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Abstract

Societal and real-world considerations such as robustness, fairness, social welfare
and multi-agent tradeoffs have given rise to multi-distribution learning paradigms,
such as collaborative |3, group distributionally robust (36, and fair federated
learning [27]. In each of these settings, a learner seeks to minimize its worst-
case loss over a set of n predefined distributions, while using as few samples as
possible. In this paper, we establish the optimal sample complexity of these learning
paradigms and give algorithms that meet this sample complexity. Importantly, our
sample complexity bounds exceed that of the sample complexity of learning a

single distribution only by an additive factor of %g}("). These improve upon the
best known sample complexity of agnostic federated learning by Mohri et al. [27]
by a multiplicative factor of n, the sample complexity of collaborative learning by
Nguyen and Zakynthinou [29] by a multiplicative factor %8 and give the first

e3
sample complexity bounds for the group DRO objective of Sagawa et al. [36]. To
achieve optimal sample complexity, our algorithms learn to sample and learn from
distributions on demand. Our algorithm design and analysis extends stochastic

optimization techniques to solve zero-sum games in a new stochastic setting.

1 Introduction

Pervasive needs for robustness, fairness, and multi-agent collaboration in learning have given rise to
multi-distribution learning paradigms (e.g., [5136, 27, [12]). In these settings, we seek to learn a model
that performs well on any distribution in a pre-defined set of interest. For fairness considerations,
these distributions may represent heterogeneous populations of different protected or socio-economic
attributes; in robustness applications, they may capture a learner’s uncertainty regarding the true
underlying task; and in muti-agent collaborative or federated applications, they may represent agent-
specific learning tasks. In these applications, the performance and optimality of a model is measured
by its worst test-time performance on a distribution in the set. We are concerned with this fundamental
problem of designing sample-efficient multi-distribution learning algorithms.

The sample complexity of multi-distribution learning differs from that of learning a single distribution
in several ways. On one hand, learning tasks of varying difficulty require different numbers of samples.
On the other hand, similarity or overlap among learning tasks may obviate the need to sample from
some distributions. This makes the use of a fixed per-distribution sample budget highly inefficient
and suggests that optimal multi-distribution learning algorithms should sample on demand. That is,
algorithms should take additional samples whenever they need them and from whichever distribution
they want them. On-demand sampling is especially appropriate when some population data is scarce
(as in fairness mechanisms in which samples are amended [32]); when the designer can actively
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Problem Sample Complexity Thm  Best Previous Result

Collab. Learning UB ™2 (log || + nlog(%)) [M.1] & °log(2)log(%)(log|H|+ n) [29]

Collab. Learning LB e ?(log [H|+ nlog(%)) 1M2] e 'nlog(k/s) [3]

GDRO/AFL UB e (log [H| 4+ nlog(%)) [M.1] e % (nlog|H|+ nlog(%)) [27]
GDRO/AFL UB e ? (Dw + nlog(%)) [5.1] N/A
(Training error convg.) ¢ 2 (DH +n log(%)) 1521 & 2Dy (expected convergence only) [36]

Table 1: This table gives upper (UB) and lower bounds (LB) on the sample complexity of learning model class
H on n distributions. For the collaborative learning and AFL settings, the sample complexity upper bounds
refer to the problem of learning a randomized model of worst-case error OPT + € or a deterministic classifier of
worst-case error 20PT + ¢. For the GDRO setting, sample complexity refers to learning a deterministic model
with worst-case error of R-OPT + ¢, where R-OPT is the best worst-case error attainable in a convex compact
model space H. Dy denotes the Bregman radius of H, and £ = min {n, log |*|}. Sample complexity bounds
of Collaborative and Agnostic federated learning in existing works, extend to VC dimension and Rademacher
complexity. Our results also extend to VC dimension under some assumptions.

perturb datasets towards rare or atypical instances (such as in robustness applications [21 44]); or
when sample sets represent agents’ contributions to an interactive multi-agent system [27, 16]].

Blum et al. [5] demonstrated the benefit of on-demand sampling in the collaborative learning
setting, where all data distributions are realizable with respect to the same target classifier. This

line of work established that learning n distributions on-demand takes 9] (log(n)) times the sample
complexity of learning a single realizable distribution [5, 8, 29]], whereas relying on batched uniform

convergence takes {2 (n) times that of learning a single distribution [5]. However, beyond the
realizable setting, the best known multi-distribution learning results fall short of this promise: existing
on-demand sample complexity bounds for agnostic collaborative learning have highly suboptimal

dependence on ¢, requiring O (log(n) / 53) times the sample complexity of agnostically learning a
single distribution [29]]. On the other hand, agnostic federated learning bounds [27]] have been studied

only for algorithms that sample in one large batch and thus require €2 (n) times the sample complexity
of a single learning task. Moreover, the test-time performance of some key multi-distribution methods,
such as group distributionally robust optimization [36], have not been studied from a provable or
mathematical perspective before.

In this paper, we give a general framework for obtaining optimal and on-demand sample complexity
for three multi-distribution learning settings. Table [T summarizes our results. All three settings
consider a set D of n distributions and a model class H. They evaluate the performance of a model h
(or a distribution over models) by its worst-case performance, maxpep Riskp(h). As a benchmark,
they consider the worst-case loss of the best model, i.e., OPT = miny,«cy maxpep Riskp (h*).
Importantly, all of our sample complexity upper bounds demonstrate only an additive increase of
e~ ?nlog(n/d) over the sample complexity of a single learning task, compared to the multiplicative
factor increase required by existing works.

- Collaborative learning of Blum et al. [5]: For agnostic collaborative learning, our Theo-
rem [4.1] gives a randomized and a deterministic model that achieve performance guarantees
of OPT + ¢ and 20PT + ¢, respectively. Our algorithms have an optimal sample complexity of
O (% (log(|H|) + nlog(%))). This improves upon the work of Nguyen and Zakynthinou [29]
in two ways. First, it provides error bounds of OPT + ¢ for randomized classifiers, where only
20PT + ¢ was previously established. Second, it improves the upper bound of Nguyen and
Zakynthinou [29] by a multiplicative factor of log(n)/e3. In Theorem we give a matching
lower bound on this sample complexity, thereby establishing the optimality of our algorithms.

- Group distributionally robust learning (group DRO) of Sagawa et al. [36|]: For group DRO, we
consider a convex and compact model space H. Our Theorem [5.1]studies a model that achieves
an OPT + ¢ guarantee on the worst-case test-time performance of the model with an on-demand
sample complexity of O (E%(D H+"N log(%)). Our results also imply a high-probability bound



for the convergence of group DRO training error that improves upon the (expected) convergence
guarantees of Sagawa et al. [36] by a factor of n.

- Agnostic federated learning of [27)]: For agnostic federated learning, we consider a finite class
of hypotheses. Our Theorems and show that on-demand sampling can accelerate the
generalization of agnostic federated learning by a factor of n compared to batch results established
by Mohri et al. [27]]. Our results also imply matching high-probability bounds to Mohri et al. [27]]
on the convergence of the training error in the batched setting.

To achieve these results, we contribute new insights and techniques for solving stochastic zero-sum
games with sources of randomization that differ in both cost and quality. We frame the multi-
distribution learning problems as a stochastic zero-sum game with uncertain payoffs and utilize
stochastic mirror descent and a variational perspective to solve the game. In this case, the maximizing
player can be interpreted as a weight vector for distributions D, specifying from which distributions
future on-demand samples should be taken. These on-demand samples form a stochastic gradient for
the players. However, the quality of these estimators, the number of samples needed for them, and
whether they can be reused later on, differs between the two players. We extend the Stochastic Mirror
Descent framework to optimally trade off these asymmetric needs for samples. In Section 3| we give
an overview of this approach and its technical challenges and contributions.

1.1 Related Work

Learning models. There are many lines of work that study multi-distribution learning but which
have evolved independently in separate communities. The field of collaborative learning concerns
the learning of a shared machine learning model by multiple stakeholders that each desire a model
with low error on their own data distribution. The line of work initiated by Blum et al. [S]] studies
on-demand sample complexity bounds for realizable collaborative learning and was later extended to
several related settings (e.g., [29} 18 (7, 130]]). The agnostic federated learning framework of Mohri
et al. [27] poses an equivalent of the multi-distribution learning objective as a fair and intuitive target
for federated learning algorithms, and studies it in the offline setting with data-dependent analysis.
Multi-distribution learning also arises in distributionally robust optimization [4] as the Group DRO
problem [17], which is is motivated by deep learning applications with multiple deployment domains
or protected demographics. These works focus on an empirical perspective, but have discussed
training error convergence in offline settings [17, 136} 137]. Multi-distribution learning is also related
to a line of work on multi-source domain adaptation (e.g., [13} [24]]) and multi-group fairness notions
(e.g., 35,138, [13]]). We describe these parallel threads in more detail in Section@

Stochastic game equilibria. Our approach relates to a line of research on using online algorithms
to find min-max equilibria by playing no-regret algorithms against one another [34, (15} 31,19, [10].
Online mirror descent (OMD) is one well-studied family of methods that can find approximate
minima of convex functions, and also approximate min-max equilibria of convex-concave games,
with high probability using noisy first-order information [33} 28], |16, [2]]. We bring these online
learning tools to bear on the problem of finding saddle points in robust optimization formulations.
The primary technical difference between multi-distribution learning and traditional saddle-point
optimization problems is that we have sample access to distributions instead of noisy local gradients.

2 Preliminaries

Let X be an instance space, ) a label space, and Z = &’ x ) a space of datapoints. A data distribution
D is a joint probability distribution over Z. We consider a hypothesis class H of a subset of functions
mapping X’ to ). With each distribution D, define a loss function {p : H x £ — [0, 1] measuring
the loss of hypothesis / on data point z € Z. We write £ as £ when D is clear from context. We
denote the expected loss, i.e. risk, of a hypothesis & € H under a data distribution D € D by:

Riskp (h) == wE.o [lp (h, (z,y))] -

Importantly, we only assume that £p’s are bounded and make no other assumptions on losses or
distributions. For a distribution over the hypothesis class, p € AH, and a distribution over data
distributions, ¢ € AD, we refer to their expected loss by Risk,(p) == Ep~q [En~p [Riskp (R)]].



Collaborative Learning. We will use the collaborative PAC learning model of Blum et al. [5] and
its agnostic extensions by Nguyen and Zakynthinou [29]. In this setting, the goal is to guarantee
small risk for every distribution in a collection. Formally, given a set of data distributions D =
{D,...,D,}, the goal of the learner is to learn a hypothesis & such that, with probability 1 — 4,

max Riskp(h) < OPT + ¢, where OPT := min max Riskp(h). (1)
DeD heH DED

Group Distribution Robustness. We will also study the closely related setting of group distribu-
tionally robust optimization (Group DRO) of Sagawa et al. [36]. Formally, the group DRO setting
considers a model set O that is a convex compact subset of the Euclidean space and a convex loss
function ¢ : © x Z — [0, 1] that is assumed to be differentiable over ©. Given a set of data
distributions D := { Dy, ..., D, }, the learner seeks a model § € ©, such that, with probability 1 — 4,

max (%END [€(0,(z,y))] < R-OPT + ¢, where R-OPT : min max (w,ngD [, (z,y)]. @)
There is a close relationship between the Group DRO setting and collaborative learning. In particular,
when © = A(H) and H is finite, the two goals are analogous but with two exceptions: first, the Group
DRO could return a distribution over functions while collaborative learning requires the solution to
be a deterministic function, and second, R-OPT is potentially more competitive than OPT since it
allows randomization. We note that the group DRO setting is equivalent to the agnostic federated
learning framework of [27]], thus our results for DRO extend to that setting as well.

Sample complexity. We are interested in the design of algorithms that achieve the above goals
while using a small number of samples from distributions D, ..., D,,. We formalize the sample
complexity by the total number of calls made to example oracles EX(D;). Each call EX(D) produces
an i.i.d. sample from D. We note that these example oracles also allow us to sample from any mixture
distribution ¢ € AD, e.g., by first selecting a D; according to the mixture and then calling EX(D; ).

2.1 Technical Background

We will use tools and definitions from the literature on zero-sum games and no-regret learning
throughout the paper. This section provides a brief overview of these concepts.

Zero-Sum Games. A finite two-player zero-sum game is described by the tuple (A_, A, ¢) where
A ={1,...,n}and A, = {1,...,m} are finite sets of actions and where ¢ : A x A, — [0,C].
In this game, the players choose mixed strategies over actions sets. These are distributions that are
denoted by a vector of probabilities p € AA. and g € AA,. The expected payoff of mixed strategies
is denoted by ¢(p, ¢) = E;p j~q [0(4, j)]. The goal of the minimizing player is to minimize this
expected payoff and the maximizer seeks to maximize the expected payoff; that is, to solve

min max .
Join max o(p,q)

A pair (p, q) that solves this optimization problem is called a min-max equilibrium. Similarly, a
solution is called an e-min-max equilibrium if neither player can unilaterally improve their objective
by more than . Formally, (p, ¢) is an e-min-max equilibrium if both players’ regrets are at most ¢,
i.e., Reg-Min(p, q) := ¢(p, q) — min;-ca $(i*, ¢) < € and Reg-Max(p, q) := max;-ca, ¢(p,j*) —
o(p, q) < e. We will next describe methods that find e-min-max equilibria by finding solutions (p, q)
for which Reg-Min(p, ¢) + Reg-Max(p, q) is at most €. We describe a more general formulation for
convex-concave zero-sum games in Appendix [B.T| which we will use for the Group DRO problem.

