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Abstract

We show that typical implicit regularization assumptions for deep neural networks
(for regression) do not hold for coordinate-MLPs, a family of MLPs that are now
ubiquitous in computer vision for representing high-frequency signals. Lack of such
implicit bias disrupts smooth interpolations between training samples, and hampers
generalizing across signal regions with different spectra. We investigate this
behavior through a Fourier lens and uncover that as the bandwidth of a coordinate-
MLP is enhanced, lower frequencies tend to get suppressed unless a suitable prior
is provided explicitly. Based on these insights, we propose a simple regularization
technique that can mitigate the above problem, which can be incorporated into
existing networks without any architectural modifications.

1 Introduction

It is well-established that deep neural networks (DNN), despite mostly being used in the over-
parameterized regime, exhibit remarkable generalization properties without explicit regularization
Neyshabur et al. [2014], Zhang et al. [2017], Savarese et al. [2019], Goodfellow et al. [2016]. This
behavior questions the classical theories that predict an inverse relationship between model complexity
and generalization, and is often referred to in the literature as the “implicit regularization" (or implicit
bias) of DNNs Li and Liang [2018], Kubo et al. [2019], Soudry et al. [2018], Poggio et al. [2018].
Characterizing this surprising phenomenon has been the goal of extensive research in recent years.

In contrast to this mainstream understanding, we show that coordinate-MLPs (or implicit neural
networks), a class of MLPs that are specifically designed to overcome the spectral bias of regular
MLPs, do not follow the same behavior. Spectral bias, as the name suggests, refers to the propensity
of DNNs to learn functions with low frequencies, making them unsuited for encoding signals with
high frequency content. Coordinate-MLPs, on the other hand, are architecturally modified MLPs
(via specific activation functions Sitzmann et al. [2020], Ramasinghe and Lucey [2021] or positional
embedding schemes Mildenhall et al. [2020], Zheng et al. [2021]) that can learn functions with
high-frequency components. By virtue of this unique ability, coordinate-MLPs are now being used
extensively in computer vision tasks for representing signals including texture generation Henzler et al.
[2020], Oechsle et al. [2019], Henzler et al. [2020], Xiang et al. [2021], shape representation Chen
and Zhang [2019], Deng et al. [2020], Tiwari et al. [2021], Genova et al. [2020], Basher et al. [2021],
Mu et al. [2021], Park et al. [2019], and novel view synthesis Mildenhall et al. [2020], Niemeyer et al.
[2020], Saito et al. [2019], Sitzmann et al. [2019], Yu et al. [2021], Pumarola et al. [2021], Rebain
et al. [2021], Martin-Brualla et al. [2021], Wang et al. [2021], Park et al. [2021]. However, as we will
show in this paper, these architectural alterations entail an unanticipated drawback: coordinate-MLPs,
trained by conventional means via stochastic gradient descent (SGD), are incapable of simultaneously
generalizing well at both lower and higher ends of the spectrum, and thus, are not automatically
biased towards less complex solutions (Fig. 1). Based on this observation, we question the popular
understanding that the implicit bias of neural networks is more tied to SGD than the architecture
Zhang et al. [2017, 2021].
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Strictly speaking, the term “generalization" is not meaningful without context. For instance, consider
a regression problem where the training points are sparsely sampled. Given more trainable parameters
than the number of training points, a neural network can, in theory, learn infinitely many interpolants
of the training points. Therefore, the challenge is to learn a function within a space restricted by
certain priors and intuitions regarding the problem at hand. The generalization then can be measured
by the extent to which the learned function is close to these prior assumptions about the task. Within
a regression problem, one intuitive solution that is widely accepted by the practitioners (at least from
an engineering perspective) is to have a form of “smooth" interpolation between the training points,
where the low-order derivatives are bounded Bishop [2007]. In classical machine learning, in order to
restrict the class of learned functions, explicit regularization techniques were used Craven and Wahba
[1978], Wahba [1975], Kimeldorf and Wahba [1970]. Paradoxically, however, over-parameterized
neural networks with extremely high capacity prefer to converge to such smooth solutions without
any explicit regularization, despite having the ability to fit more complex functions Zhang et al. [2017,
2021].

