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Abstract

We study Reinforcement Learning for partially observable dynamical systems
using function approximation. We propose a new Partially Observable Bilinear
Actor-Critic framework, that is general enough to include models such as
observable tabular Partially Observable Markov Decision Processes (POMDPs),
observable Linear-Quadratic-Gaussian (LQG), Predictive State Representations
(PSRs), as well as a newly introduced model Hilbert Space Embeddings of
POMDPs and observable POMDPs with latent low-rank transition. Under this
framework, we propose an actor-critic style algorithm that is capable of performing
agnostic policy learning. Given a policy class that consists of memory based
policies (that look at a fixed-length window of recent observations), and a value
function class that consists of functions taking both memory and future observa-
tions as inputs, our algorithm learns to compete against the best memory-based
policy in the given policy class. For certain examples such as undercomplete
observable tabular POMDPs, observable LQGs and observable POMDPs with
latent low-rank transition, by implicitly leveraging their special properties, our
algorithm is even capable of competing against the globally optimal policy without
paying an exponential dependence on the horizon in its sample complexity.

1 Introduction
Large state space and partial observability are two key challenges of Reinforcement Learning (RL).
While recent advances in RL for fully observable systems have focused on the challenge of scaling RL
to large state space in both theory and in practice using rich function approximation, the understanding
of large-scale RL under partial observability is still limited. In POMDPs, for example, a core issue is
that the optimal policy is not necessarily Markovian since the observations are not Markovian.

A common heuristic to tackle large-scale RL with partial observability in practice is to simply
maintain a time window of the history of observations, which is treated as a state to feed into the
policy and the value function. Such a window of history can be often maintained explicitly via
truncating away older history (e.g., DQN uses a window with length 4 for playing video games
[52]; Open AI Five uses a window with length 16 for LSTMs [5]). Since even for planning under
partial observations and known dynamics, finding the globally optimal policy conditional on the
entire history is generally NP-hard (due to the curse of the history) [46, 55, 23], searching for a short
memory-based policy can be understood as a reasonable middle ground that balances computation
and optimality. The impressive empirical results of these prior works also demonstrate that in practice,
there often exists a high-quality policy (not necessarily the globally optimal) that is only a function of
a short window of recent observations. However, these prior works that search for the best memory-
based policy unfortunately cannot ensure sample efficient PAC guarantees due to the difficulty of
strategic exploration in POMDPs. The key question that we aim to answer in this work is:
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Can we design provably efficient RL algorithms that agnostically learn the best fixed-length
memory-based policy with function approximation?

We provide affirmative answers to the above question. More formally, we study RL for partially
observable dynamical systems that include not only the classic Partially Observable MDPs (POMDPs)
[53, 56, 58], but also a more general model called Predictive State Representations (PSRs) [45]. We
design a model-free actor-critic framework, named PO-Bilinear Actor-Critic Class, where we have
a policy class (i.e., actors) that consists of policies that take a fixed-length window of observations
as input (memory-based policy), and a newly introduced future-dependent value function class
(i.e., critics) that consists of functions that take the fixed-length window of history and (possibly
multi-step if the system is overcomplete) future observations as inputs. A future-dependent value
function class is an analog of the value function class tailored to partially observable systems that
only relies on observable quantities (i.e., past and future observations and actions). In our algorithm,
we agnostically search for the best memory-based policy from the given policy class.

Our framework is based on the idea of a newly introduced notion of future-dependent value function
equipped with future observations. While the idea of using future observations has been used in
the literature on POMDPs, our work is the first to use this idea to learn a high-quality policy in a
model-free manner. Existing works discuss how to use future observations only in a model-based
manner [8, 27]. By leveraging these model-based viewpoints, while recent works discuss strategic
exploration to learn near-optimal policies, their results are either limited to the tabular setting (and are
not scalable for large state spaces) [36, 24, 3, 74, 47] or are tailored to specific non-tabular models
and unclear how to incorporate general function approximation [60, 42, 9]. We break these barriers
by devising a new actor-critic-based model-free view on POMDPs. We demonstrate the scalability
and generality of our PO-bilinear actor-critic framework by showing PAC-guarantee on many models
as follows (see Table 1 for a summary).

Observable Tabular POMDPs. In tabular observable POMDPs, i.e., POMDPs where multi-
step future observations retain information about latent states, the PO-bilinear rank decomposi-
tion holds. We can ensure the sample complexity is Poly(S,AM , OM , AK , OK , H, 1/σ1) where
σ1 = minx ∥Ox∥1/∥x∥1 (O is an emission matrix),and S,A,O are the cardinality of state, action,
observation space, respectively, H is the horizon, and K is the number of future observations.1 In
the special undercomplete (O ≥ S) case, our framework is also flexible enough to set the mem-
ory length according to the property of the problems in order to search for the globally optimal
policy. More specifically, using the latest result from [23] about belief contraction, we can set
M = Õ((1/σ4

1) ln(SH/ϵ)) with ϵ being the optimality threshold. This allows us to compete against
the globally optimal policy without paying an exponential dependence on H .

Observable Linear Quadratic Gaussian (LQG). In observable LQG – a classic partial observable
linear dynamical system, our algorithm can compete against the globally optimal policy with
a sample complexity scaling polynomially with respect to the horizon, dimensions of the state,
observation, and action spaces (and other system parameters). This is achieved by simply setting the
memory length M to H . The special linear structures of the problem allow us to avoid exponential
dependence on H even when using the full history as a memory. While the global optimality results
in tabular POMDPs and LQG exist by using different algorithms, to the best of our knowledge, this
is the first unified algorithm that can solve both tabular POMDPs and LQG simultaneously without
paying an exponential dependence on horizon H .

Observable Hilbert Space Embedding POMDPs (HSE-POMDPs). Our framework ensures the
agnostic PAC guarantee on HSE-POMDPs where policy induced transitions and omission distributions
have condition mean embeddings [8, 7]. This model naturally generalizes tabular POMDPs and
LQG. We show that the sample complexity scales polynomially with respect to the dimensions of the
embeddings. This is the first PAC guarantee in HSE-POMDPs.

Predictive State Representations (PSRs). We give the first PAC-guarantee on PSRs. PSRs model
partially observable dynamical systems without even using the concept of latent states and strictly
generalize the POMDP model. Our work significantly generalizes a prior PAC learning result for

1 In Section G, we discuss how to get rid of OM , OK using a model-based learning perspective. The intuition
is that a tabular POMDP’s model complexity has nothing to do with M or K, i.e., number of parameters in
transition and omission distribution is S2A+OA (even if we consider the time-inhomogeneous setting, it scales
with H(S2A+OA), but no OM and OK ) and the PO-bilinear rank is still S.
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Model Observable
tabular POMDPs

Observable
LQG

Low-rank M -step
decodable POMDPs

Observable
HSE-POMDPs PSRs

Low rank
observable POMDPs

PO-Bilinear Rank (OA)MS(†)
(Can be S) O(Md2ad

2
s)(†) Rank (†) Feature dimension

on (z, s)
(OA)M×

# of core tests Rank (†)

PAC Learning Known Known Known New New New

Table 1: Summary of settings that are from PO-Bilinear AC class. The 2nd row gives the parameters
that bound the PO-Bilinear rank. HereM denotes the length of memory used to define memory-based
policies π(·|z̄h) where z̄h = (oh−M :h, ah−M :h−1) denotes the M -step memory. In the 3rd row,
“known” means that sample-efficient algorithms already exist. “ New” means our result gives the first
sample-efficient algorithm. However, even in “known” case, agnostic guarantees are new; hence,
when the policy class is small, we can gain some benefit. The symbol † means we can compete with
the globally optimal policy without paying an exponential dependence on horizon H . For the tabular
case, the PO-bilinear rank can be improved to S when we use the most general definition (Refer
to Section G. For LQG, da and ds are the dimension of action and state spaces. For PSRs, O and
A denote the size of observation and action spaces.

reactive PSRs (i.e., reactive PSRs require a strong condition that the optimal policy only depends on
the latest observation) which is a much more restricted setting [33].

