agents
agree on when to eliminate an action profile from B in Step 4(i) and will skip it in their next cycle
over the action profiles, which is indexed by l.

Restricting the search to a random subset of action profiles is done to improve the scalability of the
algorithm, as we discuss in detail in Section 7 of the appendix. For SE = KN , no randomization is
needed as agents can go over all the action profiles sequentially.

3.3 QoS Regret Guarantees

Theorem 2 below bounds the expected QoS regrets of the agents. The proof is given in the appendix.
If the epoch length ET increases with T , then the theorem shows that E {Rn (t)} = O

(√
ET t

)
for

any n, t and any λ ∈ C (G). However, this does not provide a guarantee on the fraction of time
during which the QoS regret of a specific agent is “large”. A highly fluctuating QoS regret means
that an agent has to wait a long time to be “compensated” for when it was patient in favor of others.
Hence, we also provide a general bound on 1

T

∑T−1
t=0

∑N
n=1 b1,nE {Rn (t)}, for positive {b1,n} that

are specified below. Using this bound, the first part of Theorem 2 assumes a fixed epoch length E
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and that λ ∈ CεE (G) for εE in (5), so λ is far enough from the boundary of C (G). In this case,
we obtain lim sup

T→∞

1
T

∑T−1
t=0

∑N
n=1 E {Rn (t)} < ∞, so the empirical average of the expected QoS

regret of any agent is O (1). In the queuing literature, these stability notions are known as mean rate
stability (i.e., sublinear expected QoS regret) and strong stability.

Theorem 2. Let G be a multiplayer multi-armed bandit game, played for T turns. Let λ ∈ C (G).
Let the agents run Algorithm 1 with a row-stochastic W , a connected G with diameter d (G), epochs
of length E, a random subset of action profiles of size SE ≤ ⌈S0 logE⌉ for some S0 > 0 and
DE ≥ d (G). Let bi,j =

{
WDE

}
i,j

. Define the set of approximately optimal action profiles

A∗ (α) =

{
a |

N∑
n=1

αnµn (a) ≥ max
a′

N∑
n=1

αnµn (a
′)− logE√

E

}
(4)

and

εE =
33 (S0 + 1) logE√

E
+ 2

DE

E
+ E−

S0 min
α∈∆N

|A∗(α)|

KN . (5)

Define

δ (λ, E) = max
p∈∆KN

min
n

(∑
a

p (a)µn (a)− λn − εE

)
. (6)

If λ ∈ CεE (G) then the QoS regrets (Definition 2) satisfy

1

T

T−1∑
t=0

N∑
n=1

b1,nE {Rn (t)} ≤
1 + (2 + εE)E

δ (λ, E)
(7)

where E {·} is over the rewards and the random subsets, and b1,n > 0 for all n.

Therefore, for any λ ∈ CεE (G), Algorithm 1 achieves O (1) empirical average expected QoS regret
for all n ,i.e., lim sup

T→∞

1
T

∑T−1
t=0

∑N
n=1 E {Rn (t)} <∞ (strong stability) and E {Rn (t)} = O

(√
t
)

for all n, t. Furthermore, if we pick ET such that ET → ∞ and ET

T → 0 as T → ∞, then
for any λ ∈ C (G), Algorithm 1 achieves 1

T

∑T−1
t=0

∑N
n=1 E {Rn (t)} = O (ET ) for all n and

E {Rn (t)} = O
(√

ET t
)

for all n, t (mean rate stability).