Although this expectation of smooth interpolation is valid for both a) general regression problems
with regular MLPs and b) high-frequency signal encoding with coordinate-MLPs, a key difference
exists between their end-goals. In a general regression problem, we do not expect an MLP to perfectly
fit the training data. Instead, we expect the MLP to learn a smooth curve that achieves a good trade-off
between the bias and variance (generally tied to the anticipation of noisy data), which might not
exactly overlap with the training points. In contrast, coordinate-MLPs are particularly expected to
perfectly fit the training data that may include both low and high fluctuations, while interpolating
smoothly between samples. This difficult task requires coordinate-MLPs to preserve a rich spectrum
with both low and high frequencies (often with higher spectral energy for low frequencies, as the
power spectrum of natural signals such as images tends to behave as 1/f2 Ruderman [1994]). We
show that coordinate-MLPs naturally do not tend to converge to such solutions, despite the existence
of possible solutions within the parameter space.

It should be pointed out that it has indeed been previously observed that coordinate-MLPs tend to pro-
duce noisy solutions when the bandwidth is increased excessively Tancik et al. [2020], Ramasinghe
and Lucey [2021], Sitzmann et al. [2020]. However, our work complements these previous obser-
vations: First, the existing works do not offer an explanation on why providing a coordinate-MLP
with the capacity to add high frequencies to the spectrum would necessarily affect lower frequencies.
In contrast, we elucidate this behavior through a Fourier lens, and show that as the spectrum of
the coordinate-MLPs is enhanced via hyper-parameters or depth, the lower frequencies tend to
be suppressed (for a given set of weights), hampering their ability to interpolate smoothly within
low-frequency regions. Second, we interpret this behaviour from a model complexity angle, which
allows us to incorporate network-depth into our analysis. Third, we show that this effect is common
to many types of coordinate-MLPs, i.e., MLPs with a) positional embeddings Mildenhall et al. [2020],
b) periodic activations Sitzmann et al. [2020], and c) non-periodic activations Ramasinghe and
Lucey [2021]. Finally, we propose a simple regularization term that can enforce coordinate-MLPs to
preserve both low and high frequencies in practice, enabling better generalization across the spectrum.

Our contributions are summarized below:
• We show that coordinate-MLPs are not implicitly biased towards low-complexity solutions,

i.e., typical implicit regularization assumptions do not hold for coordinate-MLPs. A bulk
of previous mainstream works try to connect the implicit bias of neural networks to the
properties of the optimization procedure (SGD), rather than the architecture Zhang et al.
[2017, 2021]. On the contrary, we provide counter-evidence that the implicit bias of neural
networks might indeed be strongly tied to the architecture.

• We present a general result (Theorem 4.1), that can be used to obtain the Fourier transform
of shallow networks with arbitrary activation functions and multi-dimensional inputs, even
when the Fourier expressions are not directly integrable over the input space. Utilizing
this result we derive explicit formulae to study shallow coordinate-MLPs from a Fourier
perspective.

• Using the above expressions, we show that shallow coordinate-MLPs tend to suppress lower
frequencies when the bandwidth is increased via hyper-parameters or depth, disrupting
smooth interpolations. Further, we empirically demonstrate that these theoretical insights
from shallow networks extrapolate well to deeper ones.
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• We propose a simple regularization technique to enforce smooth interpolations between
training samples while perfectly fitting the training points, preserving a rich spectrum.
The proposed technique can be easily applied to existing coordinate-MLPs without any
architectural modifications.

Our analysis stands out from previous theoretical research Tancik et al. [2020], Ramasinghe and
Lucey [2021], Zheng et al. [2021] on coordinate-MLPs for several reasons: a) we work in a relatively
realistic setting excluding assumptions such as infinite-width networks or linear models. Although
we do consider shallow networks, we also take into account the effect of increasing depth. b) All our
expressions are derived from first principles and do not demand the support of additional literature
such as neural tangent kernel (NTK) theory. c) we analyze different types of coordinate-MLPs within
a single framework where the gathered insights are common across each type.