M -step decodable POMDPs [19]. Our framework can capture M -step decodable POMDPs where
there is a (unknown) decoder that can perfectly decode the latent state by looking at the latest M -
memory. Our algorithm can compete against the globally optimal policy with the sample complexity
scaling polynomially with respect to horizon H , S,AM , and the statistical complexities of function
classes, without any explicit dependence on O. This PAC result is similar to the one from [19].

Observable POMDPs with low-rank latent transition. Our framework captures observable
POMDPs where the latent transition is low-rank. This is the first PAC guarantee in this model. Under
this model, we first show that with M = Õ

(
(1/σ4

1) ln(dH/ϵ)
)

where d is the rank of the latent
transition matrix, there exists an M -memory policy that is ϵ-near optimal with respect to the globally
optimal policy. Then, starting with a general model class that contains the ground truth transition and
omission distribution (i.e., realizability in model class), we first convert the model class to a policy
class and a future-dependent value function class, and we then show that our algorithm competes
against the globally optimal policy with a sample complexity scaling polynomially with respect
to H, d, |A|(1/σ4

1) ln(dH/ϵ), 1/σ1, and the statistical complexity of the model class. Particularly, the
sample complexity has no explicit dependence on the size of the state and observation space, instead
it just depends on the statistical complexity of the given model class.

1.1 Related Works
We discuss related works about online RL for POMDPs. Additional works related to system
identification, generalization and function approximation of RL in MDPs, PSRs and future-dependent
value functions are provided in Section A.

Prior works [38, 20] showed AH -type sample complexity bounds for general POMDPs. Exponential
dependence can be circumvented with more structures. First, in the tabular setting, under observability
assumptions, in [3, 24, 34, 47, 22], favorable sample complexities are obtained by leveraging the
spectral learning technique [29] (see section 1.1 in [34] for an excellent summary). Second, in
LQG, which is a partial observable version of LQRs, in [42, 60], sub-linear regret algorithms are
proposed. These works use random policies for exploration, which is sufficient for LQG. Since
random exploration strategy is not enough for tabular POMDPs, it is unclear if the existing techniques
from LQG can be applied to solve general POMDPs. Third, the recent work [19] provides a new
model called M -step decodable POMDP (when M = 1, it is Block MDP) with an efficient algorithm.

Our framework captures all above mentioned POMDP models. In addition, we propose a new model
called HSE-POMDPs which extends prior works on HSE-HMM[7] to POMDPs and includes LQG
and tabular POMDPs. Our algorithm delivers the first PAC bound for this model. Finally, we remark
it is unclear whether our framework can capture several existing POMDP models [9, 41].

2 Preliminary
We introduce the background for POMDPs. We consider an episodic POMDP specified by M =
⟨S,O,A, H,T,O⟩, where S is the unobserved state space, O is the observation space, A is the
action space, H is the horizon, T : S × A → ∆(S) is the transition probability, O : S → ∆(O) is
the emission probability, and r : O ×A → R is the reward. Here, T,O are unknown distributions.
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For notation simplicity, we consider the time-homogeneous case in this paper; Extension to the
time-inhomogeneous setting is straightforward.

o3 a3 o4 a4 o5 a5 o6 a6

z̄6

z5

Figure 1: Case with M= 3. A
3-memory policy determines
action a6 based on z̄6.

In our work, we consider M -memory policies. Let Zh =
(O × A)min{h,M} and Z̄h = Zh−1 × O. An element zh ∈
Zh is represented as zh = [omax(h−M+1,1):h, amax(h−M+1,1):h],
and an element z̄h ∈ Z̄h is represented as z̄h =
[omax(h−M,1):h, amax(h−M,1):h−1] (thus, z̄h = [zh−1, oh]). Fig-
ure 2 illustrates this situation. An M -memory policy is defined
as π = {πh}Hh=1 where each πh is a mapping from Z̄h to a distribu-
tion over actions ∆(A).

In a POMDP, an M -memory policy generates the data as follows.
Each episode starts with the initial state s1 sampled from some
unknown distribution. At each step h ∈ [H], from sh ∈ S , the agent
observes oh ∼ O(·|sh), executes action ah ∼ πh(·|z̄h), receives
reward r(sh, ah), and transits to the next latent state sh+1 ∼ T(·|sh, ah). Note that the agent does
not observe the underlying states but only the observations {oh}h≤H . We denote J(π) as the value
of the policy π, i.e., E[

∑H
h=1 rh; a1:H ∼ π] where the expectation is taken w.r.t. the stochasticity of

the policy π, emissions distribution O and transition dynamics T.

We define a value function for a policy π at step h to be the expected cumulative reward to go under
the policy π starting from a z ∈ Zh−1 and s ∈ S, i.e. V πh : Zh−1 × S → R where V πh (z, s) =

E[
∑H
h′=h rh′ | zh−1 = z, sh = s; ah:H ∼ π]. The notation E[· ; ah:H ∼ π] means the expectation

is taken under a policy π from h to H . Compared to the standard MDP setting, the expectation is
conditional on not only sh but also zh−1 since we consider M -memory policies. The corresponding
Bellman equation for V πh is V πh (zh−1, sh) = E

[
rh + V πh+1(zh, sh+1) | zh−1, sh; ah ∼ π

]
The Actor-critic function approximation setup. Our goal is to find a near optimal policy that
maximizes the policy value J(π) in an online manner. Since any POMDPs can be converted into
MDPs by setting the state at level h to the observable history up to h, any off-the-shelf online provably
efficient algorithms for MDPs can be applied to POMDPs. By defining Hh as the whole history up to
step h ∈ [H] (i.e., a history τh ∈ Hh is in the form of o1:h, a1:h−1) , these naïve algorithms ensure
that output policies can compete against the globally optimal policy π⋆gl = argmaxπ∈Π̄ J(π) where
Π̃ = {Π̄h}, Π̃h = [Hh → ∆(A)]. However, this conversion results in the error with exponential
dependence on the horizon H , which is prohibitively large in the long horizon setting.

