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Abstract

We consider experiments in dynamical systems where interventions on some
experimental units impact other units through a limiting constraint (such as
a limited supply of products). Despite outsize practical importance, the best
estimators for this ‘Markovian’ interference problem are largely heuristic
in nature, and their bias is not well understood. We formalize the problem
of inference in such experiments as one of policy evaluation. Off-policy
estimators, while unbiased, apparently incur a large penalty in variance
relative to state-of-the-art heuristics. We introduce an on-policy estimator:
the Differences-In-Q’s (DQ) estimator. We show that the DQ estimator can
in general have exponentially smaller variance than off-policy evaluation. At
the same time, its bias is second order in the impact of the intervention. This
yields a striking bias-variance tradeoff so that the DQ estimator effectively
dominates state-of-the-art alternatives. From a theoretical perspective, we
introduce three separate novel techniques that are of independent interest
in the theory of Reinforcement Learning (RL). Our empirical evaluation
includes a set of experiments on a city-scale ride-hailing simulator.

1. Introduction

Experimentation is a broadly deployed learning tool in online commerce that is, in principle,
simple: apply the treatment in question at random (e.g. an A/B test), and ‘naively’ infer the
treatment effect by differencing the average outcomes under treatment and control. About a
decade ago, Blake and Coey [8] pointed out a challenge in such experimentation on Ebay:
“Consider the example of testing a new search engine ranking algorithm which steers test
buyers towards a particular class of items for sale. If test users buy up those items, the
supply available to the control users declines.”
The above violation of the so-called Stable Unit Treatment Value Assumption (SUTVA [12]),
has been viewed as problematic in the context of online platforms at least as early as Reiley’s
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seminal ‘Magic on the Internet’ work [34]; Blake and Coey [8] were simply pointing out that
the resulting inferential biases were large, which is particularly problematic since treatment
effects in this context are typically tiny. The interference problem above is germane to
experimentation on commerce platforms where interventions on a given experimental unit
impact other units since all units effectively share a common inventory of ‘demand’ or ‘supply’
depending on context.
Despite what appears to be the ubiquity of such interference, a practical solution is far
from settled. The majority of approaches so far fall under the category of experimental
design, the idea being that a more-careful assignment of treatment will render the bias of the
‘naively’-derived inference negligible. This ongoing line of work has produced sophisticated
experiment designs which, in the best cases, provably reduce bias under highly specialized
models. While this is promising in theory, experimentation on online platforms in particular
still largely relies on the simplest designs, i.e. A/B tests. For reasons including cost and
organizational frictions, sophisticated experimental designs may not be an ideal lever, and
are often infeasible.

Markovian Interference and Existing Approaches: We study a generic experimentation
problem within a system represented as a Markov Decision Process (MDP), where treatment
corresponds to an action which may interfere with state transitions. This form of interference,
which we refer to as Markovian, naturally subsumes the platform examples above, as recently
noted by others either implicitly [41] or explicitly [24, 44]. In that example, a user arrives at
each time step, the platform chooses an action (whether to treat the user), and the user’s
purchase decision alters the system state (inventory levels).
Our goal is to estimate the Average Treatment Effect (ATE), defined as the difference in
steady-state reward with and without applying the treatment. In light of the above discussion,
we assume that experimentation is done under simple randomization (i.e. A/B testing). Now
without design as a lever, there are perhaps two existing families of estimators:
1. Naive: We will explicitly define the Naive estimator in the next section, but the strategy
amounts to simply ignoring the presence of interference. This is by and large what is done in
practice. Of course it may suffer from high bias (we show this formally in Example 1), but it
serves as more than just a strawman. In particular, bias is only one side of the estimation
coin, and with respect to the other side, namely variance, the Naive estimator is effectively
the best possible.
2. Off-Policy Evaluation (OPE): Another approach comes from viewing our problem
as one of policy evaluation in reinforcement learning (RL). Succinctly, it can be viewed as
estimating the average reward of two different policies (no treatment, or treatment) given
observations from some third policy (simple randomization). This immediately suggests
framing the problem as one of Off-Policy Evaluation, and borrowing one of many existing
unbiased estimators, e.g. [50, 49, 33, 22, 27, 28]. This tack appears to be promising, e.g. [44],
but we observe that the resulting variance is necessarily large (Theorem 3).

