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Abstract

While Reinforcement Learning (RL) aims to train an agent from a reward function1

in a given environment, Inverse Reinforcement Learning (IRL) seeks to recover2

the reward function from observing an expert’s behavior. It is well known that, in3

general, various reward functions can lead to the same optimal policy, and hence,4

IRL is ill-defined. However, [1] showed that, if we observe two or more experts5

with different discount factors or acting in different environments, the reward6

function can under certain conditions be identified up to a constant. This work7

starts by showing an equivalent identifiability statement from multiple experts in8

tabular MDPs based on a rank condition, which is easily verifiable and is shown9

to be also necessary. We then extend our result to various different scenarios,10

i.e., we characterize reward identifiability in the case where the reward function11

can be represented as a linear combination of given features, making it more12

interpretable, or when we have access to approximate transition matrices. Even13

when the reward is not identifiable, we provide conditions characterizing when data14

on multiple experts in a given environment allows to generalize and train an optimal15

agent in a new environment. Our theoretical results on reward identifiability and16

generalizability are validated in various numerical experiments.17

1 Introduction18

Engineering a reward function in Reinforcement Learning can be troublesome in certain scenarios19

like driving [2], robotics [3], and economics/finance [4]. In economics and finance, the reward or20

objective/utility function of the agent are of fundamental importance but are not known a priori [5–8].21

In such cases, it may be easier to get demonstrations from an expert policy. Therefore, multiple22

algorithms have been developed to learn from demonstrations, e.g., in inverse reinforcement learning23

(IRL) and imitation learning (IL).24

In IRL, the goal is to recover the reward function maximized by the agent, while in IL the expert25

demonstrations are used solely to learn a nearly optimal policy. In economics/finance, inference on26

the reward function is the focus of a large literature on estimation, testing, and policy analysis of27

structural models [9–11]. However, the reward function is often highly parameterized and represented28

by a low-dimensional set of parameters, or the literature focuses on estimating reduced-form causal29

relationships but not the true reward function [12, 13]. The attractiveness of IRL relies on the fact30

that the reward function is the most “succinct” representation of a task [14]. Indeed, identifying the31

reward function for each state-action pair allows generalizing the task to different transition dynamics32

and environments, which is not possible when using IL or highly parameterized structural models.33

However, the IRL problem is unfortunately ill-posed since there always exist infinitely many reward34

functions for which the observed expert policy is optimal [15, 16]. The problem is known as reward35

shaping, and it is intuitively explained with the fact that, in the long term, the optimal policy is not36
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affected by inflating the reward in the current period and decreasing the one in the next. This difficulty37

originated a long debate on advantages and disadvantages of IL and IRL [17–20].38

When multiple experts are available, differing in the transition matrices of the environments they39

each act in, and/or their discount factors, IRL can in certain cases infer the true reward function, up to40

a constant [21–23, 1]. Inspired by [1], we derive an equivalent necessary and sufficient condition on41

the expert environments, which is easily verifiable, ensuring that the true reward can be identified up42

to a constant shift. When this identifiability condition holds, the state-action dependent rewards can43

be recovered from expert demonstrations. We then derive identifiability results in various alternative44

scenarios, e.g., when we only have access to approximate transition matrices and, alternatively, when45

the reward function is known to be a linear combination of given features [24, 25].46

However, full reward identifiability remains a strong requirement, and we provide a negative result of47

non-identifiability from any number of experts, in the presence of exogenous variables in the MDP.48

Nonetheless, even when the identifiability condition does not hold, the recovered reward function49

could still be used to train an optimal expert for a different environment. To this end, we characterize50

situations where observing multiple experts in given environments allows to train an optimal agent in51

a new environment.52

2 Related work53

Since its introduction in [15, 16], the IRL problem has been known to be ill-posed, since the54

observed expert policy can be optimal with respect to various reward functions. The set of reward55

transformations that preserve policy optimality are studied in [26, 16, 1, 27, 28]. [29] studied the56

unidentifiability related to suboptimal experts.57

In this paper, we assume access to the optimal entropy regularized policies of multiple experts.58

Significant progress has been made to construct heuristics that select a single reward function59

from the set of IRL solutions (often called the feasible set), such as feature-based matching [30],60

maximum margin IRL [31], maximum causal entropy IRL [32, 33], maximum relative entropy IRL61

[34], Bayesian IRL [35–37], first-order optimality conditions [38, 39] or second-order optimality62

conditions [40, 41]. Popular IL algorithms implicitly select a feasible reward function via a convex63

reward regularizer [19, 42, 43] or using preference/ranking based algorithms [44, 45]. However, none64

of these approaches guarantee the identification of the true reward function.65

The problem of identifiability in IRL has been investigated first in [21, 22] that study a setting where66

the learner can actively select optimal experts in multiple environments. The main result in [21, 22]67

is that interactively querying environments outputs a reward within a constant shift from the true68

one. The multiple experts setting has also been studied in [46] but in the context of value alignment69

verification where the aim is not to recover the reward function but rather verify that the value function70

of the agent is close to a target value. IRL from multiple MDPs also appears in [23] where the authors71

consider the problem of learning a reward function compatible with a dataset of demonstrations72

collected by multiple experts. In addition, [47] study structural conditions on the MDP for reward73

identification in the finite horizon setting and [48] study identifiability in linearly solvable MDPs.74

Our work is inspired by [1]. Our first identifiability result provides an equivalent statement as their75

value distinguishability condition, but can be easily checked in practice, and allows to derive other76

identifiability results in alternative scenarios. Finally, we remark that the motivation for IRL is often77

predicting the expert behavior under new transitions dynamics [49, 50, 20]. We show that for this78

goal, it is not necessary to identify the exact reward, hence we give a condition on the observed79

experts’ environments and the test environment under which an optimal expert can be trained in the80

test environment. This perspective has also been taken in [51]. However, this work requires stronger81

assumptions on the transfer environment that we avoid in this paper, only requiring access to multiple82

experts. Moreover, our work contributes to AI safety [52–54] alleviating the reward hacking and83

side effects problems [53]. Indeed, by restricting the reward to linear combinations of a set of chosen84

features, we can provably recover an interpretable reward function inducing the optimal behavior,85

which is particularly desirable in medical applications [55, 56].86

An important consideration for IRL comes from [57] that formalizes the fact that there exist tasks that87

can not be induced by optimizing a reward function. In this work and in IRL in general, we bypass88

this difficulty assuming that the expert is optimizing a reward function.89
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3 Preliminaries90

A typical RL environment is characterised by a Markov Decision ProcessM = {S,A, T, γ, r, P0},91

where S,A are the sets of states and actions respectively, T : S × A × S → [0, 1] is the state92

transition probability, i.e., T (s′|s, a) denotes the probability of arriving in state s′ when taking action93

a in state s. R : S ×A → R denotes the reward function, γ the discount factor and P0 is the initial94

state distribution. At each time step t, an agent observes the current state st ∈ S and takes an action95

at ∼ π(·|st) where π is the agent’s policy which determines a distribution over all actions in A96

at every state. The agent gets a reward rt = r(st, at) and transitions to a new state st+1 sampled97

according to the transition probability T .98

An agent acting optimally inM seeks to maximize its cumulative sum of rewards. In addition, we99

assume that the agent seeks to diversify its possible actions, and hence that it maximizes the following100

entropy regularized sum of discounted rewards:101

V πλ (s) = Eπs

[ ∞∑
t=0

(γt(r(st, at) + λH(π(·|st))))

]
, (1)

where Eπs denotes the expectation over trajectories {(st, at}t≥0 starting from state s0 = s and102

following policy π and H(π) = −
∑
a∈A π(a) log π(a) is the entropy of π. The function V πλ is103

called the (entropy regularized) value function of π.104

In Inverse RL, the reward function r is unknown, but we observe an agent acting optimally with105

respect to some reward function, and we wish to recover the reward function that the agent optimizes.106

We now recall some results from [1].107

Theorem 1. For a fixed policy π(a|s) > 0, discount factor γ ∈ [0, 1), and an arbitrary choice of108

function v : S → R, there is a unique corresponding reward function109

r(s, a) = λ log π(a|s)− γ
∑
s′∈S

T (s′|s, a)v(s′) + v(s)

such that the MDP with reward r yields an entropy-regularized optimal policy π∗λ = π and V πλ = v.110