No-Regret Learning. We consider an online setting where an arbitrary set of operators,
g, ... gM € £*, is revealed sequentially to a learner who must choose a matching sequence
of actions, w™, ... w(™), from a convex compact set Z C . Here, £ and £* respectively refer to
an arbitrary Euclidean space and its dual. We focus on a setting where an online learner commits

to action w*) € Z before seeing ¢, g**t1) ... and aims to achieve vanishing variational error
Erry (w(X7)) defined by
1 T
Erry (w7 = ma - ; <g(t)’ w® — w> . 3)



We will denote no-regret algorithms by their update rule Q : {Z x £*} — Z, where {Z x £*}
denotes the space of arbitrary length sequences of action-operator pairs. Given a history sequence
w®, ... w® e Z and operator sequence ¢V, ..., ¢ € £*, the algorithm returns w(+1) =
Q ({fw®, g} ... {w®,g®}). When the history is clear from context, we write w(t*1) =
Q (w(t) , g(t)) as shorthand. For the particular case where Z = A™ is a probability simplex, one such
algorithm is Exponential Gradient Descent (also known as Hedge):

Ohedge ({w(l),g(l)} s {w(t),g(t)}> = T iUH where w; = wgt) exp {—7)g,§t)} ,weR" 4)
Wiy
where 7 is a user-defined step size, and w; is a user-defined initial iterate. By default, we take

wy) = [ﬂ " The following lemma is a classical result on the variational error of exponential gradient
descent.

Lemma 2.1 ([40]). Let ¢V, ..., g™ € R" and Z = A™. Further assume Hg(t) Hoo < C for all

timesteps t = 1,...,T. Choosing n = +/logn/T, after T iterations of exponential gradient descent,
the outputs w™ ..., w'T) satisfies,

30 KL (w®|jw®)
. .

Erry (w1)) < T

3 Technical Overview of Our Approach

In this section, we provide an overview of our technical approach for addressing the sample complexity
of collaborative learning and group DRO problems. In later sections, we will refer to the approach
outlined in this section to sketch proofs and design algorithms. We will focus our exposition on
collaborative learning and briefly indicate how the same approach applies to the group DRO setting.

At a high level, we first frame collaborative learning as a zero-sum game with uncertain payoffs
and aim to use a variational perspective to learn its minmax equilibrium. We specifically choose
the variational perspective (instead of an arbitrary online learning approach), since it allows us to
linearize the effect of uncertain payoffs on the resulting error. We then use stochastic gradients to solve
the variational problem. Our stochastic gradients will rely on i.i.d. samples from the distributions
to estimate gradients both with respect to distributions over H and mixtures over D but with an
asymmetric bound on the bias and variance of the estimates. Along the way, we develop tools
and formalisms that handle the asymmetric cost of stochastic gradients and obtain optimal sample
complexity results. We now address these steps in more detail.

Collaborative Learning as Zero-Sum Games. When the hypothesis class # is finite, the collab-
orative learning problem with distribution set D corresponds to a zero-sum game (A., A,, ¢) with
A =H,A, =D, and ¢(, j) = Risk, (i), where ¢ € A and j € A,. Observe that the value of the
min-max solution is equivalent to R-OPT. It is not hard to see that any e-min-max equilibrium (p, )
of this game corresponds to a 2¢ collaborative learning solution, i.e.,

E [max RiskD(h)] < OPT + 2¢. )
h~p | DED

This enables us to use tools that have been developed for solving zero-sum games in order to address
collaborative learning and group DRO settings. We will use a similar construction when hypothesis
class H has finite VC dimension, where A_ will instead refer to an appropriate e-cover of H.

Using the Variational Error to deal with Payoff Uncertainty. A sufficient condition for minimiz-
ing regret, and thus finding e-min-max equilibrium, is minimizing the variational error (Equation [3).
In particular, for any finite zero-sum game (A., A, ¢), defining Z = [AA., AA,] and operators

g(t) _ |:{ap7,¢(p(t)vq(t))}ieA_ , {*8qj¢(p(t)vq(t))}je/h ’ ©

ensures that variational error provides an upper bound on regret: Erry (w"7)) > Reg-Min(p, q) +
Reg-Max(p, ¢), where w = (p, q) (see Fact|C.1). In collaborative learning, when p(*) is the min-
player’s distribution over hypotheses and ¢'*) is max-player’s distribution over the mixtures, the



gradient vectors refer to the risks of each hypothesis or distribution under ¢(*) or p(*) respectively:

t) _ .t (1) t) _ : () _ . t
9" =19, "1, ¢ = {Risk,w (M)}, ob = {Rlskp(p( ))}D€D~ (7)

In the collaborative learning setting, we can only create noisy estimates g for these gradients from
samples. No-regret algorithms are advantageous in this setting as they choose their tth iterate
w(®) before seeing the tth gradient ¢(*). This means that w(*) is independent of gradient noise,
e = ¢ — 5 We can thus linearize the noise and decompose variational error into the training
and generalization errors as follows

Errv(w(l‘T) ) < max — <A(t >—|— max —Z<€(t) > (8)

wr*eAn T wreAn T

In contrast, generic no-regret algorlthms that do not solve the variational inequality (e.g., when
one player plays Hedge and another plays clairvoyant best-response as used in existing work in
collaborative learning due to Blum et al. [5], Nguyen and Zakynthinou [29], Chen et al. [8]]) nest the
generalization and training errors which leads to a multiplicative increase in sample complexity.

Leveraging Noisy Stochastic Gradients. We will work with stochastic estimators of g. These are
functions g : € X AA. x AA, of some external source of randomness, £ € &, and a strategy profile
of interest. For collaborative learning, the randomness source £ is an i.i.d.-sampled data point from
an appropriate mixture of distributions and the estimator g is then the empirical loss on this sample,
which is an unbiased and bounded estimator in the range of the loss function, i.e., [0, 1].

Interestingly, estimators of these stochastic gradients have an asymmetric need for data. As seen in
Equation |7} the min-player’s gradient ¢.(p, ¢) includes the risk of every hypothesis h € H for the
same data distribution g. Therefore, an unbiased estimator g.(p, ¢) can be constructed from a single
call to an example oracle EX(q). We call this source of randomness £7 and say that its cost is r_ = 1.
While £7 costs 1 unit, the randomness it provides is specialized to the point of inquiry, that is, it
cannot be used for estimating other g.(p, ¢'). We call this source of randomness and its associated
unbiased estimation a locally unbiased estimator.

On the other hand, the max-player’s gradient g, (p, ¢) includes the risk of the same hypothesis p on
every distribution D € D. Therefore, an unbiased estimator g, (p, q) requires n samples, i.e., a call
to every example oracle EX(D;). We call this source of randomness producing n samples £” and
say that its cost is v = n. Importantly, while &P costs n unit, the randomness it provides can be
reused for estimating other gradients, that is, it can provide an unbiased and bounded estimators for
all g,(p’,q"). We call this source of randomness and its associated unbiased estimator a globally
unbiased estimator. To emphasize the fact that this source of randomness is agnostic to (p, q) we
refer to it by £+ hereafter. We refer the reader to Appendix for a more formal definition and
description of these asymmetries.

Minimizing Regret with Asymmetric Cost. With the goal of minimizing sample complexity in
mind, it is essential that we reuse randomness £ across n time steps of variational algorithms. To
do this, we introduce a stochastic variational approach in Algorithm|I]that accommodates different
sampling frequencies for the minimizing and maximizing players. This will decouple the sample
complexity of the minimizing agent (who requires a time horizon of at least log(A.) = log(#)) and
the maximizing agent. Lemma [3.1] proves this decoupling allows us to find an e-min-max equilibrium
with an additive n + log(H) sample complexity instead of a multiplicative n log(#).

Algorithm uses the same randomness £-(%) of cost - for estimating g, (pt,q') forall t € [ar +
1,...,a(r + 1)]. On the other hand, the algorithm uses fresh randomness £*) of cost 1 to estimate
g.(pt, q") for every time step t. The total randomness cost of this algorithm is thus 27" because
iteration of the outer loop incurs 2r cost.

Lemma 3.1. Let (A., A, ¢) be a finite zero-sum game. Assume there exists & gt of cost 1 providing

locally unbiased estimates §.(-) and there exists & L) of cost 1 providing globally unbiased estimates
G+ (+). With probability 1 — 0, Algorithmreturns an e-min-max equilibrium of the game, so long as

18 9log |A.| r+1 9log |A4 | 8r?2 r—+1
> — =X et — =N et — .
T (max { YRR 8log 5 + max 1 T log 5 9

Moreovet; the total cost of randomness incurred by the algorithm is at most 27T



Algorithm 1 Finding Equilibria in Finite Zero-Sum Games with Asymmetric Costs.

Output: Mixed strategy profile (p, q) € AA. x AA,;

Input: Action sets A_, A,, costr € Z, timesteps T, iterates pM), ¢, gradient estimators g., G,
fora=1,2,...,[T/r] do

Realize {l(a) at cost r; // Sample datapoints from every distribution.
fort=ar+1—r,...,ar do
. ®) . . .
Realize £7  at cost 1; // Sample from adversary-selected distribution.

Estimate gradients: 51 =g, (¢2”,p®,¢®), 50 =5 (¢1,p®,q0);

Run Hedge updates: pt*1) = Opegge (p(t),@(f)) gD = Qpegge (q(t)@f));
end for
end for
Return the uniformly mixed strategies p = 7 Zthl pandg= % ZtT:l q®;

Proof sketch. Our approach uses Equation []to decompose the variational error into training error
and generalization error. Since exponential gradient descent is known to bound the training error
(as shown in Lemma @, it only remains to bound the generalization error (the second term in
Equation . We note that in expectation each summand <5(t), w® — w*> is zero. This is because
e® = ¢ _ 51 and G* are unbiased estimators. Therefore, the sum of these terms has an intuitive
martingale interpretation and could be bounded by the Azuma-Hoeffding inequality.

There is a subtlety here, however. When we reuse the maximizing player’s randomness over r
rounds, we create correlations between these terms in the generalization error that cannot be directly
accommodated by a martingale. The trick here is to note that these correlations are entirely contained
in r-length periods. So, we can partition our sequence to r martingales and bound each one. This
completes the proof. See Appendix [C.I|for detailed proof of this lemma. O

Derandomization. The e-min-max equilibria (P, §) returned by Exponentiated Gradient Descent
gives a probability distribution p over the hypothesis class H that achieves the collaborative learning
bound. To obtain a deterministic hypothesis, we can instead work with héw @j whose predictions are
p-weighted majority votes over the hypotheses in H. As stated below, the error of this deterministic
classifier is approximately bounded by the expected error of p.

Lemma 3.2. Forany p € A, maxpep Riskp(h)/*) < 2maxpep Riskp(p).

This lemma in particular implies that for any e-min-max equilibria (7, g), we have

max Riskp (b2 ) < 2R-OPT + 4¢ < 20PT + 4e.
DeD p

4 Collaborative Learning Bounds

In this section, we characterize the sample complexity of collaborative learning by providing tight
upper and lower bounds for this problem. We describe Algorithm [2] which attains near-optimal
sample complexity by on-demand sampling: iteratively selecting distributions to sample from.

4.1 Sample Complexity Upper Bounds

We are now prepared to describe our collaborative learning algorithm and guarantees, using the tools
we developed in Section[3] Algorithm[2]is a direct application of Algorithmto a zero-sum game
with action sets A. = H, A, = D and payoff ¢(h, D) = Riskp(h). Here, {4 " makes one call to
EX(¢™®) and £€1(*) makes one call to EX(D) for each D € D. In other words, Algorithmconstructs
distributions p*) € AH and ¢ € AD by running the Hedge update. The gradient estimators
used by Hedge are the empirical losses on a set of independent random variables. In particular,
the minimizing player uses gradients £p(h, z(®)) for all h € H for a single sample z(*) ~ EX(D)
with D ~ ¢® and the maximizing player uses gradients £, (p(t), z%) for all distributions D € D



Algorithm 2 On-Demand Agnostic Collaborative Learning.

Input: Hypothesis class #, distribution set D with n := |D|;
Initialize: p(V) = [1/|H[]*!, 1) = [1/n]", and iterations T' = 2§ (91log (|H|) + 35nlog(n/d));
fora=1,2,...,[T/n] do
For all D € D, sample datapoint z% from EX(D) .
fort=an+1—n,...,ando
Sample z® from EX(D) with D ~ ¢® and estimate g} = [KD(h,z(t))]hey,@(f) =
135 (p(t)a zp)]pep;
Run Hedge updates: p(* ) = Qheage (0, 31) 01 = Qpegge (4,3 );
end for
end for
Return: probability distribution over H given by the uniform mixture % ZtT:l p®).

where a single sample 2%, ~ EX(D) is drawn per distribution and is reused for all time steps
tella—1n+1,...,an].