Our Contributions: Against the above backdrop, we propose a novel on-policy treatment-
effect estimator, which we dub the ‘Differences-In-Q’s (DQ)’ estimator, for experiments with
Markovian interference. In a nutshell, we characterize our contribution as follows:
The DQ estimator has provably negligible bias relative to the treatment effect. Its variance
can, in general, be exponentially smaller than that of an efficent off-policy estimator. In both
stylized and large-scale real-world models, it dominates state-of-the-art alternatives.
We next describe these relative merits in greater detail:
1. Second-order Bias: We show (Theorem 1) that when the impact of an intervention on
transition probabilities is O(δ), the bias of the DQ estimator is O(δ2). The DQ estimator
thus leverages the one piece of structure we have relative to generic off-policy evaluation:
treatment effects are typically small.
2. Variance: We show (Theorem 2) that the DQ estimator is asymptotically normal, and
provide a non-trivial, explicit characterization of its variance. By comparison, we show
(Theorem 4) that this variance can, in general, be exponentially (in the size of the state
space) smaller than the variance of any unbiased off-policy estimator.
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Summarizing the above points, we are the first (to our knowledge) to explicitly characterize the
favorable bias-variance trade-off in using on-policy estimation to tackle off-policy evaluation.
This new lens has broader implications for OPE and policy optimization in RL.
3. Practical Performance: We conduct experiments in both a caricatured one-dimensional
environment proposed by others [24], as well as a city-scale simulator of a ride-sharing
platform. We show that in both settings the DQ estimator has MSE that is substantially
lower than (a) naive and off-policy estimators, and even (b) estimators given access to
incumbent state-of-the-art experimental designs.

Related Literature: The largest portion of work in interference is in experimental design,
with the design levers ranging from stopping times in A/B tests [30, 23, 57, 25], to any
form of more-sophisticated ‘clustering’ of units [11, 16, 19, 14, 37, 53, 55, 15], to clustering
specifically when interference is represented by a network [35, 54, 42, 2, 7, 39, 60], to the
proportion of units treated [21, 48, 4], to the timing of treatment [45, 9, 17], and beyond
[3, 29, 51, 35, 10, 6, 20, 42]. As alluded to earlier, these sophisticated designs can be powerful,
but cost, user experience, and other implementation concerns restrict their application in
practice [31, 32].
We view this paper as orthogonal to this literature, but will eventually compare against a
recent state-of-the-art design, so-called two-sided randomization [24, 5], that is specific to
the context of two-sided marketplaces (e.g. the one we simulate).
As stated earlier, the problem we study is one of off-policy evaluation (OPE) [40, 46]. The
fundamental challenge in OPE is high variance, which can be attributed to the nature of the
algorithmic tools used, e.g. sampling procedures [50, 49, 33]. Recent work on ‘doubly-robust’
estimators [22, 27, 28] has improved on variance (incidentally, our estimator is loosely tied
to these, as we discuss in Section 6), but again we will show, via a formal lower bound, that
unbiased estimators as a whole have prohibitively large variance. Finally, our motivation is
close in spirit to a recent paper [44], which applies OPE directly in Markovian interference
settings; we make a direct experimental comparison in Section 5.
In the policy optimization literature, ‘trust-region’ methods [43] and conservative policy
iteration [26] use a related on-policy estimation approach to bound policy improvement.
However, the explicit application of on-policy estimation in the context of OPE, and in
particular the striking bias-variance tradeoff this enables, are novel to this paper.

2. Model
This section formalizes the inference problem that we tackle, casting it in the language of
MDPs. Vis-à-vis the existing literature, this lens allows us to reason about the problem using
a large, well-established toolkit, and makes obvious the fact that OPE provides unbiased
estimation of the ATE. We then present what we call the ‘Naive’ estimator (alluded to in
the introduction). This is the lowest-variance estimator one can hope for in this setting, but
it can have significant bias, as we will see.
We begin by defining an MDP with state space S. We denote by st ∈ S the state of the MDP
at time t ∈ N. Every state is associated with a set of available actions A which govern the
transition probabilities between states via the (unknown) function p : S × A × S → [0, 1]. We
assume that A = {0, 1} irrespective of state; for descriptive purposes, we will associate the ‘1’
action with the use of a prospective intervention, so that ‘0’ is associated with not employing
the intervention. We denote by r(s, a) the reward earned in state s having employed action
a. A policy π : S → A maps states to random actions. We define the average reward λπ,
under any (ergodic, unichain) policy π, according to:

λπ = lim
T →∞

1
T

T∑
t=1

r(st, π(st)).