By observing a single expert, it is hence possible to design a reward that yields any arbitrary value111

function, and there are hence |S| degrees of freedom remaining in the recovered reward function. An112

idea explored in [1] is to assume that we observe two experts in two different MDPs with different113

transition dynamics and discount rates, but acting optimally with respect to the same reward function.114

The authors show that the reward can be identified up to a constant from observing the expert policies115

provided that the MDPs of the experts satisfy the following value-distinguishing assumption.116

Definition 2. Consider a pair of Markov decision problems on the same state and action spaces,117

but with respective discount rates γ1, γ2 and transition probabilities T 1, T 2. We say that this pair is118

value-distinguishing if, for any function v1, v2 : S → R, the statement119

v1(s)− γ1
∑
s′∈S

T 1(s′|s, a)v1(s′) = v2(s)− γ2
∑
s′∈S

T 2(s′|s, a)v2(s′) for all a ∈ A, s ∈ S (2)

implies at least one of v1 and v2 is a constant function.120

The way this assumption is stated makes it difficult to verify in practice, and the authors of [1] do not121

attempt to verify it in their experiments.122

4 Reward identification and generalization123

In this section, we present our main theoretical results on reward identifiability and generalizability.124

In the first part, we show an equivalent condition to Definition 2 for reward identification from two125

experts (Theorem 3). The simplicity of our condition makes it easily verifiable and extendable to126

various scenarios, in particular to the cases where we observe more than two experts (Corollary 5),127

when the class of rewards is linearly parameterized with a set of given features (Theorem 7), or128

when we have access to approximated transition matrices (Theorem 8). We also provide a negative129
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result on reward non-identifiability in MDPs with exogenous variables, which are common in many130

real world scenarios. In the second part, we analyse reward generalizability. Here, we provide a131

condition guaranteeing that a reward compatible with two experts leads to an optimal policy in a third132

environment (Theorem 11). The proofs of the results are all postponed to Appendix A.133

4.1 Reward identifiability134

Consider two Markov decision problems on the same set of states and actions S and A respectively,135

but with different transition dynamics T 1, T 2 and discount factors γ1, γ2. Let r ∈ R|S|×|A| be the136

reward function common to the two environments, and let v1, v2 ∈ R|S| be the entropy regularized137

values functions associated expert policies π1 and π2 in each environment respectively. According to138

Theorem 1, we have that ∀(s, a) ∈ S ×A,139

r(s, a) = λ log π1(a|s)− γ1
∑
s′∈S

T 1(s′|s, a)v1(s′) + v1(s)

= λ log π2(a|s)− γ2
∑
s′∈S

T 2(s′|s, a)v2(s′) + v2(s).

We hence deduce that ∀a ∈ A,140 (
I − γ1T 1

a −(I − γ2T 2
a )
)(v1

v2

)
= λ log π2(·|a)− λ log π1(·|a), (3)

where ∀a ∈ A, T ia ∈ RS×S is the transition matrix for action a and expert i = 1, 2, i.e., T ia(s, s′) =141

T i(s′|s, a). By including all available actions to the experts, we can write142  I − γ1T 1
a1 −(I − γ2T 2

a1)
...

...
I − γ1T 1

a|A| −(I − γ2T 2
a|A|

)

(v1v2
)

=

 λ log π2(·|a1)− λ log π1(·|a1)
...

λ log π2(·|a|A|)− λ log π1(·|a|A|)

 . (4)

In order to identify a unique reward function, we need to identify a unique associated value function.143

We hence want the linear system (4) to yield a unique solution, i.e., the |A||S|×2|S|matrix on the left144

hand side to be full rank, i.e., to have rank 2|S|. However, it is well known that, for any MDP, adding145

a constant to the reward would not change the associated optimal policy. Hence, there is an intrinsic146

degree of freedom in reward identifiability which is impossible to get rid of from only observing147

expert policies. In order to identify the reward up to a constant, we need this degree of freedom to be148

the only one in the linear system (4), i.e., the associated matrix to have rank 2|S| − 1. This result is149

summarized in the following theorem, and its complete proof can be found in Appendix A.1.150

Theorem 3. Consider two Markov decision problems on the same set of states and actions, but with151

different transition dynamics T1, T2 and discount factors γ1, γ2. Suppose that we observe two experts152

acting each in one of these environments, optimally with respect to the same reward function, in the153

sense that their policies maximize the entropy regularized reward in their respective environments.154

Then, the reward function can be recovered up to the addition of a constant if and only if155

rank

 I − γ1T 1
a1 I − γ2T 2

a1
...

...
I − γ1T 1

a|A| I − γ2T 2
a|A|

 = 2|S| − 1. (5)

This condition turns out to be equivalent to Definition 2, as shown at the end of Appendix A.1, but is156

stated in a way that is easier to check in practice and allows us to further characterize identifiability in157

various scenarios. First of all, this result naturally extends to the case where we observe any number158

of experts. We provide hereafter the result in the case of three experts.159

Corollary 4. Consider three Markov decision problems on the same set of states and actions, but160

with different transition dynamics T1, T2, T3 and discount factors γ1, γ2, γ3. Suppose that we observe161

three experts acting each in one of these environments, optimally with respect to the same reward162
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function. Then, the reward function can be recovered up to the addition of a constant if and only if163

rank



I − γ1T 1
a1 I − γ2T 2

a1 0
...

...
...

I − γ1T 1
a|A|

I − γ2T 2
a|A|

0
I − γ1T 1

a1 0 I − γ3T 3
a1

...
...

...
I − γ1T 1

a|A|
0 I − γ3T 3

a|A|


= 3|S| − 1. (6)

An interesting scenario is the one where the two experts act in the same environment, and only the164

discount rate is varied.165

Corollary 5. Consider two Markov decision problems on the same set of states and actions, with166

the same transition matrix T and reward function but different discount factors γ1 6= γ2. Then, the167

reward function is identifiable up to a constant by observing two experts in (T, γ1), (T, γ2) iff168

rank

 Ta1 − Ta2
...

Ta1 − Ta|A|

 = |S| − 1. (7)

Remark 1. Interestingly, condition (7) is equivalent to the condition for identification of a action-169

independent reward from a single expert, assuming such a reward exists ([1], Corollary 3).170

Next, we provide a negative result concerning MDPs with exogenous variables, i.e., a variable whose171

dynamics are independent of the agent’s action. This MDP class is common in economics/finance172

and has been studied in many real world scenarios including inventory control problems [58],173

variable weather conditions and customer demands [59], wildfire management [60], and stock market174

fluctuations [61]. We also provide examples involving such variables in the experimental section.175

Corollary 6. Suppose that the state space is constructed as a set of variables each taking a finite176

number of values, i.e., S = {s ∈ Rd : si ∈ Si}. The transition matrices for each action a can be177

defined by specifying the evolution of each state variable st+1
i depending on (st, a). Suppose that178

there exists a state variable whose evolution only depends on its previous value, but neither on the179

other state variables nor the action taken: such a variable is called an exogenous variable. Note180

that this variable can still affect the evolution of all other variables, and its evolution can vary across181

the environment of the observed experts. Then, the reward function is not identifiable (even up to a182

constant) using any number of experts.183

Such a negative result motivates the search for milder requirements than arbitrary reward identification,184

which is too hard of a goal to achieve in certain scenarios.185

A possible way to improve reward identifiability is to restrict the class of possible rewards, e.g.,186

by constraining it to be a linear combination of a set of chosen features. This is known as Feature187

matching IRL [49, 62–65]. The smaller the set of features, the easier to identify the reward, as188

described in the following theorem. This method also allows to recover a more interpretable reward189

function, since the recovered parameters are associated with specific features.190

Theorem 7. Suppose that we restrict the class of possible reward functions to the one parameterized191

as rθ(s, a) = θT fs,a ∀a ∈ A, s ∈ S where f : S ×A → Rd is a given feature function, and θ ∈ Rd192

denotes the reward parameters. Suppose that the d chosen features are linearly independent, i.e., that193

fTs,av = 0 ∀s, a ⇒ v = 0. Then, if 1 ∈ Im

 fa1
...

fa|A|

, the reward is identifiable up to constant by194

observing experts acting in (T 1, γ1), (T 2, γ2) if and only if195

rank



I − γ1T 1
a1 I − γ2T 2

a1 0
...