Our main result in this section bounds the sample complexity of Algorithm 2]

Theorem 4.1. For any finite hypothesis class H and unknown set of distributions D, with probability
1 — 8, Algorithm[2| returns a distribution p € A such that

E [maXRiskD(h)} < OPT+¢ and maXRiskD(hgfaj) < 20PT + ¢,
h~p | DED DeD

using a number of samples that is O (M) .
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Proof sketch. By construction, Lemma [3.1] guarantees that with probability at least 1 — ¢, the pair
(P, q) is an €/2-min-max equilibrium for the corresponding zero-sum game. As shown by Equation
p is arandomized classifier that meets the collaborative learning objective, i.e., its expected worst-case
error is OPT + €. By Lemma the corresponding deterministic classifier hgj % has worst-case
error of 20PT + ¢. This bounds the error of the resulting classifier.

To bound the sample complexity, Lemma/3.1|shows that the randomness cost of Algorithm[T]is at most
2t. Since the cost of randomness is exactly the total number of samples we take from our example
oracles, the total sample complexity of Algorithm[2]is 2t € O (72 (log [H| + nlog(n/d))). O

An analogue of Theorem [.1] (Theorem [C.3)) holds for the case of infinite hypothesis classes of
bounded Littlestone dimension with a sample complexity of O (=2 (Little(H) + nlog(n/d))). A
similar result also holds with dependence on the VC dimension of H only (which is smaller than
its Littlestone dimension) when additional assumptions hold. For example, if a hypothesis class H’
is known in advance that is an e-net of H with respect to every distribution in D, one can instead
run Algorithmwith a hypothesis class H’. Such an e-net of size ne~©(VEP(H) necessarily exists;
for example, the union of e-nets with respect to each distribution D € D. It is also not strictly
necessary to know an e-net in advance. Instead, one can compute a net from samples or from other
information about distributions in D. In Appendix we explore a range of assumptions that allow
us to compute such an e-net from samples, without incurring a significant increase in the sample
complexity of Theorem [4.1]

We end this subsection with a few remarks about our sample complexity upper bound.

Remark 4.1. One question left open by these results is, for agnostic multi-distribution learning,
whether it is possible to achieve sample complexity rates of O (¢ =2 (log(n)VCD(H) + nlog(n/d)))
without any additional assumptions or a priori knowledge of an e-net. It also remains open whether
the log(n) factor in the log(n)VCD(H)/e? term is necessary for some VC classes, as Theorem4.1
proves it is not necessary for some (e.g., finite) VC classes.

Remark 4.2. Theorem improves over the best-known sample complexity for agnostic collab-
orative learning by Nguyen and Zakynthinou [29] in two ways, giving an OPT + ¢ bound for
randomized classifiers instead of their 20PT + ¢ bound, and improving their sample complexity of
@ (E% (log(n) log(|H|) log (%) +nlog (%))) by a multiplicative factor ofei3 log (n) log (%)



Remark 4.3. For constants € and 6, our sample complexity of O (log(|H|) + nlogn) appears to
violate the lower bound of Q (log(|H|) logn + nloglog|H|) due to Chen, Zhang, and Zhou [I8]].
This discrepancy is due to a small error in the proof of that lower bound, which we have verified in
private communications with the authors. In the next subsection, we give lower bounds on the sample
complexity of collaborative learning that match our upper bounds.

4.2 Sample Complexity Lower Bound

We now provide matching lower bounds for agnostic collaborative learning. Our lower bounds
hold for collaborative learning algorithms obtaining error of R-OPT + ¢, using a randomized or
deterministic hypothesis. We call an algorithm an (e, §)-collaborative learning algorithm if for any
collaborative instances it attains an error of R-OPT + ¢ with probability at least 1 — 4.

Theorem 4.2. Take any n,d € Z, €,6 € (0,1/8), and (e, d)-collaborative learning algorithm A.
There exists a collaborative learning problem (H, D) with |D| = n and |H| = 2%, on which A takes
at least ) (25 (log |H| + |D|log(min {|D| ,log [H|} /6))) samples.

Proof sketch. We defer the formal proof of this theorem to Appendix [C.3]and sketch the main ideas
here. Let X = {1,...,d}, Y = {+, —}. and H be the set of all functions X — ). Our construction
combines two sets of hard distributions. Consider the case when n = d - n for some 7 € Z. First,
we can reduce to a d-armed multi-arm bandit exploration problem giving us an  (dlog(1/6)/£?).
Second, we construct 7 hard instances on 7 corresponding points. Since the learning algorithms has
to solve each problem it has to incur a loss of 7 - dlog(d/§) /2. O

5 Group DRO and Agnostic Federated Learning

The results we describe in the collaborative learning setting can be generalized to the group DRO
setting, and equivalently, agnostic federated learning.

Theorem 5.1. Consider a group distributionally robust problem (©, D) with convex compact unit-
diameter parameter space © of Bregman radius De (Definition[B.11)), and convex losst:0© x Z —
[0, C). A variant of Algorithm|2|(in particular Algorithm in Appendix, returns 0 € © such that

maxpep E.up [€(0, 2)] < R-OPT + ¢, using a number of samples that is O (D902+n022 log(n/9) )

>

The proof of this lemma is deferred to Appendix [.T] and is similar to the proof of Theorem {.1]
except that it uses a generalization of Lemma [3.1]for general convex-concave games. This theorem
establishes a generalization bound for the problem of group distributionally robust optimization [36]
and improves, by a factor of n, existing sample complexity bounds for agnostic federated learning
[27]. This improvement is attained by sampling data on-demand, whereas [27] only chooses a fixed
distribution over groups/clients to sample from; this highlights the importance of adapting one’s
sampling strategy on-the-fly when learning robust models.

Another important question is how fast the training error of stochastic gradient descent converges
for the group DRO/AFL settings and was considered by Sagawa et al. [36]. We can transfer our
generalization guarantees for on-demand settings into batch settings and achieve the following
corollary, which improves on the convergence guarantees of Sagawa et al. [36] by a factor of n.

Corollary 5.2. Under the same assumptions of Theorem[5.1} we give a procedure (see Appendix[4.1))
that minimizes GDRO/AFL training error within € of R-OPT with probability at least 1 — § in fewer

samples than O (D@Cz+7‘8022 log(n/é) )

6 Empirical Analysis of On-Demand Sampling for Group DRO

This section describes experiments where we adapt our on-demand sampling-based multi-distribution
learning algorithm for deep learning applications. In particular, we compare our algorithm against the
de-facto standard multi-distribution learning algorithm for deep learning, Group DRO (GDRO) [36].
As GDRO is designed for use with offline-collected datasets, to provide an accurate comparison, we
modify our algorithm to work on offline datasets (i.e., with no on-demand sample access).



Resampling Multi-Distribution Learning (R-MDL). To adapt our multi-distribution learning
algorithm, Algorithm 2} for deep learning applications, we replace its hypothesis-selecting no-regret
learning algorithm with a minibatch gradient descent algorithm. We can further adapt our algorithm
to offline datasets by simulating on-demand sampling on the empirical distributions of datasets. This
modified algorithm, R-MDL, is described in full in Algorithm@

In contrast, the GDRO algorithm is also minibatch gradient descent but samples minibatches uniformly
from all distributions. Datapoints in each minibatch are importance weighted according to their
distribution of origin, where a no-regret algorithm adversarially weights each distribution. Though
effective, this GDRO method is brittle and requires tricks like unconventionally strong regularization
[36]. Our theory of on-demand sampling suggests that R-MDL should mollify this brittleness.

Experiment Setting In Table[2] we replicate the Group DRO experiments of Sagawa et al. [36]
and compare the standard GDRO algorithm with our R-MDL algorithm (Algorithm [5)). We fine-
tune Resnet-50 models (convolutional neural networks) [[18]] and BERT models (transformer-based
network) [11]] on the image classification datasets Waterbirds 36,4 1] and CelebA [23]] and the natural
language dataset MultiNLI [42] respectively. We train these models in 3 settings: with standard
hyperpameters, under strong weight decay (¢-2) regularization, or under early stopping.

Worst-Group Accuracy Gap in Avg. vs. Worst-Group Acc.

ERM GDRO R-MDL ERM GDRO R-MDL
éb Waterbirds 60.0 (1.9) 76.9 (1.7) 86.4 (1.4) 37.3(1.9) 20.5 (1.7) 8.1(1.4)
g CelebA 41.1 3.7) 41.7(3.7) 88.9 (2.3) 53.7(3.7) 53(3.7) 3423
r}u’% MultiNLI 66.3 (1.6) 66.6 (1.6) 70.3 (1.5) 16.2 (1.6) 15.6 (1.6) 4.5(1.5)
E Waterbirds 21.3 (1.6) 84.6 (1.4) 89.4 (1.2) 74.4 (1.6) 12(1.4) 0.4 (1.3)
=
wé CelebA 37.8 (3.6) 86.7 (2.5) 88.8 (2.3) 58 (3.6) 6.8 (2.5) 1.2(23)
= Waterbirds 6.7 (1.0) 85.8 (1.4) 87.1(1.3) 87.1(1.0) 74(1.4) 5.6 (1.3)
f; CelebA 25.03.2) 88.3(2.4) 90.6 (2.2) 69.6 (3.2) 3524 0.7 (2.2)
= MultiNLI 66.0 (1.6) 71.7 (1.4) 43.1(1.7) 16.8 (1.6) 3.7(1.4) 18.3 (1.7)

Table 2: Worst-group accuracy (our primary performance metric) and the gap between worst-group accuracy
and average accuracy, of empirical risk minimization (ERM), Group DRO (GDRO), and our R-MDL algorithm
in three experiment settings—standard hyperparameters (Standard Reg.), inflated weight decay regularization
(Strong Reg.), and early stopping (Early Stop)—and on three datasets—Waterbirds, CelebA, and MultiNLI.
Figures are percentages evaluated on the test split of each dataset, with standard deviation in parentheses. R-MDL
consistently outperforms GDRO and performs reliably with or without strong regularization.

R-MDL consistently outperforms GDRO and ERM. In every dataset and in almost every setting,
R-MDL significantly outperforms GDRO and ERM in worst-group accuracy. In addition, whereas
GDRO and ERM have large gaps between worst-group accuracy and average accuracy, R-MDL has
almost matching worst-group and average accuracies. This indicates that R-MDL is more effective at
prioritizing learning on difficult groups.

R-MDL is robust to regularization strength. R-MDL retains high worst-group accuracy even
without strong regularization. These results challenge the observation of Sagawa et al. [36]] that
strong regularization is critical for the performance of Group DRO methods. This suggests that the
brittleness of GDRO is due to reweighting rendering the adversary too weak. In contrast, R-MDL
provides a robust multi-distribution learning method with significantly less hyperparameter sensitivity.

7 Acknowledgments

This work was supported in part by the National Science Foundation under grant CCF-2145898, a
C3.Al Digital Transformation Institute grant, and the Mathematical Data Science program of the
Office of Naval Research. This work was partially done while Haghtalab and Zhao were visitors at
the Simons Institute for the Theory of Computing.

10



References

[1] N. Alon, O. Ben-Eliezer, Y. Dagan, S. Moran, M. Naor, and E. Yogev. Adversarial laws of
large numbers and optimal regret in online classification. In Proceedings of the Annual ACM
Symposium on Theory of Computing (STOC), pages 447-455. ACM, 2021.

[2] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Oper. Res. Lett., 31(3):167-175, 2003.

[3] S.Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning. In Learning
theory and kernel machines, pages 567-580. Springer, 2003.

[4] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization, volume 28. Princeton
university press, 2009.

[5] A. Blum, N. Haghtalab, A. D. Procaccia, and M. Qiao. Collaborative PAC Learning. In
Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 2392-2401, 2017.

[6] A.Blum, N. Haghtalab, R. L. Phillips, and H. Shao. One for One, or All for All: Equilibria
and Optimality of Collaboration in Federated Learning. In Proceedings of the International
Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine Learning
Research, pages 1005-1014. PMLR, 2021.

[7] A. Blum, S. Heinecke, and L. Reyzin. Communication-Aware Collaborative Learning. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), volume 35, pages 6786—
6793, 2021.

[8] J. Chen, Q. Zhang, and Y. Zhou. Tight Bounds for Collaborative PAC Learning via Multiplicative
Weights. In Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurlIPS), pages 3602-3611, 2018.

[9] C.Daskalakis, A. Deckelbaum, and A. Kim. Near-Optimal No-Regret Algorithms for Zero-Sum
Games. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 235-254. SIAM, 2011.

[10] C. Daskalakis, M. Fishelson, and N. Golowich. Near-Optimal No-Regret Learning in General
Games. In Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS), volume 34, pages 27604—27616. Curran Associates, Inc., 2021.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, pages 4171-4186, Minneapolis,
Minnesota, 2019. Association for Computational Linguistics.

[12] J. C. Duchi and H. Namkoong. Learning Models with Uniform Performance via Distributionally
Robust Optimization. CoRR, abs/1810.08750, 2018. arXiv: 1810.08750.

[13] C. Dwork, M. P. Kim, O. Reingold, G. N. Rothblum, and G. Yona. Outcome indistinguishability.
In Proceedings of the Annual ACM Symposium on Theory of Computing (STOC), pages 1095—
1108. ACM, 2021.

[14] A. Ehrenfeucht, D. Haussler, M. J. Kearns, and L. G. Valiant. A General Lower Bound on the
Number of Examples Needed for Learning. Inf. Comput., 82(3):247-261, 1989.

[15] Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting. J. Comput. Syst. Sci., 55(1):119-139, 1997.