There are three policies we define explicitly:
The Incumbent Policy π0: This policy never uses the intervention, so that π0(s) = 0 for
all s. This is ‘business as usual’. Denote the associated transition matrix as P0 (i.e. the
entries of P0 are exactly p(·, 0, ·))
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The Intervention Policy π1: This policy always uses the intervention, so that π1(s) = 1
for all s. This reflects the system, should the intervention under consideration be ‘rolled out’.
Denote the associated transition matrix as P1.
The Experimentation Policy πp: This policy corresponds to the experiment design. Sim-
ple randomization would select π(s) = 1 with some fixed probability p, say 1/2, independently
at every period. This corresponds to the sort of search engine experiment alluded to in the
introduction. The transition matrix associated with this design is then P1/2 = 1

2 P0 + 1
2 P1.

The Inference Problem: We are given a single sequence of T states, actions, and rewards,
observed under the experimentation policy πp (recall that cost and constraints [31, 32]
prohibit us from running π0 or π1 separately until convergence). The data we have is the
sequence {(st, at, r(st, at)) : t = 1, . . . , T}, wherein at ≜ πp(st). We must estimate the
average treatment effect (ATE):

ATE ≜ λπ1 − λπ0 .

2.1. The Naive Estimator and Bias

A natural approach to estimating the ATE is to use simple randomization (i.e. P1/2) and
the following Naive estimator:

(1) ˆATEN = 1
|T1|

∑
t∈T1

r(st, at) − 1
|T0|

∑
t∈T0

r(st, at),

where T1 = {t : at = 1} and T0 = {t : at = 0}. In the context of the search engine experiment,
this corresponds to simply averaging some metric of interest (say, conversion) among the
test users (T1) and control users (T0). What goes wrong is simply that the two empirical
averages above, that seek to estimate λπ1 and λπ0 respectively, employ the wrong measure
over states. This is sufficient to introduce bias that is on the order of the treatment effect
being estimated:
Example 1. Consider an MDP on two states, S = {0, 1}. We collect a reward of 0 in state
0 irrespective of the action taken in that state (r(0, 0) = r(0, 1) = 0), and a reward of 1 in
state 1, again, irrespective of action (r(1, 0) = r(1, 1) = 1). On the other hand, transitions
are impacted by our choice of action. Specifically, let p(0, 0, 0) = p(0, 0, 1) = p(1, 0, 1) =
p(1, 0, 0) = 1/2. We maintain p(0, 1, 1) = p(0, 1, 0) = 1/2 so that the intervention has no
effect at state 0. On the other hand, we let p(1, 1, 1) = 1/2 + δ, so that p(1, 1, 0) = 1/2 − δ,
for some δ > 0. In words, the intervention tends to discourage a transition to 0 from state 1.

In the above example, it is easy to calculate that ATE = (1/2)δ/(1 − δ), reflecting the
shift in the stationary distribution favoring state 1, induced under the intervention. On
the other hand, we can calculate that limT

ˆATEN = 0, so that the bias induced by the
‘experimentation’ policy relative to the stationary distributions under the incumbent and
intervention policies respectively, is comparable to the size of the treatment effect.