Instead of directly competing against the globally optimal policy, we aim for agnostic policy learning,
i.e., compete against the best policy in a given M -memory policy class. Our function approximation
setup consists of two function classes, (a) A policy class Π consisting of M -memory policies
Π := {Πh}Hh=1 where Πh ⊂ [Z̄h → ∆(A)] (i.e., actors), (b) A set of value future-dependent value
functions G = {Gh}Hh=1 where Gh ⊂ [Z̄h → R], whose role is to approximate V πh (i.e., critics). Our
goal is to provide an algorithm that outputs a policy π̂ = {π̂h} that has a low excess risk, where
excess risk is defined by R(π) := J(π̂)− J(π⋆) where π⋆ = argmaxπ∈Π J(π) is the best policy in
class Π. To motivate this agnostic setting, M -memory policies are also widely used in practice, e.g.,
DQN [52] sets M = 4. Besides, there are natural examples where M -memory policies are close to
the globally optimal policy with M being only polynomial with respect to other problem dependent
parameters, e.g., observable POMDPs [23] and LQG [42, 60, 48]. We will show the global optimality
in these two examples later, without any exponential dependence on H in the sample complexity.

Remark 1 (Limits of existing MDP actor-critic framework). While general actor-critic framework
proposed in MDPs [33] is applicable to POMDPs via the naïve POMDP to MDP reduction, it is
unable to leverage any benefits from the restricted policy class. This naïve reduction (from POMDP
to MDP) uses full history and will incur sample complexity that scales exponentially in the horizon.

Additional notation. Let [H] = {1, · · · , H} and [t] = {1, · · · , t}. Give a matrix A, we de-
note its pseudo inverse by A† and the operator norm by ∥A∥. We define the ℓ1 norm ∥A∥1 =
maxx:x ̸=0 ∥Ax∥1/∥x∥1. The outer product is denoted by ⊗. Let dπh(·) ∈ Z̄h × S be the marginal
distribution at h and δ(·) be the Dirac delta function. We denote the policy δ(a = a′) by do(a′). We
denote a uniform action by U(A). Given a function class G, we define ∥G∥∞ = supg∈G ∥g∥∞.
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3 Future-Dependent Value Functions and the PO-bilinear Framework
Unlike MDPs, we cannot directly work with value functions V πh (s) in POMDPs, since they depend
on the unobserved state s. To handle this issue, below we first introduce new future-dependent value
functions by using future observations, and then discuss the PO-bilinear framework.

3.1 Future-Dependent Value Functions
Definition 1 (K-step future-dependent value functions). Fix a set of policies πout = {πouti }Ki=1

where πouti : O → ∆(A). Value future-dependent value functions gπh : Zh−1 ×OK ×AK−1 → R
at step h ∈ [H] for a policy π are defined as the solution to the following integral equation:

∀zh−1 ∈ Zh−1, sh ∈ S, E[gπh(zh−1, oh:h+K−1, ah:h+K−2) | zh−1, sh; ah:h+K−2 ∼ πout] = V πh (zh−1, sh),

where the expectation is taken under the policy πout.

Future-dependent value functions do not necessarily exist, nor are needed to be unique. At an intuitive
level, K-step future-dependent value functions are embeddings of the value functions onto the
observation space, and its existence essentially means that K-step futures have sufficient information
to recover the latent state dependent value function. The proper choice of πout would depend on
the underlying models. For example, we use uniform policy in the tabular case, and δ(a = 0) in
LQG. For notational simplicity, we mostly focus on the case of K = 1, though we will also discuss
the general case of K ≥ 2. The simplified definition for 1-step future-dependent value functions is
provided in the following. Note that this definition is agnostic to πout.
Definition 2 (1-step future-dependent value functions). One-step future-dependent value functions
gπh : Zh−1 ×O → R at step h ∈ [H] for a policy π are defined as the solution to the following:

∀zh−1 ∈ Zh−1, sh ∈ S : E[gπh(zh−1, oh) | zh−1, sh] = V πh (zh−1, sh). (1)

In Section 4, we will demonstrate the form of the future-dependent value function for various
examples. The idea of encoding latent state information using the statistics of (multi-step) futures
have been widely used in learning models of HMMs [63, 29], PSRs [8, 7, 27, 67], and system
identification [72]. Existing provably efficient (online) RL works for POMDPs elaborate on this
viewpoint [36, 24, 3]. Compared to them, the novelty of future-dependent value functions is that it is
introduced to recover value functions but not models. This model-free view differs from the existing
dominant model-based view in online RL for POMDPs. In our setup, we can control systems if we
can recover value functions on the underlying states even if we fail to identify the underlying model.

3.2 The PO-Bilinear Actor-critic Framework for POMDPs
With the definition of future-dependent value functions, we are now ready to introduce the PO-bilinear
actor-critic (AC) class for POMDPs. We will focus on the case of K = 1 here. Let G = {Gh}Hh=1,
where Gh ⊂ [Z̄h → R], be a class consisting of functions that satisfy the following realizability
assumption w.r.t. the policy class Π.
Assumption 1 (Realizability). We assume that G is realizable w.r.t. the policy class Π, i.e., ∀π ∈
Π, h ∈ [H], there exists at least one gπh ∈ Gh such that gπh is a future-dependent value function
w.r.t. the policy π. Note that realizability implicitly requires the existence of (gπh).

We next introduce the PO-Bilinear Actor-critic class. For each level h ∈ [H], we first define the
Bellman loss:

Brh(π, g;π
in) := E[gh(z̄h)− rh − gh+1(z̄h+1) : a1:h−1 ∼ πin, ah ∼ π]

given M-memory policies π = {πh}, πin = {πinh } and g = {gh}. Letting gπ = {gπh}Hh=1 be a
future-dependent value function for π, our key observation is that future-dependent value functions
satisfy 0 = Brh(π, g

π;πin) for any M memory roll-in policy πin = {πinh }Hh=1, and any evaluation
pair (π, gπ). This is an analog of Bellman equations on MDPs. The above equation tells us that
Brh(π, g;π

in) is a right loss to quantify how much the estimator g is different from gπh . When
Brh(π, g;π

in) has a low-rank structure in a proper way, we can efficiently learn a near-optimal M
memory policy. The following definition precisely quantifies the low-rank structure that we need for
sample efficient learning.
Definition 3 (PO-bilinear AC Class, K = 1). The model is a PO-bilinear Actor-critic class of
rank d if G is realizable, and there exist Wh : Π × G → Rd and Xh : Π → Rd such that for all
π′, π ∈ Π, g ∈ G and h ∈ [H],
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1. E[gh(z̄h)− rh − gh+1(z̄h+1); a1:h−1 ∼ π′, ah ∼ π] = ⟨Wh(π, g), Xh(π
′)⟩.

2. Wh(π, g
π) = 0 for any π ∈ Π and the corresponding future-dependent value function

gπ ∈ G .

We define d as the PO-bilinear rank.
Remark 2 (Two Important Extensions). While the above definition is enough to capture most of
the examples we discuss later in this work, including undercomplete tabular POMDPs, LQG, HSE-
POMDPs, we provide two useful extensions. The first extension incorporates discriminators into
the framework, which can be used to capture the M-step decodable POMDPs and POMDPs with
low-rank latent transition (see Section F). The second extension incorporates multi-step futures,
which can be used to capture overcomplete POMDPs and general PSRs (see Section B.