...
...

I − γ1T 1
a|A|

I − γ2T 2
a|A|

0
I − γ1T 1

a1 0 fa1
...

...
...

I − γ1T 1
a|A|

0 fa|A|


= 2|S|+ d− 1. (8)
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where fa = (fs1,a . . . fs|S|,a)T ∈ R|S|×d. On the other hand, if 1 /∈ Im

 fa1
...

fa|A|

, then the reward196

can be exactly recovered provided that the rank of the matrix on the left hand side of equation (8),197

which augments equation (5) by the features being matched, is 2|S|+ d.198

Finally, it usually happens that the exact transition matrices {Ta}a∈A are not known exactly and199

must be estimated, e.g., from samples. Verifying condition (5) on the approximated matrices may be200

misleading since the rank is very sensitive to small perturbations. Hence, we provide hereafter an201

identifiability condition in the case where we only have access to approximated transition matrices.202

Theorem 8. Suppose that we approximate the transition matrices {T ia}a∈A as {T̂ ia}a∈A such that203

‖T ia − T̂ ia‖2 ≤ ε ∀a ∈ A, i = 1, 2. Suppose that we verify condition (5) using the approximated204

matrices, i.e., we compute the second smallest eigenvalue σ of the following matrix:205

 I − γ1T̂ 1
a1 I − γ2T̂ 2

a1
...

...
I − γ1T̂ 1

a|A| I − γ2T̂ 2
a|A|

 . (9)

Then, condition (5) on the true transition matrices {Ta}a∈A holds provided that206

σ > ε
√

2|A|max(γ1, γ2). (10)

Remark 2. The matrix estimator T̂a can be obtained from samples. For example, [66][Lemma207

5] shows that a high probability bound on the max norm ‖Ta − T̂a‖max ≤ ε requires O(ε−4)208

samples from a generative model [67]. This would imply the following bound on the spectral norm:209

‖Ta− T̂a‖2 ≤ |S|‖Ta− T̂a‖max ≤ |S|ε. However, the dependence on ε can be improved as we show210

next applying the matrix Bernstein bound [68, 69].211

Theorem 9. Let T̂a be the empirical estimator for Ta. Then with probability greater than 1− δ,212

‖Ta − T̂a‖2 ≤ |S|

√
log |S||A|δ

2N
+

2(|S|+ 1) log |S||A|δ

3N
∀a ∈ A. (11)

Therefore, we can obtain ‖Ta − T̂a‖2 ≤ ε with O(ε−2) samples.213

4.2 Generalization to unknown environments214

We now focus on reward generalizability, i.e., the ability to recover a reward function that would215

allow us to train an optimal policy in a new environment. Suppose that we recover a reward function216

that is compatible with two experts acting in two MDPsM1,M2, and that we use this reward to217

train an expert in a third environmentM3, assuming all environments share the same true reward218

function but possibly different transition dynamics and discount factors. What condition guarantees219

that the trained expert will be optimal inM3?220

This generalization requirement is milder than full reward identification. Indeed, being able to identify221

the reward (even up to a constant) naturally allows to train an optimal policy in any other environment222

sharing the same reward. However, even in the presence of non-trivial degrees of freedom, it may be223

the case that any recovered reward suffices to train an optimal policy in a given other environment.224

Intuitively, the third training environment should not vary too much from the observed environments225

M1,M2. More precisely, if observing a third expert in environment 3 does not provide any further226

identification of the reward than with environments 1 and 2, then any reward compatible with227

environments 1 and 2 leads to an optimal policy in environment 3. The condition is made precise in228

the following theorem.229

Definition 10. Consider three Markov decision problems on the same set of states and actions, but230

with different transition matrices T1, T2, T3 and discount factors γ1, γ2, γ3. Suppose that we observe231

two optimal entropy regularized experts with respect to the same reward function in environments 1232

and 2. We say that (T 1, γ1), (T 2, γ2) generalize to (T 3, γ3) if any reward compatible with the two233
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experts in environments 1 and 2 leads to an optimal expert in environment 3. The definition naturally234

extends to more than two observed experts.235

Theorem 11. (T 1, γ1), (T 2, γ2) generalize to (T 3, γ3) if and only if236

rank

 I − γ1T 1
a1 I − γ2T 2

a1
...

...
I − γ1T 1

a|A|
I − γ2T 2

a|A|

 = rank



I − γ1T 1
a1 I − γ2T 2

a1 0
...

...
...

I − γ1T 1
a|A|

I − γ2T 2
a|A|

0
I − γ1T 1

a1 0 I − γ3T 3
a1

...
...

...
I − γ1T 1

a|A|
0 I − γ3T 3

a|A|


− |S|.

(12)

This condition is also necessary, in the sense that, if it does not hold, then there exists a reward237

function compatible with experts 1 and 2 but which leads to a sub-optimal policy in environment 3.238

One interesting question is whether observing two experts in the same environment with different239

discount factors allows to generalize to any other expert with arbitrary discount factor. It turns out to240

be the case under some commutativity constraint on the transition matrices.241

Corollary 12. Consider a single environment with transitions T . Suppose that there exists an action242

a0 ∈ A such that Ta0 commutes with Ta for all a ∈ A. Then for any 0 < γ1, γ2, γ3 < 1 with243

γ1 6= γ2, (T, γ1), (T, γ2) generalize to (T, γ3).244

Remark 3. The commutativity condition cannot simply be removed. Indeed, we provide in Ap-245

pendix A.9 an example with two actions with non-commutative transition matrices for which condi-246

tion (12) is not satisfied.247

5 Experiments248

We now present empirical validations of our claims. In particular, we verify the identifiability249

requirement given by Theorem 3 in the context of randomly generated transition matrices and250

different gridworlds with uniform additive noise in the dynamics.251

In addition, we study a Windy-Gridworld and a financial model that we term Strebulaev-Whited252

both involving exogenous variables in their state spaces. In agreement with Corollary 6, the reward253

function is not identifiable in these environments, highlighting the necessity of imposing milder254

requirements than full reward recovery. For example, in Windy-Gridworld, we show that by255

observing multiple experts acting in environments with different wind distributions, we can generalize,256

i.e., train an optimal expert in environments with arbitrary other wind distribution, in accordance with257

Theorem 11. On the other hand, in Strebulaev-Whited, given the additional information that the258

reward function can be represented as a linear combination of some known features, we can identify259

the reward, validating the condition of Theorem 7. The algorithms are described in Appendix B.260

5.1 Identifiability experiments261

Experiments on Random-Matrices The first experiment involves randomly generated transition262

matrices and reward function with |S| = 18, |A| = 5. This setting matches the numerical evidence in263

[1]. Their algorithm recovers the reward function but the connection with their theoretical contribution264

is not highlighted. On the contrary, we have no theory practice mismatch, since we verify exactly the265

condition in Theorem 3. In particular, for the 100 random seed we tried the rank of the matrix A is266

2|S| − 1 = 35, then invoking Theorem 3 we can conclude that the reward function is identifiable up267

to a constant shift. We provide a visual example of the recovered reward in Figure 4 in Appendix C.268

Experiments on Gridworld As a second example of identifiability, we consider Gridworld,269

where the state space is a squared grid with 100 states while the action set is given by A =270

{up,down, left, right} with dynamics given by Tα(s′|s, a) = (1 − α)Tdet(s
′|s, a) + αU(s′|s, a)271

where Tdet(s′|s, a) represents deterministic transition dynamics where for example the action right272

leads to the state on the right with probability 1. If an action would lead outside the grid, then the agent273
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Figure 1: Comparison between true and recovered reward in Gridworld with an action dependent
reward, |S| = 100. It can be noticed that the reward function rγ recovered changing discount factors
is within a constant shift from the true reward ( subplots (b),(e)). The same conclusion holds for rα
recovered from different α(see subplots (a),(d)).

stays in the current state with probability 1. The dynamics U(s′|s, a) are instead uniform over the274

states that are first adjacent to the current state. In other words, U(·|s, a) = Unif(N (s)) ∀a ∈ A275

where N (s) denotes the set of first neighbors of the state s.276

We generate two different environments changing the value of α, choosing α1 = 0.4 and α2 = 0.2.277

We notice that, even using the same discount factor γ = 0.9, the condition of Theorem 3 holds. When278

α is kept fixed, we also notice that the condition of Corollary 5 holds, and hence the reward can be279

recovered by just varying the discount factor γ of the experts. We numerically verify that the reward280

can indeed be identified up to a constant shift in these two settings (see Figure 1).281

5.2 Generalizability experiments282

In this section, we present cases where identifiability is not possible due to the presence of exogenous283

variables. However, we notice that the generalizability condition in Theorem 11 is often satisfied,284

even for a test environment with parameters rather different than the environments of the observed285

experts. We start briefly describing the environments to later comment on the results.286
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(b) Identifiability

Figure 2: Figure 2a shows the difference between right
and left term of Theorem 11. Figure 2b shows the
difference between columns and rank of the matrix in
Theorem 3.We have identifiability or generalizability
respectively when those values are 0.