2 Related works

Figure 1: Implicit regularization assumptions do not
hold for Coordinate-MLPs. The network is trained with
10% of the pixels in each instance. As the capacity of the net-
work is increased via depth or hyperparameters, coordinate-
MLPs tend to produce more complex solutions even though
they are trained with SGD. This is in contrast to the regular-
MLPs, where the networks converge to “smooth" solutions
independent of the model capacity Kubo et al. [2019], Heiss
et al. [2019]. Further, this provides evidence that the implicit
regularization of neural networks might be strongly linked
to the architecture rather than the optimization procedure, as
opposed to a mainstream understanding Zhang et al. [2017,
2021].

Understanding and characterizing the aston-
ishing implicit generalization properties of
DNNs has been an important research topic
in recent years. Despite the overwhelming
empirical evidence, establishing a rigorous
theoretical underpinning for this behavior
has been a challenge to this date. The related
research can be broadly categorized into two:
investigating implicit regularization on the
a) weight space Bishop [1995], Soudry et al.
[2018], Poggio et al. [2018], Gidel et al.
[2019] and the b) function space Maennel
et al. [2018], Kubo et al. [2019], Heiss et al.
[2019]. Notably, Maennel et al. [2018] ana-
lyzed ReLU networks under macroscopic as-
sumptions and affirmed that for given input
data, there are only finitely many, “simple"
functions that can be obtained using regular
ReLU MLPs, independent of the network
size. Kubo et al. [2019] showed that ReLU-
MLPs interpolate between training samples
almost linearly, and Heiss et al. [2019] took
a step further, proving that the interpolations
can converge to (nearly) spline approximations. Seminal works by Zhang et al. [2017] and Zhang et al.
[2021] showed that these generalization properties are strongly connected to the SGD. In contrast, we
show that coordinate-MLPs tend to converge to complex solutions (given enough capacity), despite
being trained with SGD. Further, all above works consider shallow networks in order to obtain precise
theoretical guarantees. Similarly, we also utilize shallow architectures for a part of our analysis.
However, our work differs from some of the above-mentioned theoretical work, as we do not focus
on establishing rigorous theoretical bounds on generalization. Rather, we uncover, to the best of our
knowledge, a critically overlooked shortcoming of coordinate-MLPs, and present plausible reasoning
for this phenomenon from a Fourier perspective. We give a brief exposition of coordinate-MLPs in
the next section.

3 Coordinate-MLPs

Coordinate-MLPs aim to encode continuous signals f : Rn → Rm, e.g., images, sound waves, or
videos, as their weights. The inputs to the network typically are low-dimensional coordinates, e.g.,
(x, y) positions, and the outputs are the sampled signal values at each coordinate e.g., pixel intensities.
The key difference between coordinate-MLPs and regular MLPs is that the former is designed to
encode signals with higher frequencies – mitigating the spectral bias of the latter – via specific
architectural modifications. Below, we will succinctly discuss three types of coordinate-MLPs.

Random Fourier Feature (RFF) MLPs are compositions of a positional embedding layer and
subsequent ReLU layers. Let Ω denote the probability space Rn equipped with the Gaussian measure
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of standard deviation 2πσ > 0. For D ≥ 1, write elements L of Ωn as matrices [l1, . . . , lD]
composed of D vectors drawn independently from Ω. Then, the random Fourier feature (RFF)
positional embedding γ : ΩD × Rn → R2D is

γ(L,x) := [e(l1,x), . . . , e(lD,x)]T , (1)

where e : Ω× Rn → R2 is the random function defined by the formula

e(l,x) := [sin(l · x), cos(l · x)]. (2)

The above layer is then followed by a stack of ReLU layers.

Sinusoidal MLPs were originally proposed by Sitzmann et al. [2020]. Let W and b be the weights
and the bias of a hidden layer of a sinusoidal coordinate-MLP, respectively. Then, the output of the
hidden-layer is sin(2πa(W · x+ b)), where a is a hyper-parameter that can control the spectral-bias
of the network and x is the input.

Gaussian MLPs are a recently proposed type of coordinate-MLP by Ramasinghe and Lucey [2021].

The output of a Gaussian hidden-layer is defined by e−(
(W·x+b)2

2σ2 ), where σ is a hyper-parameter.