3. The Differences-In-Q’s Estimator
We are now prepared to introduce our estimator for inference in the presence of Markovian
interference. Before defining our estimator, which we will see is only slightly more complicated
than the Naive estimator, we recall a few useful objects associated with MDPs. First, for a
fixed policy π, define the Bellman operator Tπ : R|S| × R → R|S| according to

Tπ(V, λ) = rπ − λ1 + PπV,

where rπ : S → R is defined according to rπ(s) = E [r(s, π(s))]. The average cost of policy π,
denoted λπ, and the bias function corresponding to π, denoted Vπ, are then a solution to
the fixed point equation Tπ(V, λ) = V . Finally, the Q-function associated with π, denoted
Qπ : S × A → R, is defined according to

Qπ(s, a) = r(s, a) − λπ + E [Vπ(s1)|s0 = s, a0 = a] .(2)
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3.1. An Idealized First Step

In motivating our estimator, let us begin with the following idealization of the Naive estimator,
where we denote by ρ1/2 the steady state distribution under the randomization policy π1/2:

Eρ1/2

[
ˆATEN

]
=
∑

s

ρ1/2(s) [r(s, 1) − r(s, 0)] .

It is not hard to see that in the context of Example 1, we continue to have Eρ1/2 [ ˆATEN ] = 0,
so that this idealization of the Naive estimator continues to have bias on the order of the
treatment effect. Consider then, the following alternative:

(3) Eρ1/2

[
ˆATED

]
=
∑

s

ρ1/2(s)
[
Qπ1/2(s, 1) − Qπ1/2(s, 0)

]
,

where the term Eρ1/2 [ ˆATED] can for now just be thought of as an idealized constant ( ˆATED is
defined soon in (4)). Compared to Eρ1/2 [ ˆATEN ], we see that Eρ1/2 [ ˆATED] takes a remarkably
similar form, except that as opposed to an average over differences in rewards, we compute
an average of differences in Q-function values. The idea is that doing so will hopefully
compensate for the shift in distribution induced by π1/2. We return to our example to check:
Example 1 (Continued). Continuing with our example, we can explicitly calculate Qπ1/2(·, ·),
the average reward λπ1/2 , and the stationary distribution ρ1/2 (see Appendix1). Doing so
allows us to calculate that

Eρ1/2

[
ˆATED

]
= 1

2

(
δ

(1 − δ/2)2

)
.

That is, |ATE − Eρ1/2 [ ˆATED]| = O(δ2), so that the bias of this idealized estimator is second-
order (i.e. negligible) relative to the ATE.

Is the dramatic mitigation of bias we see in Example 1 generic? If the experimentation
policy mixes fast, our first set of results essentially answers this question in the affirmative.
In particular, we make the following mixing time assumption:
Assumption 1 (Mixing time). There exist constants C and λ such that for all s ∈ S and for
any integer k ≥ 0,

dTV(P k
1/2(s, ·), ρ1/2) ≤ Cλk,

where dTV(·, ·) denotes total variation distance.

We then have that the second order bias we saw in Example 1 is, in fact, generic:
Theorem 1 (Bias of DQ). Assume that for any state s ∈ S, dTV(p(s, 1, ·), p(s, 0, ·)) ≤ δ.
Then, ∣∣∣ATE − Eρ1/2

[
ˆATED

]∣∣∣ ≤ C ′
(

1
1 − λ

)2
rmax · δ2

where rmax := maxs,a |r(s, a)| and C ′ is a constant depending (polynomially) on log(C).

3.2. The Differences-In-Q’s Estimator

Motivated by the development in the previous subsection, the Differences-In-Q’s (DQ)
estimator we propose to use is simply

(4) ˆATED = 1
|T1|

∑
t∈T1

Q̂π1/2(st, at) − 1
|T0|

∑
t∈T0

Q̂π1/2(st, at),

1Appendices can be found at https://arxiv.org/abs/2206.02371.
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where we take an empirical average over the state trajectory produced under the randomiza-
tion policy, and Q̂π1/2 is an estimator of the Q-function. For concreteness, we obtain Q̂π1/2

by solving

min
V̂ ,λ̂

∑
s∈S

( ∑
t,st=s

r(st, at) − λ̂ + V̂ (st+1) − V̂ (st)
)2

.(5)

Our main result characterizes the variance and asymptotic normality of ˆATED:
Theorem 2 (Variance and Asymptotic Normality of DQ). The DQ estimator is asymptotically
normal so that √

T
(

ˆATED − Eρ1/2

[
ˆATED

])
d→ N (0, σ2

D),

with standard deviation

σD ≤ C ′
(

1
1 − λ

)5/2
log
(

1
mins∈S ρ1/2(s)

)
rmax.

where C ′ is a constant depending (polynomially) on log(C).