4 QoS Regret Stability Analysis

In this section, we break our analysis required to prove Theorem 2 into lemmas and postpone the
proofs to the appendix. The proof technique is inspired by the optimality proof of max-weight
matching [25]. However, the QoS regret Rn (t) does not behave like a standard queue. The main
difference is that the service rate of agent n, which is its reward function, is not selected by a
centralized decision-maker but is a function of the actions of the distributed agents. As opposed
to a standard queue, the “backlog” of the QoS regret is not a sufficient statistic, since one has to
remember λnt−

∑t
τ=1 rn (τ) even if Rn (t) = 0. Since λnt−

∑t
τ=1 rn (τ) can get very negative

“empty queues” (Rn (t) = 0) are much more likely in our problem. As we discuss in Section 7
in the appendix, this fact can be used to improve the scalability of our algorithm, since agents with
Rn (t) = 0 can be thought of as “passive”. Moreover, our “arrival process” is deterministic, of
λn < 1 reward points every turn for agent n, and the backlog is not an integer. As detailed next,
some of these differences require careful analysis or affect the algorithm design. For example, while
a sublinearly increasing queue (in T ) is not strongly stable, in our case, as long as Rn(T )

T → 0, agent
n will asymptotically achieve its desired QoS in the empirical average sense.

Definition 4. Define the matrix B = WDE , and denote its (i, j) element by bi,j . Define the
following Lyapunov function such that L (0) = 0 and for all t ≥ 1

L (t) ≜
N∑

n=1

b1,nR
2
n (t) . (8)
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L (t) only uses the coefficients of Agent 1 since all agents, that know their IDs, agree on the weighted
sum of rewards that Agent 1 sees. This forced agreement ensures that all agents will use the exact
same weighted sum of rewards. However, Agent 1 does not know more than others and can be
replaced by any of them.

The first lemma bounds the Lyapunov drift in each turn.
Lemma 1. The Lyapunov drift at turn t ≥ 0 satisfies:

L (t+ 1)− L (t) ≤ 1 + 2

N∑
n=1

b1,nRn (t) (λn − rn (a (t+ 1))) . (9)

The proof of Theorem 2 follows by upper bounding E {L (T )} −E {L (0)}, where a smaller bound
implies smaller QoS regrets. The expectation (over the reward) of the upper bound of Lemma 1 is
minimized by the maximum weight matching a∗ (t+ 1) = argmax

a

∑N
n=1 b1,nRn (t)µn (a). The

two main obstacles our algorithm has to overcome to approximate max-weight matching are the
distributed nature of the agents, and the unknown reward functions (bandit feedback). Distributed
agents cannot deduce a∗ (t+ 1) instantly every turn since they need time to agree on the weighted
sum of rewards. For this reason, our algorithm works in epochs. Working in epochs means that our
algorithm treats the QoS regret Rn (t) as constant on its initial value Re

n ≜ Rn (Te − 1) throughout
epoch e. The agents can then aim to solve the following problem instead in every epoch

a∗
e = argmax

a

N∑
n=1

b1,nR
e
nµn (a) . (10)

The next lemma bounds the resulting error from solving (10) instead of the max-weight matching.
Lemma 2. Define e (t) as the epoch such that Te(t) ≤ t ≤ Te(t) + E − 1. Then

T−1∑
t=0

N∑
n=1

b1,nµn

(
a∗
e(t)

)
Re(t)

n ≥
T−1∑
t=0

N∑
n=1

b1,nµn (a
∗ (t+ 1))Rn (t)− ETmax

n
λn. (11)

In addition to solving (10) instead of the max-weight matching, working in epochs incurs an additive
error of O (ET ) again while replacing Rn (t) with Re

n while bounding the drift in (9).

The other loss of Algorithm 1 stems from learning a∗
e with bandit feedback. While dividing into

epochs creates an additive error of O (ET ), learning the optimal action profile a∗
e creates a multi-

plicative error, so the larger the QoS regrets Re
n are, the larger this error is.

For this reason, we need to employ an algorithm that achieves sublinear regret in learning a∗
e .