In the next section, we will derive a general result that can be used to obtain the Fourier transform of
an arbitrary multi-dimensional shallow MLP (given that the 1D Fourier transform of the activation
function exists), which is used as the bedrock in a bulk of our derivations later.

4 Fourier transform of a shallow MLP
Let G : Rn → R be an MLP with a single hidden layer with m neurons, and a point-wise activation
function α : R → R. Suppose we are interested in obtaining the Fourier transform Ĝ of G. Since the
bias only contributes to the DC component, we formulate G as G =

∑m
i=1 w

(2)
i α(w

(1)
i · x), where

w
(1)
i are rows of the fist-layer affine weight matrix, input to the ith hidden neuron is w(1)

i ·x, and w(2)
i

are the weights of the last layer. Since the Fourier transform is a linear operation, it is straightforward
to see that

Ĝ =

m∑
i=1

w
(2)
i α̂(w

(1)
i · x). (3)

Thus, by obtaining the Fourier transform of f(x) := α(w · x), it is possible to derive the Fourier
transform of the MLP. However, doing so using the standard definition of the multi-dimensional
Fourier transform can be infeasible in some cases. For example, consider a Gaussian-MLP. Then, one

can hope to calculate the Fourier transform of f(x) as f̂(k) =
∫
Rn e

−(
(w·x)2

2σ2 +2πix·k)dx. However,
note that there exists an n− 1 dimensional subspace where (w · x) is zero and thus, the first term
inside the exponential becomes 0 in these cases. Therefore the Fourier transform does not exist as a
function. Nonetheless, f defines a tempered distribution, and its Fourier transform f̂ can therefore
be calculated by fixing a Schwartz test function φ on Rn and using the identity ⟨f̂ , φ⟩ = ⟨f, φ̂⟩,
defining the Fourier transform of the tempered distribution f . Here ⟨·, ·⟩ denotes the pairing between
distributions and test functions (see Chapter 8 of Friedlander and Joshi [1999] for this background).
Formally, we present the following theorem, whose proof we defer to the appendix.

Theorem 4.1. The Fourier transform of f(x) := α(w · x) where w,x ∈ Rn is the distribution

f̂(k) =
(2π)

n
2

|w|
α̂

(
w

|w|2
· k
)
δw(k),

where δw(k) is the Dirac delta distribution which concentrates along the line spanned by w.

Next, using the above result, we will gather useful insights into different types of coordinate-MLPs
from a Fourier perspective.
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5 Effect of hyperparameters

In this section, we will primarily explore the effect of hyperparameters on the spectrum of coordinate-
MLPs, among other key insights.

5.1 Gaussian-MLP

The Fourier transform of the Gaussian activation is α̂(k) =
√
2πσe−(

√
2πkσ)2 . Now, using Theorem

4.1, we can obtain the Fourier transform of a Gaussian-MLP with a single hidden layer as

m∑
i=1

w
(2)
i

(2π)
n+1
2 σ

|w(1)
i |

e
−
(
√
2π

w
(1)
i

|w(1)
i

|2
·kσ
)2

δ
w

(1)
i

(k). (4)

Discussion: For fixed w
(1)
i ’s and σ, the spectral energy is decayed as k is increased. A practitioner

can increase the energy of higher frequencies by decreasing σ. Second, although decreasing σ
can increase the energy of higher frequencies (for given weights), it simultaneously suppresses the
energies of lower frequencies due to the σ term outside the exponential. Third, one can achieve
the best of both worlds (i.e., incorporate higher-frequencies to the spectrum while maintaining
higher energies for lower-frequencies) by appropriately tuning w

(1)
i ’s. To make the above theoretical

observations clearer, we demonstrate a toy example in Fig. 2.

5.2 Sinusoidal-MLPs

Similar to the Gaussian-MLP, the Fourier transform of a sinusoidal-MLP with a single hidden-layer
can be obtained as

m∑
i=1

w
(2)
i

(2π)
n
2

2|w(1)
i |

δ
w

(1)
i

(k)

(
δ

(
w

(1)
i

|w(1)
i |2

· k− a

)
+ δ

(
w

(1)
i

|w(1)
i |2

· k+ a

))
, (5)

Discussion: According to Eq. 5, the only frequencies present in the spectrum are multiples
k = aw

(1)
i of the weight vectors w(1)

i . It follows that the magnitudes of the frequencies present in
the spectrum are lower-bounded by the number amin{|wi|}. Thus for a given set of weights, one
can add higher frequencies to the spectrum by increasing a. At the same time, the spectrum can be
balanced by minimizing some wi’s accordingly.