[16] S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.
Econometrica, 68(5):1127-1150, 2000. Publisher: Wiley Online Library.

[17] T. B. Hashimoto, M. Srivastava, H. Namkoong, and P. Liang. Fairness Without Demographics
in Repeated Loss Minimization. In Proceedings of the International Conference on Machine
Learning (ICML), volume 80 of Proceedings of Machine Learning Research, pages 1934—1943.
PMLR, 2018.

11



[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
770-778. IEEE Computer Society, 2016.

[19] L. Hu, C. Peale, and O. Reingold. Metric Entropy Duality and the Sample Complexity of
Outcome Indistinguishability. In Proceedings of the Algorithmic Learning Theory, volume 167
of Proceedings of Machine Learning Research, pages 515-552. PMLR, 2022.

[20] A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with stochastic
mirror-prox algorithm. Stochastic Systems, 1(1):17-58, 2011. Publisher: INFORMS.

[21] A. Kar, A. Prakash, M.-Y. Liu, E. Cameracci, J. Yuan, M. Rusiniak, D. Acuna, A. Torralba,
and S. Fidler. Meta-Sim: Learning to Generate Synthetic Datasets. In Proceedings of the
International Conference on Computer Vision, pages 4550-4559. IEEE, 2019.

[22] R. M. Karp and R. Kleinberg. Noisy binary search and its applications. In Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ), pages 881-890. SIAM, 2007.

[23] Z.Liu, P. Luo, X. Wang, and X. Tang. Deep Learning Face Attributes in the Wild. In Proceedings
of the International Conference on Computer Vision, pages 3730-3738. IEEE Computer Society,
2015.

[24] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain Adaptation with Multiple Sources. In
Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 1041-1048. Curran Associates, Inc., 2008.

[25] S. Marcel and Y. Rodriguez. Torchvision the machine-vision package of torch. In Proceedings
of the International Conference on Multimedia, pages 1485-1488. ACM, 2010.

[26] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas. Communication-Efficient
Learning of Deep Networks from Decentralized Data. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), volume 54 of Proceedings of
Machine Learning Research, pages 1273-1282. PMLR, 2017.

[27] M. Mohri, G. Sivek, and A. T. Suresh. Agnostic Federated Learning. In Proceedings of the
International Conference on Machine Learning (ICML), volume 97 of Proceedings of Machine
Learning Research, pages 4615-4625. PMLR, 2019.

[28] A.S. Nemirovskij and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience, 1983.

[29] H. L. Nguyen and L. Zakynthinou. Improved Algorithms for Collaborative PAC Learning. In
Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 76427650, 2018.

[30] M. Qiao. Do Outliers Ruin Collaboration? In Proceedings of the International Conference on
Machine Learning (ICML), volume 80 of Proceedings of Machine Learning Research, pages
4177-4184. PMLR, 2018.

[31] A.Rakhlin and K. Sridharan. Optimization, Learning, and Games with Predictable Sequences.
In Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 3066-3074, 2013.

[32] V. V. Ramaswamy, S. S. Kim, and O. Russakovsky. Fair attribute classification through latent
space de-biasing. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9301-9310, 2021.

[33] H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400—407, 1951. Publisher: JSTOR.

[34] J. Robinson. An iterative method of solving a game. Annals of mathematics, pages 296-301,
1951. Publisher: JSTOR.

12



[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

G. N. Rothblum and G. Yona. Multi-group Agnostic PAC Learnability. In Proceedings of the
International Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine
Learning Research, pages 9107-9115. PMLR, 2021.

S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang. Distributionally Robust Neural Net-
works. In Proceedings of the International Conference on Learning Representations (ICLR).
OpenReview.net, 2020.

S. Sagawa, A. Raghunathan, P. W. Koh, and P. Liang. An Investigation of Why Overparameteri-
zation Exacerbates Spurious Correlations. In Proceedings of the International Conference on
Machine Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pages
8346-8356. PMLR, 2020.

C.J. Tosh and D. Hsu. Simple and near-optimal algorithms for hidden stratification and multi-
group learning. In Proceedings of the International Conference on Machine Learning (ICML),
volume 162 of Proceedings of Machine Learning Research, pages 21633-21657. PMLR, 2022.

L. G. Valiant. A Theory of the Learnable. In Proceedings of the Annual ACM Symposium on
Theory of Computing (STOC), pages 436-445. ACM, 1984.

N. K. Vishnoi. Algorithms for Convex Optimization. Cambridge University Press, 2021.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. Technical report, California Institute of Technology, 2011. Publisher: California
Institute of Technology.

A. Williams, N. Nangia, and S. Bowman. A Broad-Coverage Challenge Corpus for Sentence
Understanding through Inference. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics, pages 1112—-1122, New Orleans,
Louisiana, 2018. Association for Computational Linguistics.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,
S. Gugger, M. Drame, Q. Lhoest, and A. Rush. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 38—45, Online, 2020. Association for Computational Linguistics.

S. Zakharov, W. Kehl, and S. Ilic. DeceptionNet: Network-Driven Domain Randomization. In
Proceedings of the International Conference on Computer Vision, pages 532-541. IEEE, 2019.

C. Zhang. Information-theoretic lower bounds of PAC sample complexity, 2019.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14



Contents

I Tntroduction| 1
LI RelatedWork| . . . . ... ... 3
b Preliminarics

2.1 'Technical Background| . . . . ... ... ... ... ... ... ... ...

|3 Technical Overview of Our Approach| 5

|4 Collaborative Learning Bounds| 7

4.1 Sample Complexity Upper Bounds| . . . . . . .. ... ... ... .. .. .....

4.2 Sample Complexity Lower Bound| . . . . . ... ... ... ... ... ... 9
[5 Group DRO and Agnostic Federated Learning| 9
[6_ Empirical Analysis of On-Demand Sampling for Group DROJ 9
(7 Acknowledgments| 10
(A__Extended Related Workl 16
[B_Full Formulafion| 18
B.I__Convex-Concave Zero-Sum Gamel . . . . . . . ... .. ... ... ........ 18
[B.2  Stochastic Settings| . . . . . . . . . . ... 18
IB.3 Mult-Distribution Learning] . . . . ... ... .. o oo 19
|C__Omitted Proofs 21
IC.1 Proof of Lemmal|C.1|{(Generalization of Lemma/|3.1){ . . ... ... ... .. ... 21
IC.2  Proof of Theorem [C.2](Generalization of Theorems4.1jand[5.1)] . . . .. . .. .. 26
IC3 Proofof TheoremM.2| . . . . . . .. .. .. ... 30
[C4 Proofof LemmasiCAlandICIO. . . . ... ... ........ .. .. ...... 33
IC5 ProotofTheoremIC.12] . . . . . . . .. ... ... o 35
[DExperiment Details| 38

15



A Extended Related Work

There are many lines of work that study multi-distribution learning but which have evolved indepen-
dently in separate communities.

Collaborative and Federated Learning Blum, Haghtalab, Procaccia, and Qiao [5] posed the first
fully general description of multi-distribution learning, motivated by the application of collaborative
PAC learning. The field of collaborative learning concerns the learning of a shared machine learning
model by multiple stakeholders that each desire a model with low error on their own data distribution.
The line of work studies on-demand sample complexity bounds for the setting where stakeholders
collect data so as to minimize the error of the worst-off stakeholder [5} 29,8, [7]]. This setting, stated in
its full generality, yields the multi-distribution learning problem as presented in this paper. Blum et al.
[5]] established a log(n) factor blowup for the realizable case and the best known sample complexity
guarantees for the general agnostic setting experiences a factor log(k)/c® blowup and is due to
Nguyen and Zakynthinou [29]. In comparison, our work establishes a tight additive increase in the
sample complexity (which is comparable to log(k) multiplicative factor blowup with no dependence
on €). A related line of work concerns the strategic considerations of collaborative learning and seeks
incentive-aware mechanisms for collecting data used in collaborative learning [6].

The field of federated learning concerns a closely related motivating application where the goal is
to learn a model from data dispersed across multiple devices but querying data from each device is
expensive [26]]. The agnostic federated learning framework of Mohri, Sivek, and Suresh [27]] poses
(an equivalent of) the multi-distribution learning objective as a fair and intuitive target for federated
learning algorithms, and studies it in the offline setting with data-dependent analysis.

Group Distributionally Robust Optimization (Group DRO) Multi-distribution learning also
arises in distributionally robust optimization [4] under the name of Group DRO, a class of DRO
problems where the distributional uncertainty set is finite [[17]. Group DRO literature is motivated by
applications where these distributions correspond to deployment domains or protected demographics
that a machine learning model should avoid spuriously linking to labels [[17,36L37]]. Although Group
DRO—like collaborative learning—is mathematically an instance of multi-distribution learning, prior
work on group DRO focus on training error convergence in offline settings as they focus on deep
learning applications. As we later discuss, theoretical aspects of online multi-distribution learning
can translate into actionable insights for Group DRO applications.

Multi-Group Fairness and Learning Notions Multi-distribution learning is also related to the
fields of multi-group learning [35} 38]] and multi-group fairness [13|[19]. These works study offline
learning settings with a single distribution D and implicitly consider distribution D; to be the
conditional distribution on a subset of the support representing group i. In these settings, the learner
often does not have explicit access to example oracles for distributions D1, ..., D,, and instead uses
rejection sampling to collect data from D, ..., D,. As a result, they experience a sub-optimal
sample complexity blowup with a factor of n. This blowup may not be obvious upon first glance,
as these works provide theoretical guarantees for each group in terms of the number of datapoints
from said group. Rothblum and Yona [35], Tosh and Hsu [38] consider a similar problem to multi-
distribution learning; by assuming that there exists a hypothesis that is simultaneously e-optimal on
every distribution (an assumption not made in our setting), they compare their learned hypothesis
against the best hypothesis for each individual distribution.

Multi-Source Domain Adaptation and Learning Multi-source domain adaptation, or multi-task,
learning is another related line of work that concerns using data from multiple different training
distributions to learn some target distribution, under the assumption that the training and target
distributions share some task relatedness [3} 24]. Multi-distribution learning can be framed similarly
as using a finite set of training distributions to simultaneously learn the convex hull of the training
distributions. Interestingly, multi-distribution learning’s requirement of learning the entire convex
hull implicitly obviates the task relatedness assumptions of multi-source learning.

Stochastic game equilibria. Our technical approach to multi-distribution learning relates to a line
of research on using online algorithms to find min-max equilibria using stochastic feedback [34]
1501314 9, [10]. Online mirror descent (OMD) is one well-studied family of methods that can find
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approximate minima of convex functions, and also approximate min-max equilibria of convex-
concave games, using noisy first-order information [33} 28 (16, 2l]. However, applying OMD analysis
to the saddle-points in multi-distribution learning is a non-trivial affair. While optimization theory
typically thinks about noisy zeroth/first-order oracles (e.g., Juditsky et al. [20]]), our learning-theoretic
analysis uses oracles that provide noisy semi-local information (i.e., datapoints).

17



B Full Formulation

In this section, we formally describe our formulations of stochastic convex-concave games and
multi-distribution learning problems.

B.1 Convex-Concave Zero-Sum Game

In this subsection, we give a formal definition of a convex-concave zero-sum game and its min-max
equilibria. We also introduce assumptions on these games for efficiently finding saddle-points.

Definition B.1. A convex-concave two-player zero-sum game is described by the tuple (A_, A, ¢),
where A. C &. is a subset of Euclidian space £, A, C &, is a subset of Euclidian space £, and
¢: A x A, — Ris a Lipschitz continuous convex-concave function.

On a convex-concave two-player zero-sum game (A_, A,, ¢), we can define both exact and approxi-
mate notions of min-max equilibria in terms of player regrets.

Definition B.2. The minimizing and maximizing player’s regrets at a strategy profile (p,q) € A x A,
are denoted Reg-Min, Reg-Max respectively, and defined as,

Reg-Min(p, q) == ¢(p,q) — min ¢(p*,q), Reg-Max(p,q) = nax o(pq") — ¢(p, q).

Definition B.3. A strategy profile (p,q) € A. x A, is a min-max equilibrium if both players have zero
regret: Reg-Min(p, q) = 0 and Reg-Max(p, q) = 0. More weakly, (p,q) € A. x A, is an e-min-max
equilibrium if both players have at most € regret: Reg-Min(p, q) < ¢ and Reg-Max(p, q) < e.

In this paper, we may also impose the following assumptions on a convex-concave zero-sum game.

Assumption 1. The action sets A_, A, are compact, convex, and have diameters R_, R, respectively:
Vp.p €A tp—p I <R, Va.q €As:llg—d| < R..

Assumption 2. Atanyp,q € A X A,, the partial subdifferential of the payoff function ¢ is non-empty.
Furthermore, every partial subgradient vector has a bounded norm:

10p¢(p, D)llg < C-y 11040(p, 9|, < Cs

B.2 Stochastic Settings

In this subsection, we give a formal definition of an asymmetric stochastic setting for a zero-sum
game. Our formulation of stochastic first-order oracles observes the convention of representing all
randomness in stochastic oracles—and by extension, in any stochastic optimization process—in terms
of an i.i.d. sequence of random variables. One nuance our formulation addresses is how randomness
can be re-used by stochastic first-order oracles. We do this by formalizing our stochastic setting
in terms of multiple i.i.d. sequences of random variables, where the sequence to which a random
variable belongs specifies how randomness corresponding to the random variable can be used.