One Extreme of the Bias-Variance Tradeoff: We may heuristically think of the
Naive estimator as representing one extreme of the bias-variance tradeoff among reasonable
estimators. For the sake of comparison, by the Markov Chain CLT, the Naive estimator is
also asymptotically normal with standard deviation Θ(rmax/(1 − λ)1/2). This rate is efficient
for the estimation of the mean of a Markov chain [18]. On the other hand, while the Naive
estimator is effectively useless for the problem at hand given its bias is in general Θ(δ), that
of the DQ estimator is O(δ2).

3.3. A series expansion for the ATE

Our key technical contribution, as well as the motivation for the DQ estimator, is a novel
Taylor series representation of the ATE which describes the off-policy average reward as a sum
of terms that can be estimated on-policy. The Naive estimator emerges as the zeroth-order
truncation of the series; and the idealized DQ estimator is the natural first-order correction.
The proof of Theorem 1 proceeds by bounding the remainder. Here we sketch the deriviation
of this series; see the Appendix for the full proof.
We first define few pieces of useful notation. Let ρ0 ∈ R|S|, ρ1/2 ∈ R|S|, ρ1 ∈ R|S| be the
vectors of the stationary distributions of P0, P1/2, P1 accordingly. Let r0 ∈ R|S|, r1/2 ∈
R|S|, r1 ∈ R|S| be the reward vectors associated with policies π0, π1/2, π1, i.e., ra(s) = r(s, a)
and r1/2 = 1

2 r0 + 1
2 r1. The proof relies on a classic perturbation result, which allows us to

quantify exactly the error induced by distribution shift:
Lemma 1 (Stationary Distribution Perturbation [36]). Let P, P ′ ∈ R|S|×|S| be kernels of
aperiodic and irreducible Markov Chains, with stationary distributions ρ, ρ′ ∈ R|S|. Then,

ρ′⊤ = ρ⊤ + ρ′⊤(P ′ − P )(I − P )#

where (I − P )# = (I − P + 1ρ⊤)−1 − 1ρ⊤ is the group inverse of I − P .

We will first apply Lemma 1 to express λ1 = ρ⊤
1 r1 in terms of ρ1/2:

ρ⊤
1 r1 = ρ⊤

1/2r1 + ρ⊤
1 (P1 − P1/2)(I − P1/2)#r1

We can now apply Lemma 1 again to ρ1 in the RHS; applying this K times iteratively yields
the expansion:

ρ⊤
1 r1 =

K∑
k=0

ρ⊤
1/2
[
(P1 − P1/2)(I − P1/2)#]k r1 + ρ⊤

1
[
(P1 − P1/2)(I − P1/2)#]K+1

r1
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This expansion expresses the off-policy average reward as a sum of on-policy quantities (i.e.,
expectations under ρ1/2), plus a remainder term that can be bounded as:∣∣∣ρ⊤

1
[
(P1 − P1/2)(I − P1/2)#]K+1

r1

∣∣∣ ≤ C ′
(

δ

1 − λ

)K+1
rmax

This has several immediate implications. First, the Naive estimator converges to the difference
between the zeroth terms of the expansion (i.e., K = 0) for ρ⊤

1 r1 and ρ⊤
1 r0; the resulting

bias is then O(δ). The DQ estimator, in contrast, converges to the difference between the
first-order partial sums of the expansion (i.e., K = 1) for ρ⊤

1 r1 and ρ⊤
1 r0; the O(δ2) bias in

Theorem 1 then follows immediately. This strategy can be iterated to generalize the DQ
estimator to arbitrarily high-order bias corrections.

4. The Price of Being Unbiased
Thus far, we have seen that the DQ estimator provides a dramatic mitigation in bias
(Theorem 1) at a relatively modest price in variance (Theorem 2). This suggests another
question: could we hope to construct an unbiased estimator that has low variance (i.e.
comparable to either the Naive or DQ estimators). We will see that the short answer is: no.