4 Examples of PO-Bilinear Actor-critic Classes
We consider three examples (observable tabular POMDPs, LQG, HSE-POMDPs) that admit PO-
bilinear rank decomposition. Our framework can also capture PSRs, M -step decodable POMDPs
and low rank observable POMDPs, of which the discussions are deferred to Section E, G.1 and G.2,
respectively. We mainly focus on one-step future, i.e., K = 1, and briefly discuss the extension to
K > 1 in the tabular case. In this section, except for LQG, we assume rh ∈ [0, 1] for any h ∈ [H].
All the missing proofs are deferred to Section C.

4.1 Observable Undercomplete Tabular POMDPs
Example 1 (Observable undercomplete tabular POMDPs). Let O ∈ R|O|×|S| where the entry indexed
by a pair (o, s) is defined as Oo,s = O(o|s). Assume that rank(O) = |S|, which we call observability.
This requires undercompletenes |O| ≥ |S|.

The following lemma shows that O being full rank implies the existence of future-dependent value
functions gπh .
Lemma 1. For Example 1, there exists a gπh satisfying Definition 2 for any π ∈ Π and h ∈ [H].

Proof. Consider any function f : Zh−1 × S → R (thus, this captures all possible V πh ). Denote 1(z)
as the one-hot encoding of z over Zh−1 (similarly for 1(s)). We have f(z, s) = ⟨f, 1(z)⊗ 1(s)⟩ =
⟨f, 1(z)⊗ (O†O1(s))⟩, where we use the assumption that rank(O) = |S| and thus O†O = I . Then,

f(z, s) = ⟨f, 1(z)⊗ (O†Eo∼O(s)1(o))⟩ = Eo∼O(s)⟨f, 1(z)⊗O†1(o)⟩, (2)

which means gπh(z, o) := ⟨V πh , 1(z)⊗O†1(o)⟩.

We next show that the PO-Bilinear rank (Definition 3) is bounded by |S|(|O||A|)M .
Lemma 2. Assume O is full column rank. Set the future-dependent value function class Gh =
[Zh−1 ×O → [0, CG ]] for certain CG ∈ R, and policy class Πh = [Z̄h → ∆(A)]. Then, the model
is a PO-biliner AC class (Definition 3) with PO-bilinear rank at most |S|(|O||A|)M .

Later, we will see that the PO-bilinear rank in the more general definition is just |S| in Section F.
This fact will result in a significant improvement in terms of the sample complexity, and will result in
a sample complexity that does not incur |O|M .

Lastly, we touch on overcomplete POMDPs (|O| ≤ |S|) when we use multi-step futures. For details,
refer to Section C.2. In this case, the existence of future-dependent value function is ensured when
|O|K |A|K−1 × |S| matrix with entries equal to P(oh:h+K−1, ah:h+K−2 | sh; ah:h+K−2 ∼ U(A)).

4.2 Observable Linear Quadratic Gaussian
The next example is Linear Quadratic Gaussian (LQG) with continuous state and action spaces. The
details are deferred to Section M. Here, we set M = H − 1 so that the policy class Π contains the
globally optimal policy.
Example 2 (Linear Quadratic Gaussian (LQG)). Consider LQG:

s′ = As+Ba+ ϵ, o = Cs+ τ, r = −(s⊤Qs+ a⊤Ra)

where ϵ, τ are Gaussian distribution with mean 0 and variances Σϵ and Στ , respectively, and
s ∈ Rds , o ∈ Rdo , and a ∈ Rda , and Q,R are positive definite matrices.
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We define the policy class as the linear policy class Πh = {δ(ah = Khz̄h) | Kh ∈ R|A|×dz̄h ),
where dz̄h is a dimension of z̄h ∈ Z̄h. This choice is natural since the globally optimal policy is
known to be linear with respect to the entire history [6, Chapter 4]. We define two quadratic features,
ϕh(zh−1, sh) = (1, [z⊤h−1, s

⊤
h ] ⊗ [z⊤h−1, s

⊤
h ])

⊤ with zh−1 ∈ Zh−1, sh ∈ S, and ψh(zh−1, oh) =

(1, [z⊤h−1, o
⊤
h ]⊗ [z⊤h−1, o

⊤
h ])

⊤ with zh−1 ∈ Zh−1, oh ∈ O. We have the following lemma.

Lemma 3 (PO-bilinear rank of observable LQG). Assume rank(C) = ds. Then, the following
holds. (1) For any policy π linear in z̄h, a one-step future-dependent value function gπh(·) exists,
and is linear in ψh(·). (2) Letting dψh be the dimension of ψh, we set Gh = {θ⊤ψh(·)|θ ∈
Rdψh } and Π being linear in z̄h. Then LQG satisfies Definition 3 with PO-bilinear rank at most
O({1 + (H − 1)(do + da) + ds}2)

We have two remarks. First, when πoutt = δ(a = 0), K-step future-dependent value functions
exist when [C⊤, (CA)⊤, . . . , (CAK−1)⊤] is full raw rank. This assumption is referred to as
observability in control theory [28]. Secondly, the PO-bilinear rank scales polynomially with respect
to H, do, da, ds even with M = H − 1. As we show in Section M, due to this fact, we can compete
against the globally optimal policy with polynomial sample complexity.

4.3 Observable Hilbert Space Embedding POMDPs
We consider HSE-POMDPs that generalize tabular POMDPs and LQG. Proofs here are deferred to
Section C.4. Consider any h ∈ [H]. Given a policy πh : Z̄h → A, we define the induced transition
operator Tπ = {Tπ;h}Hh=1 as (zh, sh+1) ∼ Tπ;h(zh−1, sh), where we have oh ∼ O(sh), ah ∼
πh(z̄h), sh+1 ∼ T(sh, ah). Namely, Tπ is the transition kernel of some Markov chain induced by
the policy π. The HSE-POMDP assumes two conditional distributions O(·|s) and Tπ(·, ·|z, s) have
conditional mean embeddings.
Example 3 (HSE-POMDPs). We introduce features ϕh : Zh−1 × S → Rdϕh , ψh : Zh−1 ×O →
Rdψh . We assume the existence of the conditional mean embedding operators: (1) there exists a
matrixKh such that for all z ∈ Zh−1, s ∈ S , Eo∼O(·|s)ψh(z, o) = Khϕh(z, s) and (2) for all π ∈ Π,
there exists a matrix Tπ;h, such that Ezh,sh+1∼Tπ;h(zh−1,sh)ϕh+1(zh, sh+1) = Tπ;hϕh(zh−1, sh).

The existence of conditional mean embedding is a common assumption in prior RL works on learning
dynamics of HMMs, PSRs, [64, 7] and Bellman complete linear MDPs [77, 18, 11, 26]. HSE-
POMDPs naturally capture tabular POMDPs and LQG. For tabular POMDPs, ψh and ϕh are one-hot
encoding features. In LQG, ϕh and ψh are quadratic features we define in Section 4.2. Here for
simplicity, we focus on finite-dimensional features ϕh and ψh. Extension to infinite-dimensional
Reproducing kernel Hilbert Space is deferred to Section C.4.