We begin by introducing the notion of a coupled random variable. In the context of a two-player
game, a random variable may be coupled to a minimizing player’s strategy profile, a maximizing
player’s strategy profile, neither or both. Our definition formalizes the notion that a random variable
can only be interpreted in the context of the mixed strategy to which it is coupled.

Definition B.4. For any p € A., we define a random variable n to be p-coupled if its range is a
measurable space E,, defined by p. Similarly, for any q € A., we define a random variable 1 to be
g-coupled if it’s range is a measurable space defined by q. A random variable n is (p, q)-coupled if
it’s range is a measurable space defined by (p, q).

For convenience, we will denote p-coupled random variables with superscript 7” and, similarly,
g-coupled random variables with superscript 9. Random variables that are not coupled will be
denoted by n* when such clarification is necessary.

We will now define stochastic first-order oracles that express their randomness in terms of sequences
of i.i.d. coupled random variables.
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Definition B.5. In a zero-sum two-player game, the minimizing player’s randomness source is defined
asasetE C{&€%qe A, U{L}}, where €1 = {f'q;i}ieZ is a sequence of i.i.d. random variables

all coupled with q € A.. In addition, all random variables in all sequences in €. are independent.

Definition B.6. In a zero-sum two-player game, the maximizing player’s randomness source is
defined as a set &, C {€} |pe A U{L}}, where &% = {gf%i}iez is a sequence of i.i.d. random
variables all coupled with p € A,. In addition, all random variables in all sequences in &, are
independent.

Definition B.7. For any q € A,, consider the function g : B9 x A. x A, — E*. The minimizing
player has a locally unbiased first-order oracle if there exists, for all ¢ € A,, a g? such that for all
pe A andi € Z:

We analogously define locally unbiased oracles for the maximizing player.

When g is clear from context, we write g? as g.. We can also define a globally unbiased oracle.

Definition B.8. For any q € A, consider the function - : A. x A, — E*. The minimizing player
has a globally unbiased first-order oracle if there exists g where for all ¢ € A, and p € A. and
1€ L

E (7650, 9)] = 90(p, q)-

We analogously define globally unbiased first-order oracles for the maximizing player.

Finally, we may impose the following norm-bound assumption on the first-order oracles we discuss.

Assumption 3. Every globally unbiased first-order oracle has a range with bounded norm:
||§J‘()| e <O, ﬁf()’ . < C,. Furthermore, every locally unbiased first-order oracle also has

g+
«/g\-q()HEr* S C—) /g\g(.)HE: S C+1

a range with bounded norm: for all p,q € A_, A,

B.3 Multi-Distribution Learning

In this subsection, we give a formal definition of multi-distribution learning that unifies the problem
formulations of collaborative learning [5]], agnostic federated learning [27], and group DRO [36]].
We further introduce assumptions that characterize two special cases of multi-distribution learning:
convex multi-distribution learning and binary classifier multi-distribution learning.

We begin by reviewing some common definitions from convex optimization.
Definition B.9. Let Z be a convex compact subset of a Euclidian space € with norm ||-||. A distance
generating function on Z is a function w : Z — R, where:

1. w is continuous and strongly convex, modulus 1, w.r.t to ||-|| on Z.

2. There exists a non-empty subset Z° C Z where the subdifferential Ow is non-empty and Ow
admits a continuous selection on Z°.
Furthermore, the center of Z w.r.t. w is defined as z° = arg min, ¢ zo w(2).

Definition B.10. The prox function V : Z° x Z — R* associated with a distance generating
Sfunction w : Z — R is defined as:

V(z,u) = w(u) —w(z) — (W' (2),u—2).

The prox function is also known as the Bregman divergence.

Definition B.11. Given a convex set Z with a distance generating function w satisfying Definition
the Bregman radius is defined as max,cz V(2¢,u) < Dz, where z€ is the center of Z as defined

in Definition

We state our most general formulation of multi-distribution learning as follows.
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Definition B.12. Ler Z = X x Y be a space of datapoints and D = {D;}."_, be a finite multi-set of
n joint probability distributions over Z. Let © denote a set of parameters and {p : © x Z — [0, L]

be a loss function. Then the tuple (0, D, ) describes a multi-distribution learning problem, w.r.t.
XV, Z

We will use Unique(D) to denote a subset of D excluding duplicates of distributions which we know
a-priori to have a multiplicity of more than one in D.

One case of multi-distribution learning we study in this paper is convex multi-distribution learning,
which includes as special cases the problem formulations of Sagawa et al. [36] and Mohri et al. [27].
Convex multi-distribution learning also encompasses the problem formulation of Blum et al. [5] for
finite hypothesis spaces, i.e., when |H| < oo.

Definition B.13. The tuple (©, D, {) describes a convex multi-distribution learning problem when ©
is convex compact, each {p is convex in ©, and there exists a distance generating functionw : © — R
on our parameter space ©.

Definition B.14. The diameter of the parameter space © is an Rg > 0 satisfying:
V0,0 € ©: |0 — 0| < Re.

Assumption 4. Given a convex multi-distribution learning problem (©, D, (), we assume that, for
any datapoint z in the supports of the distributions in D and any 6 € ©°, the partial subgradient of
£(0, z) w.rt. 8 has bounded norm:

196£(6, 2)]|

Assumption 5. Given a convex multi-distribution learning problem (©, D, £), we assume there exists
a distance generating function w where © has bounded Bregman radius Dg.

e <C.

Remark B.1. As w is strongly convex modulus 1 by definition, any © satisfying Assumption |5\ has a
finite diameter Ro < 2+/2Dg

Another important case of multi-distribution learning is binary classifier multi-distribution learning,
which includes the problem formulations of Blum et al. [5]] both for finite hypothesis spaces (|H| < o0)
and finite VC dimension hypothesis spaces (VCD(H) < 00).

Definition B.15. The tuple (O, D) describes a binary classifier multi-distribution learning problem
when Z = X x {0,1}, © is the set of probability distributions over a set of binary classification
rules H : X — {0,1} and £(6, (z,y)) = Epwp [1[R(x) = y]].

Remark B.2. A binary classifier multi-distribution learning problem (0, D, () is equivalent to a
convex multi-distribution learning problem (©, D, {) when the support of © is finite, i.e., © is a
probability distribution over a finite number of binary classification rules.

Finally, we can define a multi-distribution analogue to probably-approximately-correct learning [39].

Definition B.16. An example oracle EX(D) is an infinite set of i.i.d. samples from a probability
distribution D over datapoints. Colloquially, a “new call” to example oracle EX(D) refers to
realizing a previously unrealized sample in EX(D).

Definition B.17. A learning algorithm A is an (e, 0) multi-distribution learning algorithm for a set
of multi-distribution learning problems V = {(©;, D;, l;)}, if, given any problem (©;,D;, l;) € V,
accessing only the tuple (0;,£;, {EX(D) | D € AD}), A outputs a parameter 6 € O; that satisfies,
with probability at least 1 — 0:

Riskp(f) < inf Riskp (8" .
g Riskn(®) < fuf, g Risko () + ¢

We use (g, ¢)-algorithm as a shorthand for (g, ) multi-distribution learning algorithm.

Definition B.18. A multi-distribution learning algorithm A has a sample complexity of N (or “takes
N samples”) on a set of multi-distribution learning problems V = {(0;,D;,{;)}, if N is the
smallest integer such that, given any problem 'V €V, the event that A takes more than N samples is
measure-zero. If no such N exists, we say A has infinite sample complexity.
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C Omitted Proofs

C.1 Proof of Lemma[C.1] (Generalization of Lemma [3.1)

Algorithm 3 Finding Equilibria in Convex-Concave Zero-Sum Games with Asymmetric Costs.

Output: Mixed strategy profile (p,q) € A. x A,.

Input: Action sets A_, A, cost 7 € Z., timesteps 7', initial actions p(l)7 q(l), and no-regret
learning algorithms Q_: {A. x E*} — A, Q, : {A, X &} — A,.
fort=1,2,...,T do
(t)
Realize randomness ¢/, and fip] )
Take estimates 5 = 5. (¢%,,p®,¢®) and 3 = G (&2, 00,00,
Run the no-regret updates:

P — g ({p(l)’g_u)} L {p(w’/g\_(t)})

4D — 0, ({q(1)7§£1)} 7"'{p(t)7§-$-t)}>

end for
Return the uniformly mixed strategies 5 = ~ >, p¥ andg = % 3°7_, ¢,

We first recall the following lemma from Section

Lemma 3.1. Let (A, A, ¢) be a finite zero-sum game. Assume there exists fq(t) of cost 1 providing
locally unbiased estimates §.(-) and there exists & L(a) of cost r providing globally unbiased estimates
G+ (+). With probability 1 — 9, Algorithmreturns an e-min-max equilibrium of the game, so long as

18 9log |A.| r+1 9log |A.| 82 r+1
> 2 2o 295141 .
T> .~ (max{ 1 ,8log 5 + max 1 e log 5 )

Moreover, the total cost of randomness incurred by the algorithm is at most 2T'.

We will prove a more general result, Lemma|C.T} that implies Lemma|[3.T]as a special case. Lemma|C.1]
provides sample complexity upper bounds for Algorithm [3] an algorithm for approximating the
saddle-point of a convex-concave game with high-probability. Algorithm [3]is also a generalization of
Algorithm 1]

Lemma C.1 (Generalization of Lemma|3.1). Ler (A., A,, ¢) be a convex-concave game satisfying
Definition [B.1) and Assumptions [I|and [2] Suppose the minimizing player has a locally unbiased
first-order oracle §. and the maximizing player has a globally unbiased first-order oracle §., with
both oracles satisfying Assumptions[3} Take Q. to be any no-regret algorithms with the guarantee

that for, any sequence gV ... ¢T) € £*, if Hg(i) ||g < Cforalli € [T), the Q.-learned sequence
w® | w™) satisfies:
. (T, A, C
Brry (p7)) < 4/ 204 C)
T
Take Q. to be any no-regret algorithms with the guarantee that for, any sequence gV), ..., gT) e &x,

lng(i) Hg < Cforalli € [T), the Q,-learned sequence w", ..., w'™) satisfies:

Erry (w1)) < 77+(T’A+’C).
T
Then, the mixed strategy profile (P, q) outputted by Algorithm E] is an e-min-max equilibrium with
probability at least 1 — § so long as:

r+1

9 5 o 8R2 (%2 r+1
> R — —_—+ — .
T> (7_(T, A, 2C) +8R*C" log( ;3 ) + 74 (T, A, 2C,) + . log 5
(10)
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Moreover, exactly T elements of & and [T /r] elements of €. (defined in Definitions @and @)
will be realized. This means that if sampling from &. incurs a unit cost and sampling from &, incurs
at most r unit cost, total cost will be at most 2r [T /r].

Before proving Lemma|[C.1] we review the following technical results.

First, we note an immediate consequence of working with a convex payoff function.

Fact C.1. Let ¢ : Z — R be a convex function on a convex compact domain Z and g\t = 8¢(w(t))
be a partial subgradient of ¢ at w®. Then, for any [w®M]I_, € Z:

T T
® ) _ < WD)y = < ®) 4y >

Proof. Fix any w* € Z. By our choice of g, we know that

{00 ) =3 et )

t=1 t=1
By the convexity of ¢, it follows that
T T

> (Buwd(w™),w® —w) = 3" 6(w®) - ¢(w*) = ¢ (Zw“’> w®).

t=1 t=1
with equality when ¢ is bilinear. O
Fact C.2. Let ¢ : A. x A, — R be a convex-concave function on convex compact domains A_, A,
and define the operators () == 9 (0 ( ® q t)) andg = Oy (p(t )). Given sequences
PN pT) e Aand ¢, ..., D) e A,, their ergodic averages p'*: T) =7 ZtT:l p and

g7 = T ZtT:1 q®) constitute an -equilibrium if Erry (p51)) < e and Erry (¢5T)) < e.

Proof. By Fact when variational errors are bounded as Erry (p(*7)) < ¢ and Erry(¢""7)) < ¢
we know player regrets are bounded: Reg-Min(pT) | ¢(:T)) < ¢ and Reg-Max (p(tT), ¢(5T)) < ¢
This satisfies our Definition [B.3]for an e-min-max equilibria. O

We now claim concentration results for locally unbiased and globally unbiased first-order oracles.