Experiments on WindyGridworld The287

WindyGridworld environment augments288

the Gridworld state representation by in-289

cluding a wind direction. The wind impacts290

the position transitions by making the agent291

move one step in the direction of the wind292

in addition to the action taken. The wind293

directions at step t, wt are sampled i.i.d.294

from the distribution Pwind, and is hence295

an exogenous variable. While the reward296

is not identifiable whatever the number of297

experts, we can generalize to a new environ-298

ment with an arbitrary wind distribution by299

observing enough experts in environments300

with different wind distributions.301

In Figure 2b, we see that we can obtain better identifiability (although never full identifiability)302

when increasing the number of experts. Once we have observed 4 experts, we do not get further303

identifiability by observing more experts, hence leading to generalizability as shown in Figure 2a304

and Figure 3. We conjecture that this number of experts is linked to the number of values that the305

exogenous variable, i.e. the wind direction, can take.306

Furthermore, although the actions in Gridworld do not exactly commute (because of the boundary),307

observing two experts in the same environment with different discount factors enables generalizing308

to a different discount factor (see Figure 6 in Appendix C). The condition of Corollary 12 is hence309

sufficient but not necessary.310
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Figure 3: Comparison between true and recovered reward (r and rtrue) from 4 experts in
WindyGridworld with |S| = 400. We notice that the reward function is not identified (see (a),
(b), (c)). However, when we use the recovered reward in subplot (a) to train an optimal policy under
unseen dynamics we recover the optimal policy under the true reward in subplot (b). The subplot (d)
shows the policy πTtest

rtrue
recovered from the true reward in a new environment Ttest and (e) shows the

difference between the policy recovered from rtrue and from the recovered reward denoted as πTtest
r .

Experiments on Strebulaev-Whited The Strebulaev-Whited environment is the neoclassical311

investment model in which a firm has a Cobb-Douglas production function with decreasing returns to312

scale, as in [70]. The goal of the agent is to maximize profits discounted at constant rate 0 < β < 1.313

The state of the agent is defined by the capital level k ≥ 0 and an exogenously given persistent314

stochastic productivity shock z. We can summarize the state by s = (k, z). The next state s′ = (k′, z′)315

is determined separately for k′ and z′. We have that k′ = (1− δ)k + a, where δ is the depreciation316

rate of physical capital and a is today’s investment which is the action in the model. The variable z′317

evolves according to ln z′ = ρ ln z + ε where ε ∼ N(0, σε).318

The continuous variable k and z are discretized according to the scheme proposed in [71]. Hence, we319

obtain a discrete process with K2 possible values for the state variable s = (k, z) (so |S| = K2) and320

K values for the action a. In the experiments in Figure 7 in Appendix C , we choose K = 20 and321

consider two environments with different values of σε set to 0.02 and 0.04, respectively. We observe322

that the rank of the identifiability matrix is 552. Since 552 < 2|S| − 1 = 799, the reward function is323

not identifiable up to a constant as expected in MDPs with exogenous states. Nonetheless, when we324

consider a third environment with σε = 0.6, the generalizability condition in Theorem 11 is satisfied.325

Hence, the expert behavior can be predicted in the third environment (see Figure 7e in Appendix C ).326

5.3 Identifiability experiments with a restricted reward class327

The final result presents a numerical validation of Theorem 7 in the environment328

Strebulaev-Whited with exogenous state variable. In this model, the true reward function can329

be expressed as a linear combination of the three features given by fs,a = [z((1− δ)k + a)ρ, (1−330

δ)k, ((1− δ)k + a)]T , where s = (k, z) and the parameter ρ ∈ (0, 1) captures the curvature of the331

production function. We set ρ = 0.55. The first feature corresponds to the firm’s output or sales332

which is available from the firm’s income statement, the second feature is the firm’s current capital333

stock net of depreciation which is available from the balance sheet, and the third feature is the firm’s334

future capital stock after adding investment which is available from the cash flow statement. The335

true reward function can be written as r(s, a) = θT fs,a with θ = [1, 1,−1]T . It can be interpreted as336

follows: the agent’s reward of investment is an increase in output/sales, θ1 = 1 > 0, while the cost337

of capital is 1 and, hence, investment is costly, θ3 = −1 < 0. At the same time, the capital stock is338

valuable and can be liquidated at a price of θ2 = 1 > 0.339

Knowing these features, we can verify that the rank of the matrix in Equation (8), is 803 which340

is equal to 2|S| + d in this environment (|S| = 400 and d = 3). Invoking Theorem 7, we can341

conclude that the reward function is identifiable exactly, which is verified numerically in Figure 8 in342

Appendix C. Expressing the reward in terms of features hence helps identifiability and interpretability.343
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A Proofs550

We provide hereafter the proofs of the statements made in the main body.551

A.1 Proof of Theorem 3552

Let r ∈ R|S|×|A| be the reward function common to the two experts, and let v1, v2 ∈ R|S| be the553

entropy regularized values functions associated experts 1 and 2 respectively and the reward function554

r. Then, according to Theorem 1, we have that ∀(s, a) ∈ S ×A,555

r(s, a) = λ log π1(a|s)− γ1
∑
s′∈S

T 1(s′|s, a)v1(s′) + v1(s)

= λ log π2(a|s)− γ2
∑
s′∈S

T 2(s′|s, a)v2(s′) + v2(s)

where π1, π2 denote the policies of experts 1 and 2 respectively. We hence deduce that ∀a ∈ A,556 (
I − γ1T 1

a −(I − γ2T 2
a )
)(v1

v2

)
= λ log π2(a|·)− λ log π1(a|·). (13)

By including all available actions to the experts, we can write557  I − γ1T 1
a1 −(I − γ2T 2

a1)
...

...
I − γ1T 1

a|A| −(I − γ2T 2
a|A|

)

(v1v2
)

=

 λ log π2(·|a1)− λ log π1(·|a1)
...

λ log π2(·|a|A|)− λ log π1(·|a|A|)

 . (14)

Reward identifiability is directly related to the size of the solution space of the linear system (14).558

Since we assume that both experts are optimal with respect to a true reward function r, we know559

that the associated value function solves equation (14), and hence that this system is feasible. The560

solution space then depends on the rank of the matrix in the left hand side of (14), which we denote561

by A.562

We first show that there always exists an eigenvector of A associated with eigenvalue 0. Indeed, since563

the matrices Ta are transition matrices, their rows must sum to 1, which can be written as Ta1 = 1564

where 1 is a S dimensional column vector of 1’s. Hence,565

A

( 1
1−γ11

1
1−γ21

)
=


1

1−γ1 (1− γ1T 1
a11)− 1

1−γ2 (1− γ2T 2
a11)

...
1

1−γ1 (1− γ1T 1
a|A|

1)− 1
1−γ2 (1− γ2T 2

a|A|
1)

 = 0

Hence, the vector
( 1

1−γ11
1

1−γ21

)
is an eigenvector of A with eigenvalue 0, and corresponds to the566

invariance of the optimal policy under addition of a constant to the reward function.567