4.1. The Variance of an Optimal Unbiased Estimator

As noted earlier, a plethora of Off-policy evaluation (OPE) algorithms might be used to
provide an unbiased estimate of the ATE. Rather than consider a particular OPE algorithm,
here we produce a lower bound on the variance of any unbiased OPE algorithm. While such
a bound is obviously of independent interest (since OPE is a far more general problem than
what we seek to accomplish in this paper), we will primarily be interested in comparing this
lower bound to the variance of the DQ estimator from Theorem 2.
Theorem 3 (Variance Lower Bound for Unbiased Estimators). Assume we are given a dataset
{(st, at, r(st, at)) : t = 0, . . . , T} generated under the experimentation policy π1/2, with s0
distributed according to ρ1/2. Then for any unbiased estimator τ̂ of ATE, we have that

T · Var(τ̂) ≥ 2
∑

s

ρ1(s)2

ρ1/2(s)
∑

s′

p(s, 1, s′)(Vπ1(s′) − Vπ1(s) + r(s, 1) − λπ1)2

+ 2
∑

s

ρ0(s)2

ρ1/2(s)
∑

s′

p(s, 0, s′)(Vπ0(s′) − Vπ0(s) + r(s, 0) − λπ0)2 ≜ σ2
off .

It is worth remarking that this lower bound is tight: in the appendix we show that an
LSTD(0)-type OPE algorithm achieves this lower bound. While this is of independent
interest vis-à-vis average cost OPE, we turn next to our ostensible goal here – evaluating the
‘price’ of unbiasedness. We can do so simply by comparing the variance of the DQ estimator
with the lower bound above. In fact, we are able to exhibit a class of one-dimensional
Markov chains (in essence the same model proposed by [24] as a caricature of the dynamic
interference problem) for which we have:
Theorem 4 (Price of Unbiasedness). For any 0 < δ ≤ 1

5 , there exists a class of MDPs
parameterized by n ∈ N, where n is the number of states, such that

σD

σoff
= O

(
n8

cn

)
,

for some constant c > 1. Furthermore, |(ATE − E[ ˆATED])/ATE| ≤ δ.

Another Extreme of the Bias-Variance Tradeoff: Theorems 2, 3, and 4 together reveal
the opposite extreme of the bias-variance tradeoff. Specifically, if we insisted on an unbiased
estimator for our problem (of which there are many, thanks to our framing of the problem
as one of OPE), we would pay a large price in terms of variance. In particular Theorem 4
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illustrates that this price can grow exponentially in the size of the state space. This jibes
with our empirical evaluation in both caricatured and large-scale MDPs in Section 5.
Taken together our results reveal that the DQ estimator accomplishes a striking bias-
variance tradeoff: it has substantially smaller variance than any unbiased estimator (in fact,
comparable to the Naive estimator), all while ensuring bias that is second order in the impact
of the intervention.

5. Experiments
This section will empirically investigate the DQ estimator and a number of alternatives in
two settings: a simple one-dimensional toy model proposed by [24], and more realistically, a
city-scale simulator of a ride-hailing platform similar to what large ride-hailing operators use
in production. The alternatives we consider include: 1) the Naive estimator; 2) TSRI-1 and
TSRI-2, the “two-sided randomization” (TSR) designs/estimators from [24]; 3) a variety of
OPE estimators. For the OPE estimators, we note that off-policy average reward estimation
has only recently been addressed in [56, 59], and we implement their specific estimators
which we simply denote as TD and GTD respectively. We also implement an extension to
an LSTD type estimator proposed in [44].

5.1. A toy example

We first study all of our estimators in a simple setting that does not call for any sort
of value function approximation. Our goal is to understand the relative merits of these
estimators in terms of their bias and variance. To this end, we adopt precisely the toy MDP
studied by [24]; a stylized model of a rental marketplace. This MDP is essentially a 1-D
Markov chain on N = 5000 states parameterized by a ‘customer arrival’ rate λ and a ‘rental
duration’ rate µ. At a given state n (so that n units of inventory are in the system), the
probability that an arriving customer rents a unit is impacted by the intervention. As such
if the intervention increases the probability of a customer renting, this reduces the inventory
availability for customers that arrive later. Our MDP setup exactly replicates that of [24],
with N = 5000, λ = 1, µ = 1; see the appendix for further details. We run all estimators over
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Figure 1: Toy-example from [24]. Left: Estimated ATE at time t/N = 104 across 100
trajectories. Dashed line indicates actual ATE. Diamonds indicate the asymptotic mean for
each estimator. DQ shows compelling bias-variance tradeoff for this experimental budget.
Right: Relative RMSE vs. Time; DQ dominates the alternatives at all timescales.