5.3 RFF-MLPs

We consider a shallow RFF-MLP Rn → R with a single hidden ReLU layer. Recall that the
positional embedding scheme is defined following Eq. 1 and 2. The positional embedding layer γ is
then followed by a linear transformation A : R2D → R2D yielding

f2(L,x)
i =

∑
j

aijγ(L,x)
j ,

which is then followed by ReLU activations and an affine transformation. ReLU activations can
be approximated via linear combinations of various polynomial basis functions Ali et al. [2020],
Telgarsky [2017]. One such set of polynomials is Newman polynomials defined as

Nm(x) :=

m−1∏
i=1

(x+ exp
(
−i/

√
n
)
).

It is important to note that although we stick to the Newman polynomials in the subsequent derivations,
the obtained insights are valid for any polynomial approximation, as they only depend on the power
terms of the polynomial approximation. Moving on, for m ≥ 5, we show in the appendix that the
spectrum of the RFF-MLP is concentrated on frequencies

k =

D∑
j=1

(
(2a2j−1 − k2j−1) + (2a2j − k2j)

)
lj , (6)
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Figure 2: Toy example (a Gaussian-MLP R2 → R with a single hidden layer consisting of two neurons):
The behavior of the spectrum against σ and the weights of the network is shown. w(1)

0 and w(1)
1 are the first

and second rows of the first-layer affine weight matrix. Left: By decreasing σ, the network can include higher
frequencies to the spectrum. However, as the high-frequency components are added to the spectrum, the relative
energies of the low-frequency components decrease. Middle: The network can still gain high energies for lower
frequencies at lower σ by decreasing |w(1)

0 | and |w(1)
1 |. However, in this case, the high-frequency components

are removed from the spectrum. Right: By appropriately tuning |w(1)
0 | and |w(1)

1 |, the spectrum can include
higher-frequency components while preserving the low-frequency energies. All the intensities are normalized
for better comprehension.

for non-negative integers k1, . . . , k2D adding to m − 2, and for all non-negative integers aj ≤ kj
for all j = 1, . . . , 2D. Here we recall that D is the dimension determined by the choice of RFF
positional embedding.

Discussion: Recall that if U, V ∼ N (0, σ2), then, V ar(t1U + t2V ) = (t21 + t22)σ
2. Therefore

the overall spectrum can be made wider by increasing the standard deviation σ of the distribution
from which the lj are drawn. However, since the D is constant, a larger σ makes frequencies
less concentrated in the lower end, reducing the overall energy of the low frequency components.
Nonetheless, the spectrum can be altered via adjusting the network weights.

Thus far, we established that in all three types of coordinate-MLPs, a rich spectrum consisting of
both low and high frequencies can be preserved by properly tuning the weights and hyperparameters.
However, coordinate-MLPs tend to suppress lower frequencies when trained without explicit regular-
ization (see Fig. 5). Moreover, note that in each Fourier expression, the Fourier components cease to
exist if k is not in the direction of w(1)

i , due to the Dirac-delta term. Therefore, the angles between
w

(1)
i ’s should be increased, in order to add frequency components in different directions.

6 Effect of depth

This section investigates the effects of increasing depth on the spectrum of coordinate-MLPs. Com-
prehensive derivations of the expressions in this section can be found in the Appendix. Let a stack of
layers be denoted as κ : Rn → Rd. Suppose we add another stack of layers η : Rd → R on top of
κ(·) to construct the MLP η ◦ κ : Rn → R. The Fourier transform of the composite function then
becomes,