Suppose now that rank(A) = 2|S|−1. SinceA has 2S columns, this implies that the only eigenvector568

with eigenvalue 0 is
( 1

1−γ11
1

1−γ21

)
, and thus that we can recover the value function v1 (or v2 equivalently)569

up to an additive constant. Using Theorem 1 again, it implies that we can also recover the reward570

function up to a constant.571

On the other hand, suppose that rank(A) < 2|S| − 1. Then, there exists another vector in Ker(A)572

which is linearly independent of
( 1

1−γ11
1

1−γ21

)
, and whose addition to the value function would not573

change the optimal policy. However, it is easy to check that the only eigenvector of A with eigenvalue574

0 of the form
(
c11
c21

)
with c1, c2 ∈ R is proportional to

( 1
1−γ11

1
1−γ21

)
. Hence, any other vector in Ker(A)575

would induce a modification of the value and reward functions more complex than just adding a576

constant. The provided condition is hence also necessary.577
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Equivalence with Definition 2. It turns out that our rank condition (5) is equivalent to the value-578

distinguishing assumption of Definition 2. To show this, we first notice that, if v1, v2 satisfy579

equation (2), and if v1 is a constant vector, then v2 must also be a constant vector, and vice versa.580

Indeed, equation (2) can be written as581

(I − γ1T 1
a )v1 = (I − γ2T 2

a )v2 ∀a ∈ A.

Since, ∀a ∈ A, i = 1, 2, 1 is an eigenvector of T ia with eigenvalue 1, then 1 is also an eigenvector582

of (I − γ2T 2
a )−1 with eigenvalue 1

1−γ2 . Hence, if v1 = c1 is a constant vector, then v2 = (I −583

γ2T
2
a )−1(I − γ1T 1

a )v1 = c 1−γ11−γ21 is also a constant vector, and the associated constant is determined584

by the constant of v1. Thus, the condition of Definition 2 can be rewritten as585

(I − γ1T 1
a )v1 = (I − γ2T 2

a )v2 ∀a ∈ A ⇒ (v1, v2) = (c1, c
1− γ1
1− γ2

1) for some c ∈ R.

This is hence equivalent to586

dim

Ker

 I − γ1T 1
a1 I − γ2T 2

a1
...

...
I − γ1T 1

a|A| I − γ2T 2
a|A|


 = 1.

which is equivalent to equation (5).587

A.2 Proof of Corollary 4588

Let v1, v2, v3 ∈ R|S| be the entropy regularized value functions associated with experts 1, 2 and 3589

respectively. Following the proof of Theorem 3, these vectors must satisfy590



I − γ1T 1
a1 −(I − γ2T 2

a1) 0
...

...
...

I − γ1T 1
a|A|

−(I − γ2T 2
a|A|

) 0
I − γ1T 1

a1 0 −(I − γ3T 3
a1)

...
...

...
I − γ1T 1

a|A|
0 −(I − γ3T 3

a|A|
)


v1v2
v3

 =



λ log π2(·|a1)− λ log π1(·|a1)
...

λ log π2(·|a|A|)− λ log π1(·|a|A|)
λ log π3(·|a1)− λ log π1(·|a1)

...
λ log π3(·|a|A|)− λ log π1(·|a|A|)


.

(15)

Similarly as previously, we can easily show that the vector

 1
1−γ11

1
1−γ21

1
1−γ31

 ∈ Ker(A′), where A′ denotes591

the matrix on the left of equation (15) In order for the reward to be recovered up to a constant, we592

hence need that there is no other linearly independent vector in Ker(A′), i.e., that rank(A′) = 3|S|−1.593

A.3 Proof of Corollary 5594

We want to show that595

dim

Ker

 I − γ1Ta1 −(I − γ2Ta1)
...

...
I − γ1Ta|A| −(I − γ2Ta|A|)


 = 1. (16)

Suppose that
(
v1

v2

)
∈ Ker

 I − γ1Ta1 −(I − γ2Ta1)
...

...
I − γ1Ta|A| −(I − γ2Ta|A|)

, i.e.,596

(I − γ1Ta)v1 = (I − γ2Ta)v2 ∀a ∈ A, (17)
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or equivalently597

v1 − v2 = Ta(γ1v
1 − γ2v2) ∀a ∈ A. (18)

Subtracting equation (18) for a = a1 and a = ai, we get598

(Ta1 − Tai)(γ1v1 − γ2v2) = 0 ∀i. (19)

Using equation (7) and the fact that the vector 1 ∈ R|S| always belongs to Ker

 Ta1 − Ta2
...

Ta1 − Ta|A|

, we599

have that Ker

 Ta1 − Ta2
...

Ta1 − Ta|A|

 = Span(1). Thus, we deduce from equation (19) that600

γ1v
1 − γ2v2 = c1 (20)

for some c ∈ R. Using the fact that for any a ∈ A, 1 is an eigenvector of Ta with eigenvalue 1, we601

deduce from (18) and (20) that602

v1 − v2 = Tac1 = c1. (21)

Solving equations (20) and (21) for v1 and v2, we find v1 = c(1−γ2)
γ1−γ2 1 and v2 = c(1−γ1)

γ2−γ1 1. Therefore,603

Ker

 I − γ1T 1
a1 −(I − γ2T 2

a1)
...

...
I − γ1T 1

a|A| −(I − γ2T 2
a|A|

)

 =

{(
v1

v2

)
: v1 =

c(1− γ2)

γ1 − γ2
1, v2 =

c(1− γ1)

γ2 − γ1
1 for c ∈ R

}

which shows that condition (16) holds. On the other hand, if condition (7) does not hold, then604

Ker

 Ta1 − Ta2
...

Ta1 − Ta|A|

 contains another vector v0 which is not a constant vector, so the reward cannot605

be recovered up to a constant.606

A.4 Proof of Theorem 7607

Suppose that 1 ∈ Im

 fa1
...

fa|A|

, i.e., ∃θ ∈ Rd such that

 fa1
...

fa|A|

 θ = 1. This implies that608



I − γ1T 1
a1 I − γ2T 2

a1 0
...

...
...

I − γ1T 1
a|A|

I − γ2T 2
a|A|

0
I − γ1T 1

a1 0 fa1
...

...
...

I − γ1T 1
a|A|

0 fa|A|


 1

1−γ11

− 1
1−γ21
−θ

 = 0. (22)

Suppose that condition (8) holds, i.e., that609

dim


Ker



I − γ1T 1
a1 I − γ2T 2

a1 0
...

...
...

I − γ1T 1
a|A|

I − γ2T 2
a|A|

0
I − γ1T 1

a1 0 fa1
...

...
...

I − γ1T 1
a|A|

0 fa|A|




= 1. (23)
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Equations (22) and (23) thus imply that610

Ker



I − γ1T 1
a1 I − γ2T 2

a1 0
...

...
...

I − γ1T 1
a|A|

I − γ2T 2
a|A|

0
I − γ1T 1

a1 0 fa1
...

...
...

I − γ1T 1
a|A|

0 fa|A|


= Span

 1
1−γ11

− 1
1−γ21
−θ

 . (24)

This means that for any v1, v2 satisfying (I − γ1T 1
a )v1 = (I − γ1T 2

a )v2 ∀a ∈ A and such that611

∃θ ∈ Rd, (I − γ1T 1
a )v1 = faθ ∀a ∈ A, then v1 ∝ 1.612

Now suppose that we recover a reward function r(s, a) = θT fs,a compatible with the two experts,613

i.e.,614

r(·, a) = r∗(·, a) + (I − γ1T 1
a )v1 (25)

where r∗(s, a) = θ∗T fs,a denotes the true reward and v1 satisfies (I−γ1T 1
a )v1 = (I−γ2T 2

a )v2 ∀a ∈615

A. Then, (I − γ1T 1
a )v1 = r(·, a) − r∗(·, a) = fa(θ − θ∗), and hence ∃θ̃ ∈ Rd such that (I −616

γ1T
1
a )v1 = faθ̃ ∀a ∈ A. Thus, v1 ∝ 1 and the reward is recovered up to a constant.617

Suppose now that 1 /∈ Im

 fa1
...

fa|A|

. Then, the condition618

rank



I − γ1T 1
a1 I − γ2T 2

a1 0
...

...
...

I − γ1T 1
a|A|

I − γ2T 2
a|A|

0
I − γ1T 1

a1 0 fa1
...