Algorithm 1 induces successive elimination on a random subset of SE action profiles, with∑N
n=1 b1,nR

e
nrn (a) as the reward function. The next lemma bounds the error (regret) of this

successive elimination. Since agents only agree on
∑N

n=1 b1,nR
e
nrn (a (t)) after 2DE turns, our

successive elimination suffers from delayed feedback. While not our focus, we chose successive
elimination over UCB since it is more robust to delays, as was shown in [29]. The restriction to a
random subset of SE action profiles is done to improve scalability, but it leads to a worse regret than
in the single-agent standard multi-armed bandits. Nevertheless, the regret is still sublinear in E and
therefore good enough to prove our QoS regret bounds.
Lemma 3. Let Re

n = Rn (Te − 1) and define the set of approximately optimal action profiles as

A∗
e =

{
a |

∑N
n=1 b1,nR

e
nµn (a)∑N

n=1 b1,nR
e
n

≥ max
a′

∑N
n=1 b1,nR

e
nµn (a

′)∑N
n=1 b1,nR

e
n

− logE√
E

}
. (12)

Let a∗
e ∈ A∗

e . Define the filtration Fe = σ
({

a (t) , {zn (t)}n∈N | t < Te

})
. Then Algorithm 1

maintains

E

{
Te+E−1∑
t=Te

N∑
n=1

b1,nR
e
n (µn (a

∗
e)− rn (a (t+ 1))) | Fe

}
≤

[
33 (S0 + 1) logE

√
E + 2DE + E1−S0|A∗

e |
KN

] N∑
n=1

b1,nR
e
n (13)

where E {· | Fe} is over the rewards and the e-th subset of action profiles.
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5 Numerical Simulations

Our algorithm is useful in any case where cooperative agents need to achieve a target QoS over time.
Next, we tested our algorithm for wireless channel access and multitasking robots, two applications
where smart time-sharing can significantly improve performance. For each experiment, we plot the
sum of QoS regrets averaged over 100 realizations with one standard deviation shaded region.

5.1 Wireless Channel Access

Consider N devices and K − 1 channels, such that each device can choose to transmit a packet on
channel k ≥ 1 by playing an = k or not to transmit at all by playing an = 0. We consider a “soft
collisions” model where the success probability of transmitting a packet for device n on channel k

is pkn =
gk
n,n

1+
∑N

m=1 gm,n1{am=k} for some channel gains {gn,m} and
{
gkn,n

}
. This model generalizes

the collision model [12, 14, 15], where multiple devices that pick the same channel all receive zero
reward. As in practice, the geometry of the devices dictates how much they interfere with each other.

Fig. 1(a) shows the sum of QoS regrets over time for N = 4 and K = 3. We used SE =
128, d (G) = 3 and E = 50SE . The channel gains were g1,4 = g1,3 = g2,4 = g3,2 = 0 and
g1,2 = g3,4 = 100 such that gn,m = gm,n for all n,m, and g21,1 = g22,2 = g13,3 = g14,4 = 0.1,
g11,1 = g12,2 = g23,3 = g24,4 = 1. Hence devices 1 and 2 are in proximity, and devices 3 and 4 are also
in proximity, but far away from 1 and 2. Then, devices 1 and 2 prefer channel k = 1 while devices
3 and 4 prefer channel k = 2. The QoS vector was λn = 0.499 for all n, which cannot be achieved
with a static solution, but only if devices 1 and 3 transmit simultaneously each on their preferred
channel, and in the next turn devices 2 and 4 do the same, and so on in a round-robin manner. After
a while, the QoS regrets stabilized on low values.

Fig. 1(b) shows the sum of QoS regrets over time for N = 100 and K = 2 (one channel). The
channel gains {gn,m} and

{
gkn,n

}
were chosen independently and uniformly at random on [0, 1].

We used SE = 104, E = 5SE , and d (G) = 4. The QoS of agent n was λn = 1.9
p1
n−0.02

N , which
is 90% more than what an almost perfect time-sharing can achieve. The stability of the QoS regrets
is again evident, in agreement with the theory. Note that while there are KN = 2100 action profiles,
considering only a random subset of SE = 104 action profiles was enough to achieve this QoS.

5.2 Multitasking Robots

Consider N robots and K = N tasks, such that the n-th robot is in charge of the n-th task. Each
robot n has a skill of skn for the k-th task. Each turn, each robot can choose to work on the k-th task
by playing an = k. The reward of robot n is rn (a) =

∑N
m=1 1{am=n}s

n
m + zn, which models the

rate at which this task progresses, where zn is a uniform noise on [−0.2, 0.2] that is i.i.d. over time
and independent between agents. Hence, only one robot can measure the progress of a certain task,
but the others can still assist.