Fact C.3. Let (A, A, ¢) be a convex-concave game satisfying Deﬁnztton-ana’ Assumpnons
and 2] Without loss of generality, let our player of interest be the mmlmlzmg player. Consider a

play sequence {p ,q )}5:1 with some complementary sequence {y(t) } +—q € A.. Suppose, at each
timestep, the minimizing player uses a random variable §*) to estimate g*) = Op @ (p(t), q(t)). If
the following assumptions hold:

1. Foreveryt € [T), the subsequences {p('r), g,y }::1 is independent of gV, ... g(™).

2. All estimates GV, ..., 3\") are independent.
3. §™ is an unbiased estimate of ¢ and additionally satisfies Assumption El

We can then bound the error of the stochastic oracle, ) .= ¢\ — G®), with respect to our play
sequence as follows. With probability at least 1 — 6,

1 & SR?C?log(l)

Proof. Define the filtration { F®) } ,_, as the sigma algebra generated by {g*) }thl, with F©) being
a singleton containing only the superset of our sigma algebra. Observe that () is independent of
{p(f) }::1 and {y(T)}::l by assumption. As g_(-) is unbiased, for any t' =0, ...,¢t — 1:

R [<5gt>7p<t> _ y<t>> |;(t')} —0
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We can thus construct the Doob martingale:
T

U= {]E ,F(t')} :
t'=0

and bound the difference sequence accordingly. For any ¢’ € [T'], we have the deterministic bound:

T

3 <5_<t>, p® y<t>> | F(t)

t=1

T T
® 0 0\ | 2] _ © @ _®\ | £e-1)
E ;<5 D Y >|]: E ;<5 ) y >|f ]
~ (0,50 )]
< [ o) ).

where the final inequality is Holder’s. Since, by Assumption [I] the diameter of our action sets
are bounded by R., we know Hp(t/) — y(tl)‘ < R.. Invoking Assumptions and we know

o

< 2C.. By the Azuma-Hoefdding inequality, we can thus bound, for any € > 0,

P 12T:<<t> 0 y0) > ) < e
T T ex,p Yy =~ € =S exp STC?R? .

t=1
O
Fact C4. Let (A, A, d) be a convex-concave game satisfying Deﬁnitionand Assumptions
and 2] Without loss of generality, let our player of interest be the minimizing player. Consider a play
OO - ~ :
sequence {p ,q } 11 If the following assumptions hold:

1. g is an estimate of g\ == 8, ¢ (p*), ¢V)) that satisfies Assumption
2. There exists the no-regret algorithm Q. satisfying the assumptions of Lemma

We can then bound the error of the stochastic oracle, et) .= ¢\ — G) with respect to our play
sequence as follows. Define y(*+1) = Q. ({y(T), el }3:1)' With probability at least 1 — 6,

T T
1 1 v (T,A.,2C)
max — E <5_(t),p(t) —p*> < = E <e_(t),p(t) — y(t)> +\
p €A T P T P T

Proof. We can rewrite Equation [TT] with respect to a sequence

T T
1 1
LS/ 50 N e LS (a0 0 0 0 _
max 73 (050 =) = max 737 (00 =gy )

T T
1 1
- ®) &) _ @0 — ®) ) _ ¥
=72 (0 =)t may 7 3 (00 )

We will first bound the summand:

1
- (1) 4(®) >
max ex’,
p*eA tz:; < y p
By definition, our sequence y*),...y") is a Q -learned sequence for the operator errors
eM ... e By Assumptions [2| and [3| we enforce that all operators and operator estimates

have bounded norm, i.e., llg-()]

0

e« < Coand [|g.()||g- < C.. By triangle inequality, we can bound

< 2C.. Hence, the guarantees of Q_ imply:

*

T

1 (T, A.,2C.)
- () o, _ > < )4 A
S D e
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We now prove our general claim.

Proof of Lemma[C_1] By Fact[C.2] it suffices to prove the variational error bounds for each player:
Emry(p)) <&, Brrv(¢"7) <e,

with respect to the operators,
9" =0y (P(“, qm) ;=000 (P(t), q(t)) ’

In Algorithm we estimate the true operators { g® };‘F { gJ(, )} with the stochastic estimates:

=3 D), g =g (ek 0™ q®).
50 €1 p0), 4 ( -

Lete® = ¢® —G®) and let el = gJ(rt) - @Z(f) denote the difference between our true and estimated
operators at each timestep. We can thus divide each variational error into a training error and
generalization error component:

<€.(t) P = p*>

B

1
S () _ > 2z
<g_ Y p —|—maXT

b
N
MH

Erry (p57)) < max

t=1 preA. t=1
1 -
(1:T) L ~(t) - &) @) _ x
() < g 32 (30 ')+ oy g 3 (0 )
We handle the training error first. Recall that pW, . pM isa Q -learned sequence for the operator
sequence gV, ..., ("), By Assumption [3| we enforce that all operator estimates have bounded
norm, i.e., ||g.(-)||¢. < C.. Hence, the guarantees of Q. imply:
T
1 (T,A.,C)
— o ) _ *> <y A A 12
;pgj;T;@. ¥ p) < T (12)
Similarly, ¢V, ... ¢™) is a Q,-learned algorithms enjoying Q,’s guarantee:
T
1 1) @) > v, (T, A, C)
— <y /1" 1
tnax 7 ; <g+ 1 q q )< T (13)

We now handle the generalization error. We first consider the minimization player. Observe that, for
t—1 ()
every t € [T, the play sequence {p(T) q(T)}t is measurable by {f (T), f“m} , which &%
=1
is independent of by construction. We can thus 1nV0ke Facts [C.3|and [C.4]to bound, with probability
atleast 1 — 4:

T 1)
1 SRQC’Qlog 2 TA ,2C)
— (t) 5
e T thl (e =\ e 1

We now consider the maximization player. First, we invoke Fact[C.4]to separate:

T T
e 73 (40 7)< 2 (00 )+ O
t=1

q*EA, T

For notional convenience, let i(j) = (j — 1)r + ¢ denote the ith timestep of the jth period. Also
let m; = ‘{z( J )}jooz1 U[T]’ denote the number of valid timesteps that can be written as i(j). Ob-

serve that m; < [T/r]. Fix a choice of ¢ € [r]. Observe that, for every k € [m,], the play
GG

sequence {p(7) ¢(i3)) }f is measurable by {5’1 i 1} . which £ is independent of
j=

by construction. We can thus again invoke Fact|[C.3]to bound, with probablhty at least 1 — §:

- 22 T
max —— 3 <€g‘<a‘>>,q<iu>> _ yu(j))> < 8REC2log (5)

qrEA, m; < m;
Jj=1
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Taking a union bound over said Azuma inequality for all ¢ € [r], we have that with probability at
least 1 — 6,

T room;
®) () _ <t>> _ < GG) () _ <i<j>>>
max £+, = € ,
X - < + 54 Y ;; + q Y

< VEm 2T log(r/0)

i=1

2
<\/8 ! T R}C3 log(r/9) (16)
—

(optional: assuming > 1) < /8(r + 2)TR2C2 log(r/6).

Gluing together our bounds on training error (Equation[T2] Equation [T3)) and generalization error
(Equation [T4] Equation [T5} Equation[T6) with triangle inequalities and union bounds, we have with
probability at least 1 — 6,

_ (T, A, C. (T, A, 2C. 8R202 log (+L
Errv(p(l.T))S\/’y( T )_’_\/’Y( 7 )+\/ 0 (5)

. A, Cy) (T, Ay, 2C) 8r2R2C2 log (1)
(1:T) <\/’Y+(Ta + L+ \/’Y+ ) 4y, 204 +Y+ 5
v(@ ) s T * T * (r—1)T
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C.2 Proof of Theorem [C.2](Generalization of Theorems 4.1 and

Fact C.5. Let (O, D, ¢) be a multi-distribution learning problem satisfying Deﬁnition Define a
corresponding convex-concave game (A., A, ) where:

A =0, A,=AD, ¢(p,q)=Riske(p).
The minimizing player’s mixed strategy D in any e-min-max equilibria (Definition constitutes an
2¢-error solution to (©, D, {).
Proof. 1If (P, q) is an e-min-max equilibria, the following holds by definition
Riskz(p) < min Riskz(p) + € and Riskg(p) > max Risk,(p) — e.
pPEO qeEAD

Equivalently, by the min-max theorem,

<k (B) — ¢ < min Riske
qrgg%RlS (P)—e < glelélRIS g(p) +¢

< min max Risk +e.
T pEB® qEAD q(p)

Algorithm 4 On-Demand Multi-Distribution Learning.

Input: Parameter space © with distance generating function w, distribution set D with n := |D|
and n’ := |Unique(D)|, and loss function ¢ : © x Z — [0, L], all satisfying Definition[B.13]and
Assumptions [5]and {4}

Initialize: minimizing iterate p() = ©° where 6° is as defined in Definition maximizing
iterate ¢(*) = [1/n]™, and iteration cap:

1 "+1
_ % (9021)@ +8R3C? log (”;) +3202(n’ +2.1) log (” ; )) :

fora=1,2,...,[T/n'] do
For all D € Unique(D), sample datapoint 2%, from EX(D) ;
fort=an’+1—n',...,an’ do
Sample datapoint z(*) from EX(D) with D ~ ¢*);
Define the estimates g\*) = 9pp (p™®), (V) and @(f) = [tp(®Y, 2% pep;

Update iterates: p+1) = Quna (10, 5) 4D = Qpeage (a9,31”);
end for
end for B .
Return: parameter § := + >, p() € ©.

T

Theorem C.2 (Generalization of Theorems [4.1|and[5.1). AlgorithmH|is an (e, 6) multi-distribution
learning algorithm for any convex multi-distribution learning problem (0, D, () satisfying Definitions
and and Assumptions and In other words, Algorithm@|returns an 0 € © such that:

: < : . .
max Riskp(9) < el*Iéf@ max Riskp (6*) + &

DeC?4+(R% C?4n'L?)log(n’/5)
=2

Furthermore, the sample complexity of Algorithmis in O (
n' = |Unique(D)|.

) where

Proof. The sample complexity of Algorithm [4]is immediate from its construction. Every period
a, Algorithm samples n’ datapoints. Every iteration ¢, AlgorithmE] samples 1 datapoint. Thus,
Algorithm @] samples 2n’[T'/n'] datapoints exactly.

We now prove that Algorithm [4{is an (e, §)-learning algorithm for any convex multi-distribution
learning problem. We begin by constructing the following convex-concave game (A_, A,, ¢) where:

A =0, A, =AD, ¢(p,q) = Risk,(p).
We observe that this game satisfies Definition[B.T]and Assumptions[T]and
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1. Definition B.13|defines Risk, (p)—and by extension ¢(p, ¢)—to be convex in p.

2. AsRisk,(p) == > ¢pRiskp(p) by definition, ¢(p, ¢) is linear and thus also concave in g.
DED

3. Inthe I-1 norm, AD satisfies Assumption [I| with diameter R = 2.

4. Since O has finite Bregman radius of Dg by Assumption[5]and w is strongly convex modulus
1 by definition, O satisfies Assumption with a finite R < 2v/2Dg.

5. Since 94¢(p, q) = [Riskp (p)] pep and the range of /1 is [0, L], Assumption [2]is satisfied
for 9,4(p, ¢) by C < L in the l-infinity norm.

6. Opd(p, q) satisfies Assumptionfor some finite C. = C directly by Assumption

We now define a stochastic setting for our game. Let the minimizing player’s randomness source be
o0

given by the sequences £ = {EX(q); },-,; recall that EX(D);, refers to the kth call to an example
oracle for a D € AD. Let the maximizing player’s randomness source be given by the sequence
&L = {[EX(D);]pep };=,. Next, define the first-order oracle estimators:

/g\-(f.q;iap, Q) = 8p£( 75-{1;2‘) ) /9\+(§i?i7p7 Q) = [5 (pa (fii)D)}DED-

We can observe that g. is a locally unbiased first-order oracle (satisfying Definition [B.7)) and g,
is a globally unbiased first-order oracle (satisfying Definition [B.8)), with both g. and g, satisfying
Assumptions

1. By the unbiasedness of empirical risk estimates, g, is globally unbiased as returns an
empirical risk sample for each D € D. Similarly, by the unbiasedness of empirical risk
estimates and linearity of derivatives, g. is locally unbiased.

2. As the range of loss function ¢ is in [0, L], empirical loss is also bounded in [0, L], g,
satisfies Assumption [3|with C; < L in the l-infinity norm.

3. By Assumption[4} empirical partial subgradients are norm-bounded by some finite C, so g.
satisfies Assumption [3| with some finite C. = C.

Finally, we observe that Algorithm[4]is equivalent to instantiating Algorithm 3|on our constructed
game (A, A,, ¢) for our constructed stochastic setting.

We will now rewrite the iteration complexity requirement of Lemma|C.I|given by Equation[I0|(copied
below):

9 2 92 r+1 8R2C?2r? r+1
T 2572 (7_(T, A, 2C) 4+ 8R*C*log (5) + (T, Ay, 2C,) + 1 log 5 )
In particular, we aim to show that the default iteration setting of Algorithm@] satisfies it for &’ = £/2.
By Lemmas and C.10} we can bound the efficacy of our no-regret algorithms Qqmd,, Qnedge DY:

’D 2]
90-4 @a ’7+(T7 A+aC+) S 9C+40gn,

where v.(T, A., C_) and v, (T, A4, C,) are as defined in Lemma|[C.1]
Accounting for our previous derivations of C_, C,, &', R,, to satisfy Equation[10] it suffices to set:
9-4 (36C?Dg n+1 9L%logn 8- L%4(n')? n +1
T>— ( ——— +8R§C?1 1
_52(4+60g<5+4+n’+10g5’
or simplified further:

1 "1
T z%f (9C2D@ + 8REC? log (”; ) +32L2(n' 4+ 2.1) log <” ; ))

7(T,A,C) <

L 5~T ¢ and 8, the output of Algorithm @, form an £-min-max

Thus, by Lemma q: 5

equilibria of our game (A., A,, ¢) with probability at least 1 — 0. The Theorem then follows by Fact
O
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The following theorems, which are restated from the main text, are immediate corollaries of Theorem
[C2]

Theorem 4.1. For any finite hypothesis class H and unknown set of distributions D, with probability
1 — 6, Algorithm 2| returns a distribution p € AH such that

E [maXRiskD(h)} < OPT+¢ and maxRiskp(hYM*) < 20PT + ¢,
h~p | DED DeD P

using a number of samples that is O (W) .