...
...

I − γ1T 1
a|A|

0 fa|A|


= 2|S|+ d. (26)

means that this matrix is full rank and hence that its kernel is {0}. Thus, if we recover a reward of619

the form (25), following the same argument as previously, this means that v1 = 0, and thus that the620

reward function is recovered exactly.621

A.5 Proof of Corollary 6622

Without loss of generality, let us assume that the exogenous variable can only take two possible values,623

i.e., the state space is defined as S = {(s, e) : s ∈ S0, e ∈ {e1, e2}}, where e denotes the exogenous624

variable and S0 contains all other variables. Exogenity of variable e implies that ∀e ∈ {e1, e2},625

p(et+1 = e1|st = s, et = e, at = a) = p(et+1 = e1|et = e) does not depend on s nor a.626

Suppose that we order the states as {{(e1, s)}s∈S0 , {(e2, s)}s∈S0}. Then, the transition matrix for627

each expert i associated with action a has the following form:628

T ia =

(
pi1T

i
a,1 (1− pi1)T ia,1

(1− pi2)T ia,2 pi2T
i
a,2

)
(27)

where for each expert i and exogenous variable ej , j = 1, 2 , pij = pi(et+1 = ej |et = ej) and T ia,j ∈629

R|S0|×|S0| denotes the transition matrix of expert i for state variables in S0 knowing that the current630

value of state variable e is ej , i.e. T ia,j(s, s
′) = pi(st+1 = s′|st = s, et = ej , a

t = a)∀s, s′ ∈ S0631

where pi denotes the state transition probability in environment i.632
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We first show the result in the case of two experts. The matrix A =

 I − γ1T 1
a1 I − γ2T 2

a1
...

...
I − γ1T 1

a|A| I − γ2T 2
a|A|

633

has the following form:634

A =


I − γ1p11T 1

a1,1 −γ1(1− p11)T 1
a1,1 I − γ2p21T 2

a1,1 −γ2(1− p21)T 2
a1,1

−γ1(1− p12)T 1
a1,2 I − γ1p12T 1

a1,2 −γ2(1− p22)T 2
a1,2 I − γ2p22T 2

a1,2
...

...
...

...
I − γ1p11T 1

a|A|,1
−γ1(1− p11)T 1

a|A|,1
I − γ2p21T 2

a|A|,1
−γ2(1− p21)T 2

a|A|,1

−γ1(1− p12)T 1
a|A|,2

I − γ1p12T 1
a|A|,2

−γ2(1− p22)T 2
a|A|,2

I − γ2p22T 2
a|A|,2



We know that v0 =


1

1−γ11
1

1−γ11

− 1
1−γ21

− 1
1−γ21

 is an eigenvector of A with eigenvalue 0, corresponding to an635

addition of a constant to the reward. In order to show that the reward is not identifiable, we need to636

find another vector in Ker(A) linearly independent of v0. We search for such a vector of the form637

v1 =

 0
1
c11
c21

. Using the fact that 1 is an eigenvector of any transition matrix with eigenvalue 1, the638

condition v1 ∈ Ker(A) is equivalent to639 {
−γ1(1− p11) + c1(1− γ2p21)− c2γ2(1− p21) = 0

1− γ1p12 − c1γ2(1− p22) + c2(1− γ2p22) = 0.

This system of equations turns out to have a unique solution for (c1, c2) since640

det
(

1− γ2p21 −γ2(1− p21)
−γ2(1− p22) 1− γ2p22

)
= (1− γ2p21)(1− γ2p22)− (γ2 − γ2p21)(γ2 − γ2p22)

= (1− γ2)(1 + γ2 − γ2p21 − γ2p22) > 0

since 0 ≤ γ2 < 1. Hence, Ker(A) contains at least two linearly independent vector, and thus641

rank(A) < 2|S| − 1. So, according to Theorem 3, the reward function is not identifiable up to a642

constant.643

This means that, in addition to a global constant that we can add to the reward, we can also add a644

constant only to the rewards associated with a specific value of the exogenous variable. The proof645

naturally extends to the case of multiple experts, and when the exogenous variable can take more646

than two values. Actually, in the latter case, we can find even more linearly independent vectors in647

Ker(A), corresponding to adding a constant to the rewards associated with each possible value of the648

exogenous variable.649

A.6 Proof of Theorem 8650

Define A =

 I − γ1T 1
a1 I − γ2T 2

a1
...

...
I − γ1T 1

a|A| I − γ2T 2
a|A|

 and Â =

 I − γ1T̂ 1
a1 I − γ2T̂ 2

a1
...

...
I − γ1T̂ 1

a|A| I − γ2T̂ 2
a|A|

. For an arbi-651

trary matrixM , let σ2(M) denote the second smallest singular value ofM . Note that the condition (5)652

for A is equivalent to σ2(A) > 0. From Weyl’s inequality for singular values[72], we have that653

|σ2(A)− σ2(Â)| ≤ ‖A− Â‖2.

Moreover,654
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‖A− Â‖2 =

∥∥∥∥∥∥∥
 γ1(T 1

a1 − T̂
1
a1) γ2(T 2

a1 − T̂
2
a1)

...
...

γ1(T 1
a|A|
− T̂ 1

a|A|
) γ2(T 2

a|A|
− T̂ 2

a|A|
)


∥∥∥∥∥∥∥
2

≤
√

2 max(γ1, γ2) max


∥∥∥∥∥∥∥
 (T 1

a1 − T̂
1
a1)

...
T 1
a|A|
− T̂ 1

a|A|


∥∥∥∥∥∥∥
2

,

∥∥∥∥∥∥∥
 (T 2

a1 − T̂
2
a1)

...
T 2
a|A|
− T̂ 2

a|A|


∥∥∥∥∥∥∥
2


≤
√

2|A|max(γ1, γ2)ε.

Therefore, σ2(A) ≥ σ2(Â) −
√

2|A|max(γ1, γ2)ε, and hence σ2(A) > 0 provided that σ2(Â) >655 √
2|A|max(γ1, γ2)ε.656

A.7 Proof of Theorem 9657

Proof. T̂a can be constructed as follows. Sample N
|S| states {s′i}

N
|S|
i=1 from the distribution T (·|s, a) for658

every state s ∈ S. Let N(s) denote the number of times state s has been sampled, i.e. N(s) = N
|S| .659

Form the matrix T̃i = [
1(si=s,s

′
i=s

′)N
N(s) ]s,s′ It holds that ∀i, E[T̃i] = Ta, λmax(T̃i − Ta) ≤ |S| + 1,660

λmax(E[(T̃i − Ta)2]) ≤ |S|2 and Trace(E[(T̃i − Ta)2]) ≤ |S|2. Then, the result follows applying661

Lemma 10 in [68] and assuming δ < 1/e. Finally, we conclude with a covering argument over the662

set A.663

A.8 Proof of Theorem 11664

Lemma 13. The condition of equation 12 holds if and only if ∀v1, v2 ∈ R|S| satisfying (I −665

γ1T
1
a )v1 = (I − γ2T 2

a )v2, ∀a ∈ A, there exists v3 ∈ R|S| such that (I − γ3T 3
a )v3 = (I − γ1T 1

a )v1,666

∀a ∈ A.667

Proof. Denote by A1, A2 the matrices shown and the left and right hand side of equation (12)668

respectively, so that the equation reads rank(A1) = rank(A2)−|S|, or equivalently 2|S|−rank(A1) =669

3|S| − rank(A2). Using the rank theorem, it follows that dim(Ker(A1)) = dim(Ker(A2)), i.e.,670

dim({(v1, v2) ∈ R2|S| : (I − γ1T 1
a )v1 = (I − γ2T 2

a )v2 ∀a ∈ A})
= dim({(v1, v2, v3) ∈ R3|S| : (I − γ1T 1

a )v1 = (I − γ2T 2
a )v2 = (I − γ3T 3

a )v3 ∀a ∈ A}).
(28)

Since all matrices I−γ3T 3
a are invertible for any a ∈ A, it follows that for any (v1, v2) ∈ R2|S|, there671

can exist at most one vector v3 ∈ R|S| such that (I−γ1T 1
a )v1 = (I−γ2T 2

a )v2 = (I−γ3T 3
a )v3 ∀a ∈672

A. We hence deduce that673

dim({(v1, v2, v3) ∈ R3|S| : (I − γ1T 1
a )v1 = (I − γ2T 2

a )v2 = (I − γ3T 3
a )v3 ∀a ∈ A})

= dim({(v1, v2) ∈ R2|S| : ∃v3 ∈ R|S|, (I − γ1T 1
a )v1 = (I − γ2T 2

a )v2 = (I − γ3T 3
a )v3 ∀a ∈ A}).