The following shows the existence of future-dependent value functions and the PO-bilinear rank
decomposition.
Lemma 4 (PO-bilinear rank of observable HSE-POMDPs). Assume Kh is full column rank (observ-
ability), and V πh (·) is linear in ϕh for any π ∈ Π, h ∈ [H]. Then the following holds. (1) A one-step
future-dependent value function gπh(·) exists for any π ∈ Π, h ∈ [H], and is linear in ψh. (2) We
set a value function class Gh = {w⊤ψh(·)|w ∈ Rdψh }, policy class Πh ⊂ [Z̄h → ∆(A)]. Then
HSE-POMDP satisfies Definition 3 with PO-bilinear rank at most maxh∈[H] dϕh .

The first statement can be verified by noting that when V πh (·) = ⟨θh, ϕh(·)⟩, future-dependent value
functions take the following form gπh(·) = ⟨(K†

h)
⊤θh), ψh(·)⟩ where we leverage the existence of

the conditional mean embedding operator Kh, and that Kh is full column rank (thus K†
hKh = Idϕh ).

Note that the PO-bilinear rank depends only on the dimension of the features ϕh without any explicit
dependence on the length of memory.

5 Algorithm and Complexity
In this section, we first give our algorithm followed by a general sample complexity analysis. We
then instantiate our analysis to specific models considered in Section 4.

5.1 Algorithm
We first focus on the cases where models satisfy the PO-bilinear AC model (i.e., Definition 3) with
finite action and with one-step future-dependent value function.
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Algorithm 1 PaRtially ObserVAble BiLinEar (PROVABLE) # multi-step version is in Algorithm 2
1: Input: Value class G = {Gh},Gh ⊂ [Zh−1 → R], Policy class Π = {Πh},Πh ⊂ [Z̄h−1 → R],

parameters m ∈ N, R ∈ R , Initialize π0 ∈ Π
2: Form the first step dataset D0 = {oi}mi=1, with oi ∼ O(·|s1)
3: for t = 0 → T − 1 do
4: For any h ∈ [H], collect m i.i.d tuple as follows: (z̄h, sh) ∼ dπ

t

h , ah ∼ U(A), rh =
rh(oh, ah), sh+1 ∼ T(sh, ah), oh+1 ∼ O(·|sh+1).

5: Define Dt
h = {(z̄ih, aih, rih, oih+1)}mi=1 # note latent state s is not in the dataset

6: Define the Bellman error ∀(π, g) ∈ Π× G,

σth(π, g) := EDth [πh(ah | z̄h)|A|{gh+1(z̄h+1) + rh} − gh(z̄h)] .

7: Select policy optimistically as follows

(πt+1, gt+1) := argmaxπ∈Π,g∈G ED0 [g1(o)] s.t. ∀h ∈ [H],∀i ∈ [t], (σih(π, g))
2 ≤ R.

8: end for
9: Output: Randomly choose π̂ from (π1, · · · , πT ).

We present our algorithm PROVABLE in Algorithm 1. Note PROVABLE is agnostic to the form of Xh

and Wh. Inside iteration t, given the latest learned policy πt, we define Bellman error for all pairs
(π, g) where the Bellman error is averaged over the samples from πt. Here, to evaluate the Bellman
loss for any policy π ∈ Π, we use importance sampling by running U(A) rather than executing a
policy π so that we can reuse samples.2 A pair (π, g) that has a small total Bellman error intuitively
means that given the data so far, g could still be a value future-dependent value function for the
policy π. Then in the constrained optimization formulation, we only focus on (π, g) pairs whose
Bellman errors are small so far. Among these (π, g) pairs, we select the pair using the principle
of optimism in the face of uncertainty. We remark the algorithm leverages some design choices
from the Bilinear-UCB algorithm for MDPs [16]. The key difference between our algorithm and the
Bilinear-UCB is that we leverage the actor-critic framework equipped with value future-dependent
value functions to handle partially observability and agnostic learning.

Remark 3 (Three Important Extensions). By extending Algorithm 1, we can consider more general
algorithms to include three important cases. The first extension is the minimax version with
discriminators to capture low-rank observable PMODPs and M-step decodable POMDPs. The detail
is in Section P. Secondly, although algorithms so far implicitly assume the action is finite, we can
consider LQG with continuous action by employing a G-optimal design over actions. The detail
is in Section D.2. The third extension is the multi-step future case, which can capture overcomplete
POMDPs and general PSRs. The discussion is deferred to Section D.

5.2 Sample Complexity
We show a sample complexity result by using reduction to supervised learning analysis. We begin by
stating the following assumption which is ensured by standard uniform convergence results.

Assumption 2 (Uniform Convergence). Fix h ∈ [H]. Let D′
h be a set of m i.i.d tuples following

(zh−1, sh, oh) ∼ dπ
t

h , ah ∼ U(A), sh+1 ∼ T(sh, ah), oh+1 ∼ O(sh+1). With probability 1− δ,

supπ∈Π,g∈G |(ED′
h
− E)[πh(ah | z̄h)|A|{gh+1(z̄h+1) + rh} − gh(z̄h)]| ≤ ϵgen,h(m,Π,G, δ)

For h = 1, we also require supg1∈G1
|ED′

1
[g1(o1)]− E[ED′

1
[g1(o1)]]| ≤ ϵini,1(m,G, δ).

Remark 4 (Finite function classes). The term ϵgen depends on the statistical complexities of the func-
tion classes Π,G. As a simple example, we consider the case where Π and G are discrete. In this case,
we have ϵgen,h(m,Π,G, δ) = O(

√
ln(|Π||G|/δ)/m), and ϵini,1(m,G, δ) = O(

√
ln(|G|/δ)/m),

which are standard statistical complexities for discrete function classes Π and G. Achieving this
result simply requires standard concentration and a union bound over all functions in Π,G.

Under Assumption 2, when the model is PO-bilinear with rank d, we get the following.

2This choice might limit the algorithm to the case where A is discrete. However, for examples such as LQG,
we show that we can replace U(A) by a G-optimal design over the quadratic polynomial feature of the actions.

8



Theorem 1 (PAC guarantee of PROVABLE). Suppose we have a PO-bilinear AC class with rank
d. Suppose Assumption 2, supπ∈Π ∥Xh(π)∥ ≤ BX and supπ∈Π,g∈G ∥Wh(π, g)∥ ≤ BW for any

h ∈ [H]. By setting T = 2Hd ln
(
4Hd

(
B2
XB

2
W

ϵ̃2gen
+ 1
))

, R = ϵ2gen where

ϵgen := maxh ϵgen,h(m,Π,G, δ/(TH + 1)), ϵ̃gen := maxh ϵgen,h(m,Π,G, δ/H).

With probability at least 1− δ, letting π⋆ = argmaxπ∈Π J(π
⋆), we have

J(π⋆)− J(π̂) ≤ 5ϵgen

√
dH2 · ln

(
4Hd

(
B2
XB

2
W /ϵ̃

2
gen + 1

))
+ 2ϵini,1(m,G, δ/(TH + 1)).

The total number of samples used in the algorithm is mTH .