Fig. 2(a) shows the sum of QoS regrets over time for N = K = 4. We used E = 5KN =
5120, d (G) = 3. The QoS vector was λ = (0.8, 0.2, 0.4, 0.4) and the skill matrix was 0.5 0.4 0.2 0.2

0.5 0.4 0.2 0.3
0.25 0.5 0.6 0.3
0.25 0.4 0.2 0.6

 (e.g., s41 = 0.2). As a result, λ1 is larger than the maximal skill of

a single robot so the robots had to cooperate on their tasks to achieve this QoS vector. Additionally,
no static solution can support this λ.

Fig. 2(b) shows the sum of QoS regrets for N = 8 and K = 8. We used SE = 1000, d (G) = 7
and E = 10SE , λ = (0.83, 0.79, 0.78, 0.71, 0.85, 0.76, 0.74, 0.86) and picked skn uniformly and
independently at random on [0.2, 1]. Note that while there are KN = 88 action profiles, considering
only a random subset of SE = 103 action profiles was enough to achieve this QoS.

In both figures, the sum of QoS regrets increases slowly with T , which for a traditional queue would
mean no strong stability but in our case means that the empirical average rewards converge to λ.
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Figure 1: Sum of QoS regrets: channel access, N = 4,K = 3 (left) and N = 100,K = 2 (right)

Figure 2: Sum of QoS regrets: multitasking robots, N = 4 (left) and N = 8 (right)

6 Conclusion

We studied how a team of agents can improve the Quality of Service (QoS) of each by inducing a
dynamic behavior between them. The main observation that inspired our algorithm is that the QoS
regret of each agent behaves like a queue. Then, our distributed algorithm learns to approximate a
max-weight matching of agents to actions to maximize the “throughout” going out of these virtual
queues. To that end, our algorithm works in epochs and employs simultaneous consensus averag-
ing and distributed successive elimination on a random subset of action profiles and with delayed
feedback. Our main result shows that our algorithm can achieve all QoS vectors in the capacity
region for large enough T , where all agents have an empirical average expected QoS regret of Õ (1)

over time which never exceeds Õ
(√

t
)

for any t. Simulations demonstrate the effectiveness of our
algorithm for channel access in wireless networks and multitasking robots.

We then extended our result for stochastic communication graphs that are i.i.d. over time. The com-
munication graphs create dependencies between the rewards of the “arms” (i.e., action profiles) over
time. While we were able to bypass these dependencies for the i.i.d. case, a Markov graph process,
for example, will lead to a restless bandits scenario instead where successive elimination does not
work. While in principle it is easy to replace the successive elimination part of our algorithm, the
new bandit algorithm will have to be distributed, ideally with a small communication overhead.

We considered an arbitrary discrete game where an exhaustive search is necessary to find an ap-
proximately optimal action profile. However, applications often focus on more structured games.
For example, in congestion games, best-response dynamics are guaranteed to converge to a Nash
equilibrium. Hence, if a congestion game is designed such that all Nash equilibria are efficient, an
exhaustive search is not needed [30]. Alternatively, the agents can directly solve their combinatorial
optimization problem as a team, leveraging its structure. Examples are the assignment problem,
unconstrained submodular minimization, and shortest path [31]. Then the challenge is to design a
distributed algorithm to solve the combinatorial optimization based only on bandit feedback.

Our work introduces an analogy between multiagent QoS and queuing. By further studying this
analogy we can leverage more tools from queuing theory to design dynamic distributed learning
algorithms with strong performance guarantees. For example, scheduling algorithms with delay
guarantees [32] can help to design QoS multiagent algorithms with better delay performance. An-
other example is to employ the “drift plus penalty” technique [25] to optimize an objective such as
the sum of rewards while still guaranteeing some QoS for all agents.
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