(29)

Plugging equation (29) in (28), we have674

dim({(v1, v2) ∈ R2|S| : (I − γ1T 1
a )v1 = (I − γ2T 2

a )v2 ∀a ∈ A})
= dim({(v1, v2) ∈ R2|S| : ∃v3 ∈ R|S|, (I − γ1T 1

a )v1 = (I − γ2T 2
a )v2 = (I − γ3T 3

a )v3 ∀a ∈ A}).
(30)
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Moreover, we can clearly see that675

{(v1, v2) ∈ R2|S| : ∃v3 ∈ R|S|, (I − γ1T 1
a )v1 = (I − γ2T 2

a )v2 = (I − γ3T 3
a )v3 ∀a ∈ A}

⊆ {(v1, v2) ∈ R2|S| : (I − γ1T 1
a )v1 = (I − γ2T 2

a )v2 ∀a ∈ A}.

Thus, together with equation (30), we can conclude that676

{(v1, v2) ∈ R2|S| : ∃v3 ∈ R|S|, (I − γ1T 1
a )v1 = (I − γ2T 2

a )v2 = (I − γ3T 3
a )v3 ∀a ∈ A}

= {(v1, v2) ∈ R2|S| : (I − γ1T 1
a )v1 = (I − γ2T 2

a )v2 ∀a ∈ A}
which shows the result.677

Suppose now that condition 12 does not hold, i.e.,678

dim({(v1, v2) ∈ R2|S| : (I − γ1T 1
a )v1 = (I − γ2T 2

a )v2 ∀a ∈ A})
> dim({(v1, v2) ∈ R3|S| : ∃v3 ∈ R|S|, (I − γ1T 1

a )v1 = (I − γ2T 2
a )v2 = (I − γ3T 3

a )v3 ∀a ∈ A}).
(31)

This directly implies that there must exist a pair (v1, v2), such that there exists no v3 ∈ R|S| satisfying679

(I − γ3T 3
a )v3 = (I − γ1T 1

a )v1 ∀a ∈ A hence finalizing the proof.680

681

We now turn to the proof of Theorem 11. Let r∗ be the ground truth reward, and suppose that we682

recover some reward function r from policies π1, π2, i.e., π1, π2 are optimal with respect to both683

rewards r and r∗ on (T 1, γ1), (T 2, γ2) respectively. Suppose that we train a policy π3 optimally with684

respect to r on (T 3, γ3). We want to show that π3 is also optimal with respect to the true reward r∗.685

Let vi, vi∗ be the value vectors associated to expert i = 1, 2 with respect to rewards r and r∗686

respectively, i.e., such that687

r(·, a) = λ log π1(a|·) + (I − γ1T 1
a )v1 = λ log π2(a|·) + (I − γ2T 2

a )v2 (32)

r∗(·, a) = λ log π1(a|·) + (I − γ1T 1
a )v1∗ = λ log π2(a|·) + (I − γ2T 2

a )v2∗. (33)

Let v3 be the value vector associated with expert 3 with respect to reward r, i.e., such that ∀a ∈ A688

r(·, a) = λ log π3(a|·) + (I − γ3T 3
a )v3. (34)

We need to show that there exists a vector v3∗ ∈ R|S| such that ∀a ∈ A689

r∗(·, a) = λ log π3(a|·) + (I − γ3T 3
a )v3∗. (35)

Using equations (32), (33) and (34), we have ∀a ∈ A690

r∗(·, a) = λ log π1(a|·) + (I − γ1T 1
a )v1∗ (36)

= r(·, a)− (I − γ1T 1
a )v1 + (I − γ1T 1

a )v1∗ (37)

= λ log π3(a|·) + (I − γ3T 3
a )v3 + (I − γ1T 1

a )(v1 − v1∗). (38)

Moreover, subtracting equations (32) and (33), we have691

(I − γ1T 1
a )(v1 − v1∗) = (I − γ2T 2

a )(v2 − v2∗)

Therefore, using our assumption and Lemma 13, there exists a vector ṽ3 ∈ R|S| such that (I −692

γ1T
1
a )(v1− v1∗) = (I − γ3T 3

a )ṽ3. Hence, combined with equation (38), we conclude that there exists693

v3∗ ∈ R|S| such that ∀a ∈ A694

r∗(·, a) = λ log π3(a|·) + (I − γ3T 3
a )v3∗. (39)

Using Theorem 1, we conclude that r∗ belongs to the set rewards compatible with π3, and hence that695

π3, which has been optimized for r, is also optimal for the ground truth reward r∗.696

On the other hand, if condition 12 does not hold, according to Lemma 13, we can construct a697

reward function r compatible with experts 1 and 2 that cannot be written in the form r(·, a) =698

λ log π3(a|·) + (I − γ3T 3
a )v3 for some v3 ∈ R|S|. Hence, thanks to Theorem 1, the policy π3 cannot699

be optimal for such a reward function. Hence, there will necessarily exist some recovered reward700

functions that would lead to a sub-optimal policy in environment 3.701
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A.9 Proof of Corollary 12702

For the setup describe in this corollary, we need to verify condition (12). By the rank theorem, this703

condition is equivalent to704

dim

Ker

 I − γ1Ta1 I − γ2Ta1
...

...
I − γ1Ta|A| I − γ2Ta|A|


 = dim


Ker



I − γ1Ta1 I − γ2Ta1 0
...

...
...

I − γ1Ta|A| I − γ2Ta|A| 0
I − γ1Ta1 0 I − γ3Ta1

...
...

...
I − γ1Ta|A| 0 I − γ3Ta|A|




.

(40)

To this end, we will show that any element (v1, v2) ∈ R2|S| of the kernel space of the left hand side705

is associated a single element (v1, v2, v3) ∈ R3|S| of the kernel space of the right hand side. More706

precisely, we need to show that for any v1, v2 satisfying707

(I − γ1Ta)v1 = (I − γ2Ta)v2 ∀a ∈ A,

there exists a unique v3 ∈ R|S| such that708

(I − γ1Ta)v1 = (I − γ3Ta)v3 ∀a ∈ A.

Consider the action a0 satisfying by assumption that Ta0 commutes with all other matrices Ta,709

a ∈ A. Define v3 = (I − γ3Ta0)−1(I − γ1Ta0)v1. Notice that for any a ∈ A, we can write710

I − γ3Ta = α(I − γ1Ta) + (1− α)(I − γ2Ta) where α = γ3−γ2
γ1−γ2 . Moreover, recall that, if any two711

invertible matrices A and B commute, then A and B−1 also commute.712

Using these properties, we then have for any a ∈ A,713

(I − γ3Ta)v3 = α(I − γ1Ta)v3 + (1− α)(I − γ2Ta)v3

= α(I − γ1Ta)(I − γ3Ta0)−1(I − γ1Ta0)v1 + (1− α)(I − γ2Ta)(I − γ3Ta0)−1(I − γ1Ta0)v1

= α(I − γ1Ta)(I − γ3Ta0)−1(I − γ1Ta0)v1 + (1− α)(I − γ2Ta)(I − γ3Ta0)−1(I − γ2Ta0)v2

= α(I − γ1Ta)(I − γ3Ta0)−1(I − γ1Ta0)v1 + (1− α)(I − γ3Ta0)−1(I − γ2Ta0)(I − γ2Ta)v2

= α(I − γ1Ta)(I − γ3Ta0)−1(I − γ1Ta0)v1 + (1− α)(I − γ3Ta0)−1(I − γ2Ta0)(I − γ1Ta)v1

= (I − γ1Ta)(I − γ3Ta0)−1(α(I − γ1Ta0) + (1− α)(I − γ2Ta0))v1

= (I − γ1Ta)v1.

