
A Appendix

A.1 Proof for Theorem 4.1

In order to carry out the computation, we require the following lemma.

Lemma A.1. Let A : Rn−1 → Rn be an isometric linear map, and let A⊥ ⊂ Rn denote the
1-dimensional subspace which is orthogonal to the range of A. Then for any integrable function
φ ∈ L1(Rn), one has ∫

Rn−1

φ̂(Ax)dx = (2π)
n−1
2

∫
A⊥

φ(y) dA⊥y,

where dA⊥y is the volume element induced on the subspace A⊥.

Proof. First using the dominated convergence theorem, and then applying Fubini’s theorem, we have∫
φ̂(Ax) dx = lim

ϵ→0

∫
e−

ϵ|x|2
2 φ̂(Ax) dx

= lim
ϵ→0

∫ (∫
e−i(Ax)·ke−

ϵ|x|2
2 dx

)
φ(k) dk

=(2π)
n−1
2 lim

ϵ→0

∫
e−

|AT k|2
2ϵ

ϵ
n−1
2

φ(k) dk,

where on the last line we have used the fact that the Fourier transform of a Gaussian is again a
Gaussian. Now, for any y ∈ A⊥, let A∥(y) denote the (n−1)-dimensional hyperplane parallel to the
range of A that passes through y, and denote by dA∥(y)z the induced volume element along A∥(y).
Each k ∈ Rn decomposes uniquely as k = y + z for some y ∈ A⊥ and z ∈ A∥(y). The integral
over Rn of any integrable function ψ on Rn can then be written∫

ψ(k) dk =

∫
A⊥

∫
A∥(y)

ψ(y + z)dA∥(y)z dA⊥y

Since the function e−
|AT k|2

2ϵ is constant along any line parallel to A⊥, the dominated convergence
theorem now tells us that (2π)

1−n
2

∫
φ̂(Ax) dx is equal to∫

A⊥
lim
ϵ→0

∫
A∥(y)

e−
|AT (z)|2

2ϵ

ϵ
n−1
2

φ(y + z) dA∥(y)z dA⊥y

=

∫
A⊥

lim
ϵ→0

∫
Rn−1

e−
|x|2
2ϵ

ϵ−
n−1
2

φ(y +Ax) dx dA⊥y

=

∫
A⊥

lim
ϵ→0

(ηϵ ∗ φy)(0) dA⊥y

=

∫
A⊥

φ(y)dA⊥y,

where on the third line we have used the definitions φy(x) := φ(y+Ax) and ηϵ(x) := ϵ−
n−1
2 e−

|x|2
2ϵ

of functions on Rn−1, and on the final line we have used the fact that convolution with ηϵ is an
approximate identity for L1(Rn−1).

Theorem A.2. The Fourier transform of f is the distribution

f̂(k) =
(2π)

n
2

|w|
α̂

(
w

|w|2
· k

)
δw(k),

where δw(k) is the Dirac delta distribution which concentrates along the line spanned by w.
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Proof. Let A =

[
w
|w| ,a2, . . . ,an

]
be any special orthogonal matrix for which Ae1 = w

|w| , letting

Ā = [a2, . . . ,an] denote the corresponding submatrix. Given a vector k = (k1, . . . , kn)
T ∈ Rn, use

the notation k′ = (k2, . . . , kn)
T ∈ Rn−1. Then the pairing ⟨f, φ̂⟩ is given by

(2π)−
n
2

∫ ∫
e−ix·kα(w · x)φ(k) dx dk

=(2π)−
n
2

∫ ∫
e−iy·(ATk)α(w · (Ay))φ(k) dy dk

=(2π)
1−n
2

∫ ∫ (
(2π)−

1
2

∫
e−iy1

w
|w| ·kα(|w|y1) dy1

)
× e−iy′·(ATk)′φ(k) dy′ dk

=(2π)
1−n
2

∫ ∫
1

|w|
α̂

(
w

|w|2
· k

)
φ(k)e−iy′·(ATk)′ dk dy′

=(2π)
1−n
2

∫ ∫
1

|w|
α̂

(
w

|w|2
· k

)
φ(k)e−iy′·(ĀTk) dk dy′

=(2π)
1−n
2

∫ ∫
1

|w|
α̂

(
w

|w|2
· k

)
φ(k)e−i(Āy′)·k dk dy′

=(2π)
1
2

∫
ĝ(Āy′) dy′,

where for the first equality we have made the substitution x = Ay, and in the final step we have set

g(k) := 1
|w| α̂

(
w

|w|2 · k
)
φ(k). Our integral is thus of the form given in Lemma A.1, and the result

follows.