(̂η ◦ κ)(k) =
( 1√

2π

)n

⟨η̂(·), β(k, ·)⟩, (7)

where, β(k, t) =
∫
Rn e

i(t·κ(x)−k·x). That is, the composite Fourier transform is the projection of η̂

on to β(·). The maximum magnitude frequency k∗
η◦κ present in the spectrum of (̂η ◦ κ) is

k∗
η◦κ = max

|u|=1
(k∗

η̂,u max
x

(u · κ′(x))), (8)

where kη̂,u is the maximum frequency of η̂ along u Bergner et al. [2006]. Thus, the addition of a
set of layers η with sufficiently rich spectrum tends to increase the maximum magnitude frequency
expressible by the network. Next, we focus on the impact on lower frequencies by such stacking. It
is important to note that the remainder of the discussion in this section is not a rigorous theoretical
derivation, but rather, an intuitive explanation.
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We consider the 1D case for simplicity. Our intention is to explore the effect of adding more layers on
⟨η̂(·), β(k, ·)⟩. Note that β is an integral of an oscillating function with unit magnitude. The integral
of an oscillating function is non-negligible only at points where the phase is close to zero, i.e., points
of stationary phase. It can be deduced that at such points the following condition needs to be satisfied,

min(κ′(x)) <
k

t
< max(κ′(x)). (9)

From the previous analysis, we established that progressively adding layers increases the maximum
frequency of the composite function. This causes κ to have rapid fluctuations, encouraging min(κ′(x))
to increase as the network gets deeper (note that the definition of κ keeps changing as more layers
are added). Note that as min(κ′) is increased, for smaller k’s, Eq. 9 is not satisfied. On the other
hand, β is non-negligible only at points where Eq. 9 is satisfied. Thus, according to Eq. 9, smaller
k’s causes the quantity ⟨η̂(·), β(k, ·)⟩ to be smaller, which encourages suppressing the energy of
the lower frequencies of (̂η ◦ κ). Rigorously speaking, increasing the bandwidth of the network by
adding more layers does not necessarily have to increase min(κ′(x)). However, our experimental
results strongly suggest that this is the case. Summarizing our insights from Sec. 4, 5 and Sec. 6, we
state the following remarks.
Remark 6.1. In order to gain a richer spectrum, the columns of the affine weight matrices of the
coordinate- MLPs need to point in different directions. Ideally, the column vectors should lie along
the frequency directions in the target signal.

Remark 6.2. The spectrum of the coordinate-MLPs can be altered either by tuning the hyperparam-
eters or changing the depth. In practice, when higher frequencies are added to the spectrum, the
energy of lower frequencies tend to be suppressed, disrupting smooth interpolations between samples.
However, better solutions exists in the parameter space, thus, an explicit prior is needed to bias the
network weights towards those solutions.

In the next section, we will focus on proposing a regularization mechanism that can aid the coordinate-
MLPs in finding a solution with a better spectrum.

Figure 3: The effect of explicit regularization. When trained under conventional means, coordinate MLPs
cannot generalize well at both higher and lower ends of the spectrum. This hinders the generalization performance
of coordinate-MLPs when the target signal comprises regions with different spectral properties. When the
network has insufficient bandwidth, the network cannot correctly capture high-frequency modes. When the
network is tuned to have a higher bandwidth, the network fails at modeling lower frequencies. In contrast, the
network can preserve a better spectrum with the proposed regularization scheme. This example uses a 4-layer
sinusoid-MLP trained with 33% of the total samples.

7 Regularizing coordinate-MLPs

The spectrum of a function is inherently related to the magnitude of its derivatives. For instance,
consider a function f : R → R defined on a finite interval ϵ. Then, it can be shown that
maxx∈ϵ |df(x)dx | ≤ |2π|

∫∞
∞ |kf̂(k)|dk (see Appendix). For multi-dimensions, we can encourage

the spectrum to have a higher or lower frequency support by appropriately constraining the fluctu-
ations along the corresponding directions. We shall now discuss how this fact may be utilized in
regularizing coordinate-MLPs.