Informally, when ϵgen ≈ Õ(1/
√
m), to achieve ϵ-near optimality, the above theorem indicates that

we just need to set m ≈ Õ(1/ϵ2), which results a sample complexity scaling Õ(1/ϵ2) (since T only
scales Õ(dH)). We give detailed derivation and examples in the next section.

5.3 Examples
Hereafter, we show the sample complexity result by using Theorem 1. For complete results, refer to
Section I–N.

5.3.1 Finite Sample Classes
We consider the case where the hypothesis class is finite and admits PO-bilinear rank decomposition.
Example 4 (Finite Sample Classes). Consider the case when Π and G are finite and the PO-bilinear
rank assumption is satisfied. When Π and G are infinite hypothesis classes, |F| and |G| are replaced
with their L∞-covering numbers, respectively.

Theorem 2 (Sample complexity for discrete Π and G (informal)). Let ∥Gh∥∞ ≤ CG , rh ∈ [0, 1]
for any h ∈ [H] and the PO-bilinear rank assumption holds with PO-biliear rank d. By letting
|Πmax| = maxh |Πh|, |Gmax| = maxh |Gh|, with probability 1−δ, we can achieve J(π⋆)−J(π̂) ≤ ϵ
when we use samples

Õ
(
d2H4 max(CG , 1)

2|A|2 ln(|Gmax||Πmax|/δ) ln2(BXBW /δ)(1/ϵ)2
)
.

Here, Polylog(d,H, |A|, ln(|G|), ln(|Π|), ln(1/δ), ln(BX), ln(BW ), ln(1/δ), 1/ϵ) are omitted.

5.3.2 Observable Undercomplete Tabular POMDPs
We start with tabular POMDPs. The details here is deferred to Section K.
Example 1 (continuing from p. 6). In tabular models, recall the PO-bilinear rank is at most d =
|O|M |A|M |S|. We suppose rh ∈ [0, 1] for any h ∈ [H]. Assuming O is full-column rank, to
satisfy the realizability, we set Gh = {⟨θ,1(z)⊗O†1(o)⟩ | ∥θ∥∞ ≤ H} where ∥O†∥1 ≤ 1/σ1 and
1(z),1(o) are one-hot encoding vectors over Zh−1 and O, respectively. We set Πh = [Z̄h → ∆(A)].
Then, the following holds.

Theorem 3 (Sample complexity for undercomplete tabular models (Informal)). With
probability 1 − δ, we can achieve J(π⋆) − J(π̂) ≤ ϵ when we use samples
Õ
(
|S|2|A|3M+3|O|3M+1H6(1/ϵ)2(1/σ1)

2 ln(1/δ)
)
.

Here, polylog(|S|, |O|, |A|, H, 1/σ1, ln(1/δ)) are omitted.

Firstly, while the above error incurs |O|M |A|M , we will later see in Section G.2.2 when we use the
more general definition of PO-bilinear AC class and combine a model-based perspective, we might
be able to remove |O|M from the error bound. The intuition here is that the statistical complexity still
scales with |S|2|A|+ |O||A| and does not incur |O|M . At the same time, although PO-bilinear rank
currently scales with |O|M ||A|M |S|, we can show that it can be just |S| with a more refined definition.
Secondly, ∥O†∥1 ≤ 1/σ1 can be replaced with other analogous conditions ∥O†∥2 ≤ 1/σ2. Here,
note ∥O†∥1 = 1/{minx ∥Ox∥1/∥x∥1}, ∥O†∥2 = 1/{minx ∥Ox∥2/∥x∥2}. The reason why we use
1-norm is to invoke the result [23] to achieve the near global optimality as in the next paragraph.

Near global optimality. Finally, we consider the PAC guarantee against the globally optimal policy.
As shown in [23], it is enough to set M = O((1/σ4

1) ln(SH/ϵ)) to compete with the globally optimal
policy π⋆gl. Thus we achieve a quasipolynomial sample complexity when competing against π⋆gl.
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Theorem 4 (Sample complexity for undercomplete tabular models (Informal) — competing against
π⋆gl). With probability 1− δ, we can achieve J(π⋆gl)− J(π̂) ≤ ϵ when we use samples at most

poly(|S|, |A|ln(|S|H/ϵ)/σ4
1 , |O|ln(|S|H/ϵ)/σ4

1 , H, 1/σ1, 1/ϵ, ln(1/δ)).

Remark 5 (Overcomplete Tabular POMDPs). We can similarly consider the sample complexity of
overcomplete POMDPs. We would incur the additional |A|K . The detail is in Section L.

5.3.3 Observable LQG
Now let us revisit LQG. The detail here is deferred to Section M. We show that PROVABLE can
compete against the globally optimal policy with polynomial sample complexity.
Example 2 (continuing from p. 6). In LQG, by setting H =M − 1, we achieve a polynomial sample
complexity when competing against the globally optimal policy π⋆gl.
Theorem 5 (Sample complexity for LQG (informal) – competing against π⋆gl). Consider a linear
policy class Πh = {δ(ah = K̄hz̄h) | ∥K̄h∥ ≤ Θ}. and assume max(∥A∥, ∥B∥, ∥C∥, ∥Q∥, ∥R∥) ≤
Θ and all policies induce a stable system (we formalize in Section M). With probability 1− δ, we can
achieve J(π⋆gl)− J(π̂) ≤ ϵ when we use samples at most

poly(H, ds, do, da,Θ, ∥C†∥, ln(1/δ))× (1/ϵ)2.

5.3.4 Observable HSE-POMDPs
Next, we study HSE-POMDPs. The details here is deferred to Section J.
Example 3 (continuing from p. 7). In HSE-POMDPs, PO-bilinear rank is at most maxh dϕh . Suppose
∥ψh∥ ≤ 1 and V πh (·) = ⟨θπh , ϕh(·)⟩ such that ∥θπh∥ ≤ ΘV for any h ∈ [H]. Then, to satisfies the
realizability, we set Gh = {⟨θ, ψh(·)⟩ | ∥θ∥ ≤ ΘV /σmin(K)} where σmin(K) = minh∈[H] 1/∥K†

h∥.
Theorem 6 (Sample complexity for HSE-POMDPs (Informal)). Let dψ = maxh{dψh}, dϕ =
maxh{dψh}, |Πmax| = maxh(|Πh|). Suppose rh lies in [0, 1] for any h ∈ [H]. Then, with probability
1− δ, we can achieve J(π⋆)− J(π̂) ≤ ϵ when we use samples

Õ
(
d2ϕH

4|A|2 max(ΘV , 1)
2{dψ + ln(|Πmax|/δ)}(1/σmin(K))2 · (1/ϵ)2

)
.

Here, polylog(dϕ, dψ, |A|,ΘV , ln(|Πmax|), 1/σmin(K), 1/ϵ, ln(1/δ), σmax(T ), σmax(K)) are
omitted and σmax(K) = maxh∈[H] ∥Kh∥, σmax(T ) = maxπ∈Π,h∈[H] ∥Tπ:h∥.

Note that the sample complexity above does not explicitly depend on the memory length M , instead
it only explicitly depends on the dimension of the features ϕ, ψ. In other words, if we have a feature
mapping ψh that can map the entire history (i.e., M = H) to a low-dimensional vector (e.g., LQG),
our algorithm can immediately compete against the global optimality π⋆gl.