A.2 First order gradient magnitudes vs. Fourier spectrum

Consider a signal f . Then,

f(x) =

∫ ∞

∞
f̂(k)e2πikxdk

It follows that,

|df(x)
dx

| = |2πi
∫ ∞

∞
kf̂(k)e2πikxdk| (12)

≤ |2π|
∫ ∞

∞
|kf̂(k)|dk. (13)

Therefore,

max
x∈ϵ

|df(x)
dx

| ≤ |2π|
∫ ∞

∞
|kf̂(k)|dk. (14)

A.3 Fourier transform of composite functions

Let a stack of layers be denoted as κ : Rn → Rd. Suppose we add another stack of layers η : Rd → R
on top of κ(·) to construct the MLP η ◦ κ : Rn → R. One can rewrite (η ◦ κ) in terms of the inverse
Fourier transform as,

(η ◦ κ) = (
1√
2π

)d
∫
Rd

η(t)eit·κ(x)dt
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Fourier transform of (η ◦ κ) now can be written as,

(̂η ◦ κ) =
( 1√

2π
)d+n

∫
Rn

∫
Rd

η(t)eit·κ(x)dte−ik·xdx

=
( 1√

2π
)d+n

∫
Rd

η(t)

∫
Rn

eil·κ(x)e−k·xdxdt,

which yields,

(̂η ◦ κ)(k) =
( 1√

2π

)n

⟨η̂(·), β(k, ·)⟩,

where, β(k, t) =
∫
Rn e

i(t·κ(x)−k·x). Bergner et al. [2006] showed that in the Fourier transforms of
above form, the maximum composite frequency is,

k∗
η◦κ = max

|u|=1
(k∗

η̂,u max
x

(u · κ′(x))).

Considering the 1D case, at the stationary phase of β, it can be seen that du
dx = 0, where u(x) =

tκ(x)− kx = 0. Converting to polar coordinates,

du

dx
=

d

dx
r(κ(x) sin θ − x cos θ) = 0

κ′(xs) sin θ − cos θ = 0

1

κ′(xs)
= tan θ,

where xs are the points at stationary phase. By using the Taylor approximation around xs, we get,

Ixs
∼

∫ ∞

∞
er(κ(xs) sin θ−xs cos θ+ 1

2κ
′′(xs)x

2 sin θ)dx

Ixs
∼

∫ ∞

∞
er(κ(xs) sin θ−xs cos θ

( 2π

r|κ′′(xs) sin θ|

) 1
2

ei
π
4 sgn{κ′′(xs) sin θ}

At points where κ′′(xs) differs from 0 largely, the integral vanishes as (x− xs)
2 increases. Since we

can obtain the full integral by summing Ixs for all xs such that 1
κ′(xs)

= tan θ. Hence, around the
stationary phase,

min(κ′) <
1

tan θ
< max(κ′)

which is essentially,

min(κ′) <
k

l
< max(κ′).

A.4 Multidimensional RFF

Let Ω denote the probability space Rn equipped with the Gaussian measure of standard deviation
2πσ > 0. For D ≥ 1, write elements L of Ωn as matrices [l1, . . . , lD] composed of D vectors
drawn independently from Ω. Consider the random Fourier feature (RFF) positional embedding
f1 : ΩD × Rn → R2D

f1(L,x) := [e(l1,x), . . . , e(lD,x)]
T ,

where e : Ω× Rn → R2 is the random function defined by the formula

e(l,x) := [sin(l · x), cos(l · x)].
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The positional embedding is followed by a linear transformation A : R2D → R2D yielding

f2(L,x)
i =

∑
j

aijf1(L,x)
j .

We approximate the following ReLU by a Newman polynomial

Nm(x) :=

m−1∏
i=1

(x+ exp
(
−i/

√
n
)
),

for m ≥ 5, yielding

f3(L,x)
i =

m−1∏
α=1

(∑
j

aijf1(L,x)
j + exp

(
−α/

√
n
))

=

m−2∑
β=0

κ(m,β)
(∑

j

aijf1(L,x)
j
)β

=

m−2∑
β=0

κ(m,β)×

∑
k1+···+k2D=β

(
β

k1, . . . , k2D

) 2D∏
t=1

(aitf1(L,x)
t)kt

where κ(m,β) =
(
m−2
β

)∏m−1−β
α=1 exp(−α/

√
m). It follows that the spectrum of f3 is determined

by the spectra of the powers
(
f1(L,x)

j
)k

of the components of f1. Write j = 2j1 + j2, where j1 is
the floor of j/2. Then

γ(L,x)j =
eilj1 ·x + (−1)jeilj1 ·x

2
.