Let us consider a coordinate-MLP f : Rn → R, which we factorise as f = f̃ ◦ g, where f̃ is the final
layer. Then by the chain rule:∣∣∣ df

dx

∣∣∣ =
√[∂f̃

∂y
· ∂g
∂x

][∂f̃
∂y

· ∂g
∂x

]T
=

√
∂f̃

∂y
· JJT ·

[∂f̃
∂y

]T
, (10)
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Figure 4: Qualitative results for encoding signals with uneven sampling (zoom in for a better view). A
Gaussian-MLP is trained to encode an image, where the left half of the image is sampled densely, and the
right half is sampled with 10% pixels. The reconstruction results are shown. When the bandwidth of the
Gaussian-MLP is adjusted to match the sampling procedure of a particular half, the other half demonstrates poor
reconstruction. In contrast, when regularized, coordinate-MLPs can preserve both low and high frequencies,
giving a balanced reconstruction. Contrast the green and red areas across each setting.

where J is the Jacobian of g. Let A = JJT . In order to minimize | dfdx |, it suffices to minimize the
magnitude of the components of J, which is equivalent to minimizing the trace of A. Recall that
tr(A) =

∑
k λk, where λk are the eigenvalues of A. One has lim|ϵ|→0

|g(x)−g(x+ϵuk)|
|ϵuk| =

√
λk,

where uk are the eigenvectors of A. Therefore, minimizing an eigenvalue of A is equivalent to
restricting the fluctuations of g along the direction of its associated eigenvector. By this logic, the
ideal regularization procedure would be to identify the directions in the spectrum of the target signal
where the frequency support is low, and restrict λk’s corresponding to those directions. According to
our derivations in the previous sections, this would only be possible by regularizing wi’s, since in
practice, we use hyperparameters for coordinate-MLPs that allow higher bandwidth. However, this is
a cumbersome task and we empirically found that there is a much simpler approximation for this
procedure that can give equivalent results (see Appendix) as,

Lr =
|g(x̄)− g(x̄+ ξ)|

|ξ| , (11)

where x̄ are randomly sampled from the coordinate space and ξ ∼ N (0,Σ) where Σ is diagonal with
small values. The total loss function for the coordinate-MLP then becomes Ltotal = LMSE + εLr

where ε is a small scalar coefficient and LMSE is the ususal mean squared error loss. The total loss
can also be interpreted as encouraging the networks to obtain the smoothest possible solution while
perfectly fitting the training samples. By the same argument, one can apply the above regularization
on an arbitrary layer, including the output, although we empirically observed that the penultimate
layer performs best. Although the proposed loss has a similar goal to the popular total-variation loss,
the former converges to more desired solutions (see Appendix).

8 Experiments
In this section, we will show that the insights developed thus far extend well to deep networks in
practice.

8.1 Encoding signals with uneven sampling
The earlier sections showed that coordinate-MLPs tend to suppress low frequencies when the network
attempts to add higher frequencies to the spectrum. This can lead to poor performance when the
target signal is unevenly sampled because, if the sampling is dense, the network needs to incorporate
higher frequencies to properly encode the signal. Thus, at regions where the sampling is sparse,
the network fails to produce smooth interpolations, resulting in noisy reconstructions. On the other
hand, if the bandwidth of the network is restricted via hyperparameters or depth, the network can
smoothly interpolate in sparse regions, but fails to encode information with high fidelity at dense
regions. Explicit regularization can aid the network in finding a properly balanced spectrum in the
solution space. Fig. 3 shows an example for encoding a 1D signal. Fig. 4 illustrates a qualitative
example in encoding a 2D image. Table 1 depicts quantitative results on the natural dataset by Tancik
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Figure 5: Spectra of the coordinate-MLPs against hyperparameters and depth. We train each network
instance to encode a sound wave with 33% sampling. The heat indicates the intensity of the corresponding
frequency component after trained with the MSE loss. As illustrated, when the capacity of the network is
increased via hyperparameters or depth, the networks tend to converge to solutions with suppressed low-
frequency components.

W/O Regularization (k ↓)
Type L-PSNR R-PSNR T-PSNR

Gaussian-MLP 30.12 22.47 27.72
Sinusoid-MLP 30.49 21.93 26.89

RFF-MLP 29.89 22.33 26.44
W/O Regularization (k ↑)

Type L-PSNR R-PSNR T-PSNR
Gaussian-MLP 33.43 18.14 22.80
Sinusoid-MLP 32.17 19.30 23.49

RFF-MLP 32.24 19.11 22.19
Regularized

Type L-PSNR R-PSNR T-PSNR
Gaussian-MLP 33.11 23.31 30.15
Sinusoid-MLP 31.59 22.66 29.94

RFF-MLP 31.99 22.91 29.59
Table 1: Encoding images with uneven sampling. In each training instance, the left half of the image is
sampled densely, and the right half is sampled with 10% pixels. With unregularized coordinate-MLPs, when
the hyperparameters are tuned to match the sampling of a particular half, the reconstruction of the other half is
poor. In contrast, the encoding performance is balanced when regularized. We use 4-layer networks for this
experiment.

et al. [2020]. L-PSNR, R-PSNR, and T-PSNR means PSNR evaluated on the left, right and the total
image, respectively.