100 separate trajectories of length t = 104N of the above MDP initialized in its stationary
distribution. Figure 1 summarizes the results of this experiment. Beginning with the left
panel, which reports estimated quantities at t = 104N , we immediately see:
TSR improves on Naive: The actual ATE in the experiment is 1.5%. Whereas it has the
lowest variance of the estimators here, the Naive estimator has among the highest bias. The
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two TSR estimators reduce this bias substantially at a modest increase in variance. It is
worth noting, as a sanity check, that these results precisely recreate those reported in [24].
OPE estimators are high variance: The OPE estimators have the highest variance of
those considered here. The TD estimator has the lower variance but this is simply because it
is implicitly regularized. Run long enough, both estimators will recover the treatment effect.
DQ shows a compelling bias-variance tradeoff: In contrast, the DQ estimator has the
lowest bias at t = 104N and its variance is comparable to the TSR estimators (It is worth
noting that run long enough, the DQ estimator had a bias of ∼ −5 × 10−7).
Conclusions hold across experimental budgets: Turning our attention briefly to the
right chart in Figure 1, we show the relative RMSE (i.e. RMSE normalized by the treatment
effect) of the various estimators considered here across all experimental budgets t. RMSE
effectively scalarizes bias and variance and we see that on this scalarization the DQ estimator
dominates the other estimators considered here over all choice of t.
We note that specialized designs such as TSR can still be valuable in specific settings: when
λ ≫ µ, for example, TSR is nearly unbiased (as shown in [24]), and can outperform DQ; see
the appendix for such a study.

5.2. A Large-Scale Ridesharing Simulator

We next turn our attention to a city-scale ridesharing simulator similar to those used in
production at large ride-hailing services. We will consider the problem of experimenting
with changes to dispatching rules. Experimenting with these changes naturally creates
Markovian interference by impacting the downstream supply/ positioning of drivers. Relative
to the earlier toy example, the corresponding MDP here has an intractably large state-space,
necessitating value function approximation for the DQ and OPE estimators.
The simulator: Ridesharing admits a natural MDP; see e.g. [41]. The state at the time of
a request corresponds to that of all drivers at that time: position, assigned routes, riders, and
the pickup/dropoff location of the request. Actions correspond to driver assignments and
pricing decisions. The reward for a request is the price paid by the rider, less cost incurred
to service the request. Our simulator models Manhattan. Riders and drivers are generated
according to real world data, based on [1]; this yields ∼ 300k requests and ∼ 7k unique drivers
per real day. An arriving request is served a menu of options generated by a price engine.
The rider chooses an option based on a choice model calibrated on taxi prices (for the outside
option) and implied delay disutility from typical match rates. A dispatch engine assigns a
driver to the rider; the engine chooses the driver who can serve the rider at minimal marginal
cost, subject to the product’s constraints. Finally drivers proceed along their assigned routes
until the next request is received. The simulator implements pooling. Users can switch out
demand and supply generation, pricing and dispatch algorithms, driver repositioning, and
the choice model via a simple API. Other simulators exist in the literature [41, 58], but lack
either an open-source implementation, or implement a subset of the functionality here.
The experiment: We experiment with dispatch policies. Specifically, we consider assigning
a request to an idle driver or a ‘pool’ driver, i.e. a driver who already has riders in their car.
A dispatch algorithm might prefer the former, but only if the cost of the resulting trip is at
most α% higher than the cost of assigning to a pool driver. We consider three experiments,
each of which changes α from a baseline of 0 to one of three distinct values: 30%, 50% or 70%,
with ATEs of 0.5%, -0.9%, and -4.6% respectively. As we noted earlier, we would expect
significant interference in this experiment (or indeed any experiment that experiments with
pricing or dispatch) since an intervention changes the availability / position of drivers for
subsequent requests.
Figure 2 summarizes the results of the above experiments, wherein each estimator was run
over 50 independent simulator trajectories, each over 3 × 105 requests. The DQ and OPE
estimators shared a common linear approximation architecture with basis functions that
count the number of drivers at every occupancy level. We note that this approximation
introduces its own bias which is not addressed by our theory. We immediately see:
Strong Impact of Interference: As we might expect, interference has a significant impact
here as witnessed by the large bias in the Naive estimator.
Incumbent estimators do not improve on Naive: None of the incumbent estimators