5.4 PSRs, M -step decodable POMDPs and Low-rank Observable POMDPs
The result of PSRs is deferred to Section Section E. Besides, our generalized framework can capture
two models: (1) M -step decodable POMDPs, and (2) observable POMDPs with the latent low-rank
transition. The discussion is deferred to Section P. The summary of the results is stated in Section 1.

6 Summary
We propose a PO-bilinear actor-critic framework that is the first unified framework for provably
efficient RL on large-scale partially observable dynamical systems. Our framework can capture
not only many models where provably efficient learning has been known such as tabular POMDPs,
LQG and M-step decodable POMDPs, but also models where provably efficient RL is not known
such as HSE-POMDPs, PSRs, and low-rank observable POMDPs. Our unified actor-critic based
algorithm—PROVABLE provably performs agnostic learning by searching for the best memory-based
policy. For special models such as observable tabular POMDPs, LQG, and low-rank POMDPs, by
leveraging their special properties, i.e., the exponential stability of Bayesian filters in tabular and
low-rank POMDPs, and existence of a compact featurization of histories in LQG, we are able to
directly compete against the global optimality without paying an exponential dependence on horizon.
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Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[6] Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 1. Athena
scientific, 2012.

[7] Byron Boots, Geoffrey Gordon, and Arthur Gretton. Hilbert space embeddings of predictive
state representations. arXiv preprint arXiv:1309.6819, 2013.

[8] Byron Boots, Sajid M Siddiqi, and Geoffrey J Gordon. Closing the learning-planning loop with
predictive state representations. The International Journal of Robotics Research, 30(7):954–966,
2011.

[9] Qi Cai, Zhuoran Yang, and Zhaoran Wang. Sample-efficient reinforcement learning for pomdps
with linear function approximations. arXiv preprint arXiv:2204.09787, 2022.

[10] Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement
learning. In International Conference on Machine Learning, pages 1042–1051. PMLR, 2019.

[11] Sayak Ray Chowdhury and Rafael Oliveira. No-regret reinforcement learning with value
function approximation: a kernel embedding approach. arXiv preprint arXiv:2011.07881, 2020.

[12] Yifan Cui, Hongming Pu, Xu Shi, Wang Miao, and Eric Tchetgen Tchetgen. Semiparametric
proximal causal inference. arXiv preprint arXiv:2011.08411, 2020.

[13] Ben Deaner. Proxy controls and panel data. arXiv preprint arXiv:1810.00283, 2018.

[14] Nishanth Dikkala, Greg Lewis, Lester Mackey, and Vasilis Syrgkanis. Minimax estimation of
conditional moment models. In Advances in Neural Information Processing Systems, volume 33,
pages 12248–12262, 2020.

[15] Carlton Downey, Ahmed Hefny, Byron Boots, Geoffrey J Gordon, and Boyue Li. Predictive
state recurrent neural networks. Advances in Neural Information Processing Systems, 30, 2017.

[16] Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong
Wang. Bilinear classes: A structural framework for provable generalization in rl. In International
Conference on Machine Learning, pages 2826–2836. PMLR, 2021.

[17] Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John
Langford. Provably efficient rl with rich observations via latent state decoding. In International
Conference on Machine Learning, pages 1665–1674. PMLR, 2019.

[18] Yaqi Duan, Zeyu Jia, and Mengdi Wang. Minimax-optimal off-policy evaluation with linear
function approximation. In International Conference on Machine Learning, pages 2701–2709.
PMLR, 2020.

11



[19] Yonathan Efroni, Chi Jin, Akshay Krishnamurthy, and Sobhan Miryoosefi. Provable reinforce-
ment learning with a short-term memory. arXiv preprint arXiv:2202.03983, 2022.

[20] Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Reinforcement learning in pomdps
without resets. 2005.

[21] Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity
of interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

[22] Noah Golowich, Ankur Moitra, and Dhruv Rohatgi. Learning in observable pomdps, without
computationally intractable oracles. arXiv preprint arXiv:2206.03446, 2022.

[23] Noah Golowich, Ankur Moitra, and Dhruv Rohatgi. Planning in observable pomdps in quasipoly-
nomial time. arXiv preprint arXiv:2201.04735, 2022.

[24] Zhaohan Daniel Guo, Shayan Doroudi, and Emma Brunskill. A pac rl algorithm for episodic
pomdps. In Artificial Intelligence and Statistics, pages 510–518. PMLR, 2016.

[25] William L Hamilton, Mahdi Milani Fard, and Joelle Pineau. Modelling sparse dynamical
systems with compressed predictive state representations. In International Conference on
Machine Learning, pages 178–186. PMLR, 2013.

[26] Botao Hao, Yaqi Duan, Tor Lattimore, Csaba Szepesvári, and Mengdi Wang. Sparse feature
selection makes batch reinforcement learning more sample efficient. In International Conference
on Machine Learning, pages 4063–4073. PMLR, 2021.

[27] Ahmed Hefny, Carlton Downey, and Geoffrey J Gordon. Supervised learning for dynamical
system learning. Advances in neural information processing systems, 28, 2015.

[28] Joao P Hespanha. Linear systems theory. Princeton university press, 2018.

[29] Daniel Hsu, Sham M Kakade, and Tong Zhang. A spectral algorithm for learning hidden markov
models. Journal of Computer and System Sciences, 78(5):1460–1480, 2012.

[30] Masoumeh T Izadi and Doina Precup. Point-based planning for predictive state representations.
In Conference of the Canadian Society for Computational Studies of Intelligence, pages 126–137.
Springer, 2008.

[31] Herbert Jaeger. Discrete-time, discrete-valued observable operator models: a tutorial. GMD-
Forschungszentrum Informationstechnik Darmstadt, Germany, 1998.

[32] Herbert Jaeger. Observable operator models for discrete stochastic time series. Neural computa-
tion, 12(6):1371–1398, 2000.

[33] Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire.
Contextual decision processes with low bellman rank are pac-learnable. In International
Conference on Machine Learning, pages 1704–1713. PMLR, 2017.

[34] Chi Jin, Sham Kakade, Akshay Krishnamurthy, and Qinghua Liu. Sample-efficient reinforce-
ment learning of undercomplete pomdps. Advances in Neural Information Processing Systems,
33:18530–18539, 2020.

[35] Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes
of rl problems, and sample-efficient algorithms. Advances in Neural Information Processing
Systems, 34, 2021.

[36] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143. PMLR, 2020.

[37] Nathan Kallus, Xiaojie Mao, and Masatoshi Uehara. Causal inference under unmea-
sured confounding with negative controls: A minimax learning approach. arXiv preprint
arXiv:2103.14029, 2021.

12



[38] Michael Kearns, Yishay Mansour, and Andrew Ng. Approximate planning in large pomdps via
reusable trajectories. Advances in Neural Information Processing Systems, 12, 1999.

[39] Jack Kiefer and Jacob Wolfowitz. The equivalence of two extremum problems. Canadian
Journal of Mathematics, 12:363–366, 1960.