8.2 Encoding signals with different local spectral properties

The difficulty in generalizing well across different regions in the spectrum hinders encoding natural
signals such as images when the sampling is sparse, as they tend to contain both “flat" and “fluctuating"
regions, and the network has no prior on how to interpolate in these different regions. See Fig. 6 and
Table 2 for qualitative and quantitative results. As evident, the coordinate-MLP struggles to smoothly
interpolate between samples under a single hyperparameter setting. We also assess the performance
of the regularization on NeRF style data. The results are depicted in Fig. 7 and Table. 3.

8.3 Effect of increasing capacity

Our derivations in Sec. 4 and 6 showed that shallow coordinate-MLPs tend to suppress lower
frequencies when the capacity of the network is increased via depth or hyperparameters. Our
empirical results show that this is indeed the case for deeper networks as well (see Fig. 5).

9



Figure 6: A single hyperparameter setting cannot generalize well across the spectrum unless regularized
(better viewed in zoom). With sparse sampling (10% of the total pixels), coordinate-MLPs exhibit inferior
reconstruction performance across regions with different spectra. In comparison, regularized networks can
achieve the best of both worlds. Compare the highlighted areas across each setting.

STL
Type W/O Regularization Regularized

Gaussian-MLP 22.11 24.17
Sinusoid-MLP 21.97 25.01

RFF-MLP 22.03 23.31
ImageNet

Gaussian-MLP 24.59 26.77
Sinusoid-MLP 23.81 26.90

RFF-MLP 23.11 25.94
Table 2: Encoding images with sparse sampling. We compare the performance over the STL dataset Coates
et al. [2011] and a sub-sampled version of ImageNet with 10% sampling. Regularized coordinate-MLPs show
superior performance due to better interpolation properties. We use 4-layer coordinate-MLPs for this experiment.

Loss PSNR SSIM
MSE + L1 30.91 0.947
MSE + L2 30.14 0.935

MSE 30.87 0.940
MSE+TV loss 29.11 0.909

MSE+proposed reg. 32.01 0.951

Table 3: Quantitative comparison in novel view syn-
thesis on the real synthetic dataset [Mildenhall et al.,
2020]. The proposed regularization achieves better re-
sults. In contrast, TV loss worsens the performance.
Note that we use TV loss with 0.001 weight, and its per-
formance converges to vanilla MSE loss as the weight
gets smaller. L1 regularization improves the results
slightly, but still is inferior to the proposed regularizer.

Figure 7: Our regularization is able to achieve bet-
ter reconstructions (NeRF data). Top row: Proposed
regularization suppresses the unnecessary higher fre-
quencies. Bottom row: we can obtain sharper results
by increasing the frequency support of the positional
embedding layer and then applying the regularization.
Cropped and zoomed in for better viewing.

9 Limitations
Currently, our work theoretically analyzes coordinate-networks within a constrained shallow setting.
Although the insights we gather from this restricted setting can be empirically extrapolated to deeper
networks (as we have shown), future research should focus on deriving rigorous formulae to analyze
practical, deeper coordinate networks. Further, the current approach involves manually tuning the
weights of the loss components, which requires a fair amount of domain knowledge. Perhaps, a more
in-depth study can reveal general guidelines for tuning these parameters.

10 Conclusion
We show that the traditional implicit regularization assumptions do not hold in the context of
coordinate-MLPs. We focus on establishing plausible reasoning for this phenomenon from a Fourier
angle and discover that coordinate-MLPs tend to suppress lower frequencies when the capacity is
increased unless explicitly regularized. We further show that the developed insights are valid in
practice.
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