Uniqueness of v3 is trivial since the matrices (I−γ3Ta) are invertible, which shows that condition (40)714

holds.715

Counter-example when the commutativity constraint does not hold. We now provide a simple716

example showing that the required generalizability condition (12) does not always hold in the case717

where the commutativity condition breaks. Suppose |S| = 3, |A| = 2 and718

Ta1 =

(
0.5 0.2 0.3
0.3 0.5 0.2
0 0.5 0.5

)
, Ta2 =

(
0.3 0.4 0.3
0.7 0.1 0.2
0.4 0.1 0.5

)
. (41)

These matrices do not commute and we have for any discount factors γ1, γ2, γ3 all different,719

4 = rank
(
I − γ1Ta1 I − γ2Ta1
I − γ1Ta2 I − γ2Ta2

)
6= rank

I − γ1Ta1 I − γ2Ta1 0
I − γ1Ta2 I − γ2Ta2 0
I − γ1Ta1 0 I − γ3Ta1
I − γ1Ta2 0 I − γ3Ta2

− |S| = 5.

(42)
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B Algorithms details720

This section provides the detailed pseudocode of the procedures we introduced for reward identifica-721

tion (Algorithm 1), for generalizability (Algorithm 3) and identification when the reward function722

can be expressed as linear combination of known features (Algorithm 2).

Algorithm 1 Identifiability Test

Input: Expert transition matrices T1, T2, entropy-regularized optimal policies π1, π2.
Compute matrix

A :=

 −(I − γ1T 1
a1) I − γ2T 2

a1
...

...
−(I − γ1T 1

a|A|
) I − γ2T 2

a|A|

 (43)

if rank(A) = 2|S| − 1 then
Identifiable = True
Form vector b ∈ R|S||A| such that b(s, a) = λ log π1(a|s)

π2(a|s) (ordered by states first)

Recover value vectors
(
v1

v2

)
= (ATA)−1AT b

Recover the reward function as r(s, a) = λ log π1(a|s) + γ
∑
s′ T1(s′|s, a)v1(s′) − v1(s) or

equivalently r(s, a) = λ log π2(a|s) + γ
∑
s′ T2(s′|s, a)v2(s′)− v2(s)

else
Identifiable = False

end if
Output: Identifiable and recovered reward r.

Algorithm 2 Identifiability Test with linear reward function

Input: Expert transition matrices T 1, T 2, entropy-regularized optimal policies π1, π2, features set
{fa}a.
Compute matrix

A :=



−(I − γ1T 1
a1) I − γ2T 2

a1 0
...

...
...

−(I − γ1T 1
a|A|

) I − γ2T 2
a|A|

0

−(I − γ1T 1
a1) 0 fa1

...
...

...
−(I − γ1T 1

a|A|
) 0 fa|A|


(44)

if rank(A) = 2|S|+ d then
Identifiable = True
Form vectors b1, b2 ∈ R|S||A| defined as b1(s, a) = λ log π1(a|s)

π2(a|s) , b2(s, a) = λ log π1(a|s) and

b ∈ R2|S||A| as b =

(
b1
b2

)
Recover value vectors and reward weights

v1v2
θ

 = (ATA)−1AT b

Recover the reward function as r(s, a) = θT fs,a
else

Identifiable = False
end if
Output: Identifiable and recovered reward r.
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Algorithm 3 Generalization Test

Input: Expert transition matrices T 1, T 2, transfer transition matrix T 3, entropy-regularized
optimal policies π1, π2.
Compute matrix

A :=

 −(I − γ1T 1
a1) I − γ2T 2

a1
...

...
−(I − γ1T 1

a|A|
) I − γ2T 2

a|A|


if the condition in Equation (12) holds then

Generalizable = True
Form vector b ∈ R|S||A| such that b(s, a) = λ log π1(a|s)

π2(a|s)

Recover the value vectors
(
v1

v2

)
= (ATA)−1AT b

Recover the reward function as r(s, a) = λ log π1(a|s) + γ
∑
s′ T1(s′|s, a)v1(s′)− v1(s)

Recover the optimal entropy regularized policy π3 in T 3 using the recovered reward r with any
RL algorithm.

else
Generalizable = False

end if
Output: Generalizable and recovered policy π3.

Algorithms 1 and 3 can be generalized to an arbitrary number of experts. Indeed, denoting the matrix724

in Equation (43) as A2, we can construct the matrix An for n experts recursively as follows:725

An :=


An−1 0

−(I − γ1T 1
a1) 0 I − γnTna1

...
...

...
−(I − γ1T 1

a|A|
) 0 I − γnTna|A|

 (45)

Similarly, we can construct the vector bn as726

bn :=

(
bn−1

λ log π1(a|s)
πn(a|s)

)
(46)

where b1 denotes the vector defined in the algorithms for 2 experts. The rest of the procedures remain727

unchanged.728

C Additional experiments729

This section provides the experimental results and environment details omitted from the main text.730

Additional details for Gridworld In the main text, we omitted the description of the reward731

function. We provide it hereafter for completeness. The reward function is obtained assigning a value732

at every state according to the grid shown in Figure 5. This reward function would depend only on733

states. To obtain a state-action dependent reward function, we add a penalty of −30 for moving right,734

−20 for moving down, −10 for moving left and 0 for a step upwards.735

Additional details for WindyGridworld In WindyGridworld, the agent moves of one step ac-736

cording to the next state sampled from Tα(s′|s, a) = (1 − α)Tdet(s
′|s, a) + αU(s′|s, a) where737

Tdet(s
′|s, a) as in Gridworld. In addition to that the agent takes an additional step according to the738

wind direction. The wind direction w is sampled from the wind distribution generated by sampling739

each entry of the non normalized Pwind from a normal distribution and normalizing the obtained740

vector. After sampling the wind direction we sample the corresponding next state from Tdet(s
′|s, w).741

The reward function is the same used for the environment Gridworld.742
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Results on Random-Matrices We report in Figure 4, the results omitted from the main text. In743

Figure 4, we show the reward recovered with Algorithm 1 and the difference with respect to the true744

reward. It clearly emerges that the recovered reward is within a constant shift from the true reward745

function.746

Results on Gridworld with state only reward We provide an additional result on Gridworld747

where we do not consider the penalty assigned to the different actions. In this case, the reward748

depends only on states but the learner is not informed about this feature. In Figure 5, we show the749

recovered reward. Given that the reward depends only on the states we show the 2D representation of750

the state space suppressing the action dimension.751

Results on WindyGridworld with different discount factors In the main text we showed that we752

need to observe 4 experts to generalize to a new wind distribution. Hereafter, we provide experiments753

on the generalization to a new environment with a different discount factor. We verified that in this754

case observing two experts is enough to generalize. The comparison between recovered rewards and755

policies can be found in Figure 6.756

Computational resources The experiment can be reproduced with a standard laptop.
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Figure 4: Comparison between true and recovered reward in Random-Matrices with |S| = 18
and |A| = 5. On the vertical axis corresponds to the canonical ordering of the 18 states while the
horizontal axis corresponds to the 5 actions.
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Figure 5: Comparison between true and recovered reward in Gridworld with |S| = 100 and the
4 actions up, down, left and right. It can be noticed that the reward function is recovered up to a
constant shift.
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Figure 6: Generalization in WindyGridworld with different discount factors. We observe two
experts with discounts factor γ1 and γ2 with γ1 6= γ2 and with common transition dynamics. Subplot
(e) shows that the policy recovered from rtrue in a new environment with a different γ3 matches the
policy obtained from the recovered reward.
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Figure 7: Comparison between true and recovered reward in Strebulaev-Whited with |S| = 400
and the 20 actions. It can be clearly noticed that the reward function is not identified (see subplots (a),
(b), (c)). However, when we use the recovered reward in subplot (a) to train an optimal policy under
unseen dynamics we recover the optimal policy under the true reward in subplot (b). The subplots (d)
show the policies recovered from the true reward and (e) shows the difference between the policy
recovered from rtrue and from the recovered reward.
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Figure 8: Comparison between true and recovered reward in Strebulaev-Whited assuming addi-
tional knowledge of the features {fa}a. It emerges that thanks to such additional information the
reward function is identifiable.
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