€

Proof. Observe that this finite multi-distribution learning problem can be re-written as the convex
multi-distribution learning problem (AH, D, £). Since AH is a probability simplex of dimension
|H|, we know it is compact, convex, with C' = 1 and L = 1 (as the range of £ is in [0, 1]), and with
Re < 2. We can then directly apply Theorem [C.2] observing that Algorithm [2]is equivalent to
Algorithm[d]in this setting. O

Theorem 5.1. Consider a group distributionally robust problem (©, D) with convex compact unit-
diameter parameter space © of Bregman radius Dg (Definition[B.I1), and convex losst:0© x Z —
[0, C). A variant of Algorithm|2|(in particular Algorithm in Appendix, returns 0 € © such that

maxpep E.wp [€(0,2)] < R-OPT + ¢, using a number of samples that is O (D602+"§22 log("/é)).

Proof. Similarly to Theorem[4.1] this claim follows immediately from Theorem [C.2for unit diameter
Re = 1 and loss bound L = C. O

Corollary [5.2]follows in a similar fashion, running Algorithm 4] on empirical data distributions. The
following proposition re-states this formally.

Proposition C.1 (Generalization of Corollary [5.2). Let (©,D,¢) be a convex multi-distribution
learning problem satisfying Definitions[B-12)and[B.13]and Assumptions D and[| For every D € D,
let Bp ~ D be a non-empty batch of i.i.d. datapoint samples. Define D' = {D'},_p,, where
D' is the empirical distribution of Bp. It follows that (©,D’ () also satisfies Definitions
and|[B13]and Assumptions [B|and[@ with identical parameters. Thus, Algorithm @] when applied to
(0, D', £), with probability at least 1 — § returns an 0 with a multi-distribution training error of at
most €. Furthermore, the number of iterations—and accordingly partial derivative operations—is in
O (D@CQ+(R2_ C?+nL?)log(n/s) )

52

A similar proof as Theorem [C.2 gives an analagous result for binary classification problems with a
hypothesis class of finite Littlestone dimension.

Theorem C.3 (Littlestone Variant of Theorem @) Let Qp iy denote the no-regret algorithm that
achieves a regret of ©(y/Little(H)T) in any online learning setting with Littlestone dimension
Little(H); such an algorithm exists by Theorem 2.4 in Alon et al. [l|]. Replacing Qoma . With QLinie
in AlgorithmH) and updating the iteration cap to,

1 1
T zig (C’Little(?—l) + 8R4 C?log ("j;) +32L%(n +2.1) log <”?;)) ,

yields an (g, §) multi-distribution learning algorithm for any binary classification multi-distribution
learning problem (M, D, () satisfying Definitions and Further assume that the hypothesis
set has finite Littlestone dimension Little(H) < oco. The sample complexity of Algorithm H|is in
O (Little(?—t)+nlog(n/6)>

— e ),

€

Proof. The sample complexity of our modified Algorithm [ remains immediate from its construction.
Algorithm E| samples 2n [T /n]| datapoints exactly. Theorem s proof that Algorithm E| is an
(e, 6)-learning algorithm for multi-distribution learning also continues to hold. However, we must
update the iteration complexity requirement of Lemma[C.I] given by Equation [I0] (copied below):

9 1 SR2(2y2 1
T2 (”-(T’A->20->+810g (H)+7+(T,A+,2(J+)+ cCir 1Og(r+ ))

0 r+1 )
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In particular, we aim to show that the default iteration setting of Algorithmlé-_l| satisfies it for e’ = /2.

By Lemmas|[C.4]and by assumption on Q juie, we can bound the efficacy of our no-regret algorithms
QLittle; Qhedge by:
C'Little(H) 9C?%logn

4 ’ 4 ’
where 7.(T, A.,C.) and ~,(T, A, C,) are as defined in Lemma and C’ is some universal
constant.

1 (T,A,C) < (T, Ay, Cy) <

Accounting for our previous derivations of C_, C,,¢’, R, for Theorem it suffices to set:

T zg <C’Little(’H) + 8R%C? log (”Z1> +32L%(n +2.1) log (”;1» .

2
equilibria of our game (A., A,, ¢) with probability at least 1 — 0. The Theorem then follows by Fact

IC.5 O

Thus, by Lemma q = % 23:1 ¢ and @, the output of Algorithm EI, form an £-min-max
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C.3 Proof of Theorem

We now provide matching lower bounds for collaborative PAC learning.

We first define a notion of expected sample complexity. Take any multi-distribution learning problem
V = (0, D, {). Recall that, on this problem, the input to any multi-distribution learning algorithm
is a random variable of form V = (©4,£i, {EX(D)} pcap)- Also recall that each example oracle
EX(D) is an infinite sequence of i.i.d. samples from D. We will let X, denote the probability
distribution of the random variable tuple (©;, ¢;, {EX(D)} ,cap)- Further let IV A(‘A/) denote the
expected sample complexity of A given inputs ‘7, where expectation is taken over any randomness
from the algorithm A itself. We can now define a general notion of expected sample complexity.

Definition C.1. Ler A be a multi-distribution learning algorithm and P a probability distribution
over a set of multi-distribution learning problems V = {(©;,D;,{;)},. We define the expected
sample complexity N 4 (P) as:

Na(P) = VIEP [VNEXV {NA(‘A/)H '

The outer expectation is taken over the randomness of the problem selection, the inner expectation

is taken over the randomness of datapoints, and N (V') takes an expectation over the internal
randomness of the algorithm A.

Unless otherwise specified, we will use the shorthand: Ey . p [Ef/N Xy []} = Ey [-]. We recall the
following theorem from Section {.2]

Theorem 4.2. Take any n,d € Z, €,6 € (0,1/8), and (e, d)-collaborative learning algorithm A.
There exists a collaborative learning problem (H,D) with |D| = n and |H| = 2¢, on which A takes
at least Q (% (log [H| + |D|log(min {|D|, log ||} /5))) samples.

We now prove two lemmas, Lemma[C.4]and Lemma [C.3] that directly imply Theorem[4.2] These
lower-bound constructions are fairly generous and allow all distributions to share the exact same
feature distribution and all but one distribution to share the exact same label distribution.

Lemma C4. Take any n,d € Z, €,6 € (0,1/8), and (e, 0)-collaborative learning algorithm A.
There exists a set of collaborative learning problems V on which A takes at least 2 (%) samples
and where, for every (H,D) € V, |D| = n and |H| = 2%

Proof. This claim follows directly from the lower bound on sample complexity of agnostic probably-
approximately-correct (PAC) learning [39]]. Let (#, D) be an agnostic PAC learning problem.
Accordingly define the collaborative learning problem (7, D), where D = {D}!"_,. Observe that
minp ep Riskp/(h) = Riskp(h) for all well-defined choices of h. Thus, given an algorithm A
that (£, §) solves (H, D’) with at most m samples, we can design an algorithm B that (&, §) solves
(H, D): run algorithm A by simulating samples from any D’ € D with samples from D and return
the output of A. We can thus invoke the well-known lower bound of agnostic PAC learning to observe
that there exists an agnostic PAC learning problem V’ such that any (e, §)-learning algorithm has a
log|H|
£2

sample complexity of {2 ( ) [[14]; we defer interested readers to Zhang [435] for a constructive

proof of the existence of V’. Thus, there exists a V satisfying the assumptions of Lemma [C.4] where
any (g, 0) collaborative learning algorithm has a sample complexity of €2 (Wi#) O

Lemma C.5. Take any n,d € Z4, &, € (0,1/8), and (g,9)-collaborative learning algo-
rithm A. There exists a set of collaborative learning problems YV on which A takes at least
Q (& (|D]1og(k/d))) samples and where, for every (H,D) € V, |D| = n and |H| = 2% with
k := min {n, d}.

Proof. We prove this constructively. We begin by defining collaborative learning problem sets V,, ,,
for all w,n € N with w = w - 7. Problems in V,, ,, share a feature space X = {1, ..., w}, label space
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Y = {+, —}, and hypothesis class H = {f : X — Y} (the set of all deterministic binary labeling
functions). For every i € [w], define distributions D;” and D} as:

1 1 1 1
ETE (i,—) = 5 + 2¢; EE (t,4) = 5 2¢ and 5:1: (i,—) = 5 4e; DP:E (i,4) = 5 + 4e.
Let P, be a probability distribution over possible choices of 7 collaborative learning problems. With
1/2 probability, P} returns a set of 7 copies of D, . With 1/2 probability, P; returns a uniformly
sampled shuffling of the set of  — 1 copies of D, and one copy of D;'. We then define P,, ,, =
P} x --- x P}, with V, ,, being the support of P, ,,. Observe that P, ,, is a distribution over
collaborative learning problems each with |H| = 2% and u distributions. The following claims
characterize sample complexity lower bounds on P, ,,,.

Claim C.1. Choose ¢ € (0,1/2) and § € (0, 1). Take any (e, 0)-learning algorithm A on'V,, 1 under
Py 1, or equivalently, on P}. Then, the expected sample complexity (see Definition of Ais at
least 5gl— log(1/20).

Claim C.2. Choose e € (0,1) and 6 € (0,1/8) Suppose there exists an (¢, d) learning algorithm A
for V., ., with an expected sample complexity of m under P, ,,. Then there exists an (e, 7w) learning
algorithm A’ for V1 1 under P 1 with an expected sample complexity on P11 of 75;

Since our desired lower bound are trivially weakly monotonic in n, d, fix a choice of n,d € Z,
and €, € (0,1/8) with n = 5 - d. Combining claims and we see that any (g,0) col-
laborative learning algorithm A for V,, 4 has an expected sample complexity on P, 4 of at least
m 2> 55 4852 log (1 5 6) By the probabilistic method, for at least some collaborative learning problem

V €V, 4, A must have a sample complexity in Q (550 log (12%)). O

Proof of Claim|C_1] Consider the following problem: take 7 identical-looking coins. Under the
H)j hypothesis, all coins are biased tails with probability 1/2 + 2¢. Under the H; hypothesis, the
ith coin is instead biased heads with probability 1/2 4 4e. Let Pr be a probability distribution on
H € {H;}]_, with Pr(Hy) = 1/2 and Pr(H,) = --- = Pr(H,) = 5. Suppose that A is an
(e,6 ) algorithm for V,, ; with an expected sample complex1ty of m under IP” Then, we can construct
a coin algorithm A’ that, conditioned on any H € {H; }l _o» With probablhty at least 1 — 4, can
identify whether H is false. Furthermore, under hypothesis distribution Pr, A’ will also have an
expected sample complexity of exactly m.

To see this, have A’ run A by simulating draws from the ith distribution by flipping the ith coin. If all
coins are biased tails with probability 1/2 + 2¢, any e-error hypothesis h must satisfy Pr(h(1) =
+) > 1/2. Conversely, if one coin is biased heads, any e-error hypothesis h must satisfy Pr(h(1) =
+) < 1/2. Tt thus suffices to lower bound the sample complexity of A’, which is reminiscent of the
pure-exploration multi-armed bandit problem.

Suppose A’, conditioned on H, correctly predicts Hy with probability at least 1 — §. Then, suppose
A’, under H, takes no more than T; flips from the ith coin. Let p; j,.;, be a probability distribution
over {0, 1} corresponding to the outcomes of the j;st to jond coin toss by A’ under H;. Let P;
be a uniform distribution over {0, 1}j . We observe that p; ;.; and p; are Bernoulli distributions
with a parameter within 4¢ of 1/2. A standard information-theoretic result is that, for e < 1/2,
KL(pi j.j,p;) < 128¢%; e.g. see Zhang [45] and Karp and Kleinberg [22]]. By the tensorization
of KL Divergence, KL(p; 1. j,p;f) < 128;¢2. By Pinsker’s inequality, we can bound total variation
distance by TV (p; 1.5, p;‘) < 8¢v/j. Let E be the set of outcomes of 7T} flips under which A’ predicts
Hy; by correctness under Hy, we have that Pry, (E) > 1 — §. Thus, total variation distance implies
1§ —8¢y/j < Pry, (E). Since Pry, (E) < §, we have that 152 (1 — 28)> < T;. Thus, if A’ is §
accurate under all hypotheses, under Hy, A’ must take at least 50— (1 — 26)% < 138 log(1/20)
samples from each distribution. Thus, the average sample complexity of A" under Pr—and similarly
the sample complexity of A under [P}, must be at least 5=/ log(1/20). O

Proof of Claim|C.2] This claim is similar to the lower bounds of Blum et al. [5] and Karp and

Kleinberg [22]. We construct A’ as follows. Let I; = [(j — 1)n + 1, jn]. Suppose a problem
V' €V, 4 is drawn.
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1. A’ draws a problem (H, D) € V,, ,, and chooses an index ¢ € [w] uniformly at random.

2. A’ simulates the algorithm A on (H, D); when A tries to sample a datapoint from distribution
D, with r € I, return a sampled datapoint from the (r — (¢ — 1)n)st data distribution of V.