[40] Alex Kulesza, Nan Jiang, and Satinder Singh. Spectral learning of predictive state representa-
tions with insufficient statistics. In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

[41] Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. Rl for latent
mdps: Regret guarantees and a lower bound. Advances in Neural Information Processing
Systems, 34, 2021.

[42] Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi, and Anima Anandkumar. Regret min-
imization in partially observable linear quadratic control. arXiv preprint arXiv:2002.00082,
2020.

[43] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[44] Tianyu Li, Bogdan Mazoure, Doina Precup, and Guillaume Rabusseau. Efficient planning under
partial observability with unnormalized q functions and spectral learning. In International
Conference on Artificial Intelligence and Statistics, pages 2852–2862. PMLR, 2020.

[45] Michael Littman and Richard S Sutton. Predictive representations of state. Advances in neural
information processing systems, 14, 2001.

[46] Michael Lederman Littman. Algorithms for sequential decision-making. Brown University,
1996.

[47] Qinghua Liu, Alan Chung, Csaba Szepesvári, and Chi Jin. When is partially observable
reinforcement learning not scary? arXiv preprint arXiv:2204.08967, 2022.

[48] Horia Mania, Stephen Tu, and Benjamin Recht. Certainty equivalent control of lqr is efficient.
arXiv preprint arXiv:1902.07826, 2019.

[49] Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J Kusner,
Arthur Gretton, and Krikamol Muandet. Proximal causal learning with kernels: Two-stage
estimation and moment restriction. arXiv preprint arXiv:2105.04544, 2021.

[50] Wang Miao, Xu Shi, and Eric Tchetgen Tchetgen. A confounding bridge approach for double
negative control inference on causal effects. arXiv preprint arXiv:1808.04945, 2018.

[51] Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state
abstraction and provably efficient rich-observation reinforcement learning. In International
conference on machine learning, pages 6961–6971. PMLR, 2020.

[52] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[53] Kevin P Murphy. A survey of pomdp solution techniques. environment, 2(10), 2000.

[54] Yu Nishiyama, Abdeslam Boularias, Arthur Gretton, and Kenji Fukumizu. Hilbert space
embeddings of pomdps. arXiv preprint arXiv:1210.4887, 2012.

[55] Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision processes.
Mathematics of operations research, 12(3):441–450, 1987.

[56] Josep M Porta, Nikos Vlassis, Matthijs TJ Spaan, and Pascal Poupart. Point-based value
iteration for continuous pomdps. 2006.

[57] Matthew Rosencrantz, Geoff Gordon, and Sebastian Thrun. Learning low dimensional predictive
representations. In Proceedings of the twenty-first international conference on Machine learning,
page 88, 2004.

13



[58] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based pomdp solvers. Au-
tonomous Agents and Multi-Agent Systems, 27(1):1–51, 2013.

[59] Chengchun Shi, Masatoshi Uehara, and Nan Jiang. A minimax learning approach to off-policy
evaluation in partially observable markov decision processes. arXiv preprint arXiv:2111.06784,
2021.

[60] Max Simchowitz, Karan Singh, and Elad Hazan. Improper learning for non-stochastic control.
In Conference on Learning Theory, pages 3320–3436. PMLR, 2020.

[61] Rahul Singh. A finite sample theorem for longitudinal causal inference with machine learning:
Long term, dynamic, and mediated effects. arXiv preprint arXiv:2112.14249, 2021.

[62] Satinder Singh, Michael R James, and Matthew R Rudary. Predictive state representations:
a new theory for modeling dynamical systems. In Proceedings of the 20th conference on
Uncertainty in artificial intelligence, pages 512–519, 2004.

[63] Le Song, Byron Boots, Sajid Siddiqi, Geoffrey J Gordon, and Alex Smola. Hilbert space
embeddings of hidden markov models. 2010.

[64] Le Song, Jonathan Huang, Alex Smola, and Kenji Fukumizu. Hilbert space embeddings of
conditional distributions with applications to dynamical systems. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 961–968, 2009.

[65] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
cess optimization in the bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

[66] Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
rl in contextual decision processes: Pac bounds and exponential improvements over model-free
approaches. In Conference on learning theory, pages 2898–2933. PMLR, 2019.

[67] Wen Sun, Arun Venkatraman, Byron Boots, and J Andrew Bagnell. Learning to filter with
predictive state inference machines. In International conference on machine learning, pages
1197–1205. PMLR, 2016.

[68] Guy Tennenholtz, Uri Shalit, and Shie Mannor. Off-policy evaluation in partially observable
environments. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 10276–10283, 2020.

[69] Michael R Thon and Herbert Jaeger. Links between multiplicity automata, observable operator
models and predictive state representations: a unified learning framework. J. Mach. Learn. Res.,
16:103–147, 2015.

[70] Masatoshi Uehara, Masaaki Imaizumi, Nan Jiang, Nathan Kallus, Wen Sun, and Tengyang Xie.
Finite sample analysis of minimax offline reinforcement learning: Completeness, fast rates and
first-order efficiency. arXiv preprint arXiv:2102.02981, 2021.

[71] Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and
offline rl in low-rank mdps. arXiv preprint arXiv:2110.04652, 2021.

[72] Peter Van Overschee and Bart De Moor. Subspace identification for linear systems: The-
ory—Implementation—Applications. Springer Science & Business Media, 2012.

[73] Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Embed to control partially ob-
served systems: Representation learning with provable sample efficiency. arXiv preprint
arXiv:2205.13476, 2022.

[74] Yi Xiong, Ningyuan Chen, Xuefeng Gao, and Xiang Zhou. Sublinear regret for learning pomdps.
arXiv preprint arXiv:2107.03635, 2021.

[75] Liyuan Xu, Heishiro Kanagawa, and Arthur Gretton. Deep proxy causal learning and its
application to confounded bandit policy evaluation. Advances in Neural Information Processing
Systems, 34:26264–26275, 2021.

14



[76] Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels,
and regret bound. In International Conference on Machine Learning, pages 10746–10756.
PMLR, 2020.

[77] Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning
near optimal policies with low inherent bellman error. In International Conference on Machine
Learning, pages 10978–10989. PMLR, 2020.

[78] Xuezhou Zhang, Yuda Song, Masatoshi Uehara, Mengdi Wang, Wen Sun, and Alekh Agarwal.
Efficient reinforcement learning in block mdps: A model-free representation learning approach.
arXiv preprint arXiv:2202.00063, 2022.

15


	Introduction
	Related Works

	Preliminary
	Future-Dependent Value Functions and the PO-bilinear Framework
	Future-Dependent Value Functions
	The PO-Bilinear Actor-critic Framework for POMDPs

	Examples of PO-Bilinear Actor-critic Classes
	Observable Undercomplete Tabular POMDPs
	Observable Linear Quadratic Gaussian 
	Observable Hilbert Space Embedding POMDPs

	Algorithm and Complexity
	Algorithm
	Sample Complexity
	Examples
	Finite Sample Classes
	Observable Undercomplete Tabular POMDPs
	Observable LQG
	Observable HSE-POMDPs

	PSRs, M-step decodable POMDPs and Low-rank Observable POMDPs

	Summary