9



ATE: -4.6 ATE: -0.9 ATE: 0.5

DQ Na
ive
TS
RI
-1

TS
RI
-2

OPE (L
STD)

OPE (G
TD)

OPE (T
D)

DQ Na
ive
TS
RI
-1

TS
RI
-2

OPE (L
STD)

OPE (G
TD)

OPE (T
D)

DQ Na
ive
TS
RI
-1

TS
RI
-2

OPE (L
STD)

OPE (G
TD)

OPE (T
D)

-4

-2

0

-6

-4

-2

-10

-8

-6
A
TE^

Figure 2: Ridesharing model Left: ˆATE at t = 3 × 105 over 50 trajectories. Dashed line
indicates actual ATE. DQ has lowest bias, and is only estimator to estimate correct sign of the
treatment at all effect sizes. Right: RMSE vs. Time; DQ dominates at all time scales.

improve on Naive in this hard problem. This is also the case for the TSR designs, which in
this large scale setting surprisingly appear to have significant variance. The OPE estimators
have lower variance due to the regularization caused by value function approximation.
DQ works: In all three experiments, the bias in DQ (although in a relative sense higher
than in the toy model) is substantially smaller than the alternatives, and also smaller than the
ATE. This is evident in the left panel in Figure 2. Notice that in the rightmost experiment
(ATE = 0.5), DQ is the only estimator to learn that the ATE is positive. Like in the toy
model, the right panel shows that these results are robust over experimentation budgets.

6. Discussion: refining the bias-variance tradeoff
To summarize, we have shown that the DQ estimator achieves a surprising bias-variance
tradeoff by applying on-policy estimation to the Markovian interference problem, and more
generally to OPE. Here we draw further connections between the Naive, DQ, and OPE
estimators, and suggest how to interpolate between these estimators to realize other points
along the bias-variance curve.
State-space aggregation and the Naive estimator: Consider approximate estimation
of the value function via state aggregation, for example in cases where the state space is
massive. At one extreme, the DQ estimator corresponds to performing no aggregation; at the
other, using a single aggregate state reproduces the Naive estimator exactly. Controlling the
level of aggregation (or more generally, the complexity of the value function approximation)
interpolates between the DQ and Naive estimators.
Regularization and the OPE meta-estimator: A large family of OPE estimators are
formulated explicitly based on the following identity on the ATE:

(6) ATE = Eρ1/2

[
(1/2)(ρ1(s) + ρ0(s))

ρ1/2(s) (Qπ1/2(s, 1) − Qπ1/2(s, 0))
]

Doubly robust estimators (see e.g. [27, 52]), for example, plug in estimates of the likelihood
ratio and value functions to (5), as do the closely related primal-dual estimators (see [13, 47]).
However our theory (Theorem 3) demonstrates that the cost of this unbiased estimation is
prohibitively high.
Notice, however, that simply setting the likelihood ratio to one immediately recovers the DQ
estimator – and its favorable guarantees. By regularizing the likelihood ratio estimates in
OPE methods towards one, then, one can interpolate along the bias-variance curve between
DQ and unbiased OPE. Recent regularized primal-dual OPE algorithms (e.g. [38]) have in
fact realized empirical performance gains from such regularization.
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Higher-order Differences-in-Qs: As alluded to in Section 3.3, the series expansion
that motivates the DQ estimator can be extended to obtain arbitrarily high-order bias
corrections. The resulting estimators admit natural interpretations as Differences-in-Qs-of-
Differences-in-Qs. This series of bias corrections represents a natural interpolation along the
full bias-variance curve, from Naive estimation to unbiased OPE. Analyzing the bias-variance
tradeoff along this curve is an exciting direction for future work.
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