Therefore, for k ≥ 0,

(γ(L,x)j)k = 2−k
k∑

a=0

(−1)j(k−a)ei(2a−k)lj1 ·x.

We then see that
2D∏
t=1

(f1(l,x)t)kt =

2D∏
t=1

2−kt

( kt∑
a=0

(−1)t(k−a)ei(2a−k)lj1 ·x
)

=C

k1,...,k2D∑
a1,...,a2D=0

2D∏
t=1

(−1)t(kt−at)ei(2at−kt)lt1 ·x

=C

k1,...,k2D∑
a1,...,a2D=0

C ′ei
∑2D

t=1(2at−kt)lt1 ·x,

where C =
∏2D

t=1 2
−kt and C ′ =

∏2D
t=1(−1)t(kt−at). The proof of Theorem A.2 can then be used to

show that the Fourier transform of f3 is a linear combination of terms of the form

k 7→ δ

(
s · k
|s|2

− 1

)
δs(k),

where s =
∑D

j=1

(
(2a2j−1 − k2j−1) + (2a2j − k2j)

)
lj for positive integers k1, . . . , k2D such that

k1 + · · ·+ k2D ≤ m− 2, and integers 0 ≤ aj ≤ kj for j = 1, . . . , 2D. It follows that the spectrum
of f3 is concentrated on frequencies

k =

D∑
j=1

(
(2a2j−1 − k2j−1) + (2a2j − k2j)

)
lj ,

and that therefore the spectrum can be made wider, with high probability, by increasing the standard
deviation σ of the distribution from which the lj are drawn.
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A.5 F-principle

F-principle is a phenomenon which states that DNNs tend to learn lower frequencies first. One of
the earliest works on this was presented by Xu et al. [2019] and Rahaman et al. [2019]. Follow up
theoretical studies indicate that the F-Principle holds under general setting with infinite samples [Luo
et al., 2019] and in the NTK regime with finite samples [Zhang et al., 2019, Luo et al., 2020] or
samples distributed uniformly on sphere [Cao et al., 2019, Bordelon et al., 2020]. We observed that
F-principle is also valid for coordinate-MLPs. Fig. 8 shows an empirical example.

Figure 8: The F-principle holds for coordinate-MLPs. Above frequency plots show the difference
between the network’s spectrum and the target spectrum while training. As evident, the network
learns the low frequencies first.

A.6 Total variation (TV) loss vs the proposed regularization

At a high-level, the goals of TV-loss and the proposed regularization are similar. However, by
regularising directly on the network outputs, TV regularisation necessarily introduces a trade-off
between perfectly fitting the training data (i.e. ensuring network outputs given data are correct) and
reducing variation between adjacent data points. In contrast, our method 1) explicitly regularises
based only on random samples taken between data points, and 2) depends only on the outputs of
the penultimate layer. Since the final layer is linear, our regularisation therefore affords greater
capacity to fit training data while simultaneously encouraging smooth (linear) interpolation between
training points, lessening the tradeoff between these objectives present in TV. Our regularization
shows superior performance over TV both qualitatively and quantitatively.

A.7 Comparison with SDF regularisation in Sitzmann et al. [2020]

In their work, Sitzmann et al. [2020] proposed a regularization scheme tailored for 3D signed distance
function (SDF) problems. In particular, they enforced that the gradient magnitude of the output
with respect to the coordinate is regularised should be 1. One can be misled that our regularization
contradicts the above, since ours try to minimize the gradients overall. However, it is straightforward
to show that our regularisation induces the same solution Sitzmann et al. [2020], while being
applicable to a larger set of problem domains. Consider a line drawn along a normal vector to the
surface of interest in 3D space. Training requires that the network outputs, representing the SDF,
increase linearly (in magnitude) on training points along this line. Since our method regularises only
on the penultimate layer, between the training points, and the final layer is linear, our regularisation
encourages a linear interpolant between these training data. Because there is precisely one linear
interpolant which fits training data along this line, our regularisation will encourage convergence to
the same solution as the regularisation proposed by Sitzmann et al. [2020].

Regularization Avg. training time (S) Performance
Eigen directions 1194.96 24.77

Random directions 127.56 24.17
Table 4: We compare the proposed approximate regularizer vs. the idea regularizer (that minimizes the
fluctuations along eigen vectors). We used the STL dataset with 10% training sampling. As shown, we the ideal
regularizer takes significantly more training time while achieving marginal performance improvement. We use
4-layer Gaussian-MLPs for this experiment.
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