3. When A terminates and returns a classifier h, A’ checks whether, for every j # i:
max,cr, Riskp, (h) < 3. If this condition is satisfied, A’ returns 1/(1) = k(). If not, we
repeat from Step 1. We denote the number of total iterations with 7T'.

Consider the probability p; that, in the third step, for every j # i we have max,.cr, Riskp, (h) < %
but max,.¢cy, Riskp_(h) > % Let E; denote the event that A’ returns an at least e-error hypothesis
after ¢ iterations of our procedure. Noting that F; can only occur if A failed all ¢ — 1 iterations before
and at the ¢th iteration, Step 3 fails to catch the bad hypothesis for D;. By assumption, § > >"%" | p;.
By symmetry of our construction V and recalling § < 1/8:

Pr(E,) < =1 ;< tw < —
YSUITIED SUSED R SN
t=1 t=1 i=1 t=1

Thus, A’ is an (e, %)—algorithm for P, ;.

We now bound the sample complexity of A’. Let N 4/(¢) denote the number of samples that A’ takes
from V' on the tth iteration. Note that N4/ (1), Nas(2), ... are i.i.d. In addition, by the symmetry of
V and linearity of expectation, Eycp, | [Na(t)] = m/w. Thus, we can write:

E lz Na <t>] = E[T)E [N (V)] = E [T m/w.

V=1

We can upper bound 7" by observing that our procedure only repeats if A fails. Thus,

E[T]=) Pr(T>t)<)» §<— <.
A= AR
Thus, A’ has an expected sample complexity of at most %. O

The following is a more general restatement of Theorem[4.2]in terms of the terminology of Section
It follows by observing the difficult cases described in Theorem[4.2] constitute challenging cases
for both convex multi-distribution learning (Definition [B.T3) and binary classifier multi-distribution
learning (Definition [B.15).

Corollary C.6. Tauke anyn,m € Nande,d € (0,1/8). There exists a finite set V of multi-distribution
learning problems where:

1. Every (©,D, () €V satisfies Definitions|B.13|and|B.13} with |D| = n and Dg = log(m).

2. Every (g, 0)-algorithm A has a sample complexity in (D@+" log(ngizn{"’D@}/é) )

32



C.4 Proof of Lemmas[C.4 and [C.10)
For completeness, this section includes standard results on exponentiated gradient descent and mirror
descent more generally, proofs of which can be found in [40].

Lemma C.7. Pinsker’s inequality For any two vectors from the same probability simplex w,w’ € A",
we can bound their generalized Kullback-Leibler divergence as,

1
KL (wlfw) = 3 [lw —w'|l7.
Lemma C.8. Law of Cosines Define x,y,z € Z where Z is a convex set, and let H : Z — R be

a strictly convex differentiable distance generating function and Dy the Bregman divergence of H.
Then,

(VH(y) — VH(z),y — x) = Dy (x,y) + Du(y,2) — Du(, 2).

Lemma C.9. Pythagorean theorem for Bregman Divergence Define x,y € Z° where Z° is a
closed subset of a convex set Z, z € Z. Let H : Z — R be a strictly convex differentiable distance
generating function, and let D g be the Bregman divergence of H. If y = argmin ¢ zo D (u, 2),
then Dy (x,y) + Du(y, 2) < Dg(z, 2).

We now turn to proving Lemma (restated below), which concerns exponentiated gradient descent
with bounded gradients.

Lemma 2.1 ([40]). Let gV, ... ,g(T) € R™ and Z = A™. Further assume Hg(t) HOO < C for all
timesteps t = 1,...,T. Choosing n = +/logn/T, after T iterations of exponential gradient descent,
the outputs w™ ..., wT) satisfies,

KL (w(™ ||wD)

Proof. This proof closely follows that of Theorem 7.5 in [40]. Fix ¢t € 1,...,T. First, we provide
an expression for g(*) in terms of w(*+1) and w®), where @ is as defined in Equation @ For all
i €1,...,n, wehave by Equation 4}

@§t+1) = exp (—ng(t)) .

Equivalently,

1 ~
ggt) = ; <log wgt) —log wgtﬂ)) :

Letting H(z) = >, x; log x; — ; denote our distance generating function, generalized negative
entropy, we can also write,

gft) _1 (VH (w(t)) _VH (@(tﬂ))) ,

n

where logs are applied coordinate-wise. Defining KL (+||-) as generalized Kullback-Leibler diver-
gence: the Bregman divergence with respect to our choice of H as a distance generating function.
Since Z is already closed, by Lemma|C.8] for any w* € Z,

(42,0 — ) = % (v (w®) = H (5w — )
N % (KL (w*Hw(t)) +KL (“’(t)Hfﬁ(t“)) — KL (w*||@(t+1))) :

Generalized Pythagorean Theorem, e.g. Theorem 7.7 in [40] gives,

KL (w*||@(t+1)) > KL (w*Hw(tH)) + KL (w(tH)HiE(t“)) .
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Then we can bound,

) -

KL

M’ﬂ

) + KL (wO D) — KL (w0

~
Il
—

KL

[M]=

w'lw®) + KL (w®@ )

(1
(
( ( “Iw t+1>> 1+ KL (w(t+1)||{5(t+1)>)
(v
(

(By Pythagorean) <

o~
Il
_

KL

Il
M=

Hw(t)) ( *Hw(t—i-l))
( t)|| ~(t+1) ) _ KL (w(t+1)||w(t+1))>

T
(By telescoping) < KL (w*||w(0)) + Z KL (w(t)H{E(tH)) —KL (w“+1 Hw(t"’l))
t=1

H
I
-

(17)
To bound the second term, we again apply the law of cosines, this time in reverse order, recovering,
KL (wu)”@(m)) _ KL( (t+1) ||w(t+1)) <g<t>’w<t> _ w(t+1>> _KL <w<t+1>||w(t>> .
As wttD w®) e Z by Pinsker’s inequality (Lemma|C.7),
KL (wa)”@(m)) _KL (w<t+1>||{5(t+1>> <7 <g<t> w® — w(t+1>> _1 Hw<t+1> _ w<t>H2
— b 2 1

1 2
<]l o —ui ™ = 5wt —u

<nC Hw(t) _ w§t+1)H _ % Hw(t+1) _ w(t)Hz
1

212
n-C
< 18
<t (18)
where the final inequality follows from maximizing the quadratic nCz — 2—22 attained at z =
[|w® — w+1) I , = Cn. The claim follows by plugging Equationinto Equation O

Exponentiated gradient descent is a special case of mirror descent in the Euclidian space £ = R™
equipped with an L1-norm ||-||;, over the probability simplex Z = A", and using entropy as a distance
generating function. The following lemma generalizes Lemma[C.4]to more general Euclidian spaces,
choices of convex compact subsets, and strongly-convex distance generating functions. As the proof
closely mirrors that of Lemma[C.4] we defer interested readers to Beck and Teboulle [2].

Lemma C.10 (Generalization of Lemma|C.4][2]). Let Z be a convex compact subset of a Euclidean
space E with distance generating function w satisfying Definition |B.9| Let ¢V, . .. ¢T) e &*.

Further assume ||g | e S C for all timestepst = 1,...,T. Choose step size n = ,/DT where

Dy is the Bregman radius of Z. After T iterations of online mirror descent [2], the output {w}thl

satisfies,
. 3C |D
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C.5 Proof of Theorem [C.12]

This section discusses the implications of our results for finite VC dimension problems.

First, we will use Dy to denote the marginal distribution of a data distribution D, i.e. the distribution
of D over its feature space. We also introduce the following definitions.

Definition C.2. The Renyi divergence D, (P||Q) between discrete distributions P, Q) is defined by:

1 P(z)\*"
Da(PllQ) = —1o P(z)
a1 gz;( (Q(@)

and between continuous distributions P, Q as:

- i - log, /X P(z) (ggg)al da.

We will write do (P||Q) = 2P=(PlIQ),

Da(PlIQ) =

Remark C.1. Denoting the support of Q as Xq, we can write sup,¢ x,, % = d(P]|Q).

Recall that in Theorem [C.2] we describe a multi-distribution learning algorithm (Algorithm [ with
provably tight sample complexity upper bounds for convex multi-distribution learning problems
(Definition [B.13). We note that there is one class of multi-distribution learning problems, non-convex
finite VC multi-distribution learning, that has been previously studied by [, 129, 8] but does not satisfy
the assumptions of convex multi-distribution learning. A non-convex finite VC multi-distribution
learning problem is a binary-classification multi-distribution learning problem (Definition [B.13])
that satisfies three criteria: the hypothesis space H is non-convex, of infinite size, and of finite
VC dimension VCD(H) < oo. [5, 29, 8] provide upper bounds for non-convex finite VC multi-
distribution learning that are identical to their upper bounds in Table [1| but replacing log |H| with
VCD(H).

In contrast, our Theorem upper bounds do not directly apply to non-convex finite VC multi-
distribution learning. However, a similar result can be obtained by running our Algorithm[]on a
probability simplex A’ over some e-covering H’ of . Such e-nets of size ne~VCP(*) necessarily

exist. For example, given an e-net for each distribution D € D, we may take their union as the
covering H' and run Algorithm[2] This directly inherits a favorable upper bound from Theorem

Corollary C.11 (VC Dimension Corollary of Theorem [C.2). Consider any binary classification
multi-distribution learning problem (H, D) where the hypothesis set H is of finite VC dimension d
and the unknown distribution set is of size |D| = n. There is an algorithm that, given an e-net of size
poly (sd, e, d, n) for each distribution, with probability 1 — 6, returns a distribution D € AH with,

E [max RiskD(h)} < OPT+¢ and maxRiskp(hY*) < 20PT + ¢,
h~p | DED DeD p

dlog(dn/e)+nlog(n/d) )

using a number of samples that is O ( =

It is also not strictly necessary to know an e-net in advance. Instead, one can compute a net from
samples or from other information about distributions in D. Theorem [C.12|formalizes this claim.

Theorem C.12. For any H of VC dimension d and unknown set of distributions D for which
Assumption 1, 2 or 3 is met, there is an algorithm that, with probability 1 — 0, returns a distribution
D € AH with,

E [max RiskD(h)} < OPT+¢ and maxRiskp(hY'*) < 20PT + ¢,
h~p | DED DeD p

dlog(dn/e)+nlog(n/d) )
€2 :

using a number of samples that is O (

The following corollaries of Theorem . 1|directly imply Theorem

35



Corollary C.13 (Assumption 1). Consider any binary classification multi-distribution learning
problem (H, D) where the hypothesis set H is of finite VC dimension d and the unknown distribution
set is of size |D| = n. Fore € O (1/n), there is an algorithm that with probability 1 — 0§, returns a
distribution p € AH with,

E [maxRiskD(h)} < OPT+¢ and maxRiskp(hY'*) < 20PT + ¢,
h~p | DED DeD p

dlog(dn/a)tn log(n/ﬁ)) )

using a number of samples that is O ( -

Proof. By Lemma , sampling O (%d log(g) + 2 log(g)) datapoints provides a covering of
‘H is that is simultaneously an e-net for every €D with probability at least 1 — §. Moreover, by

d
the Sauer-Shelah lemma, this net is of size O ((log(d”/a);" 10g(n/5)) ) . The claim then follows

from Corollary [C.11] noting that since ¢ € O (1/n), we only needed to sample an additional
O (L 1og(2) 4+ 2log(2)) C O ("4 log(2) 4+ 2log(2)) datapoints to form the cover.

O

Corollary C.14 (Assumption 2). Consider any binary classification multi-distribution learning
problem (H, D) where the hypothesis set H is of finite VC dimension d and the unknown distribution
set is of size |D| = n. We say an algorithm has weak unlabeled access if the algorithm can access,
for each D € D, a marginal distribution D', such that do.(D%||Dx) € poly(1/e,d,n), with
probability 1 — 0. There is an algorithm that, given weak unlabeled access, with probability 1 — 6,
returns a distribution D € AH with,

E [maXRiskD(h)} < OPT+¢ and maxRiskp(hY*) < 20PT + ¢,
h~p | DED DeD p

using a number of samples that is O (dlog(dn/egn 10g("/6)) )

Proof. Observe that when do(D%||Dx) < 7, D’ can be written as a mixture over Dy with
probability at least % and some other distribution D 5 with probability at most 1 — % Once again

invoking uniform convergence, we observe that sampling © (dOO(D’X [|1Dx) w) iid.

samples from distribution D%, with probability at least 1 — 4, yields an e-covering on D. By
Sauer-Shelah’s lemma, the resulting covering 1, is of size O ((poly(1/e,d, n))?). Repeating this
procedure for each D € D, with probability at least 1 — nd, we have an e-covering H’ of D of
size [H'| € O (n(poly(1/e,d,n))*). We can then appeal directly to Theorem for a sample
complexity bound on learning (H’, D). O

Corollary C.15 (Assumption 3). Consider any binary classification multi-distribution learning
problem (H, D) where the hypothesis set H is of finite VC dimension d and the unknown distribution
set is of size |D| = n. There is an algorithm that, given access to the marginal distribution D x of
every D € D, with probability 1 — 6, returns a distribution p € AH with,

E [maXRiskD(h)} < OPT +¢ and maXRiskD(hyaj) < 20PT + ¢,
h~p | DED DeD P

(dlog(l/E)Jrn log(n/é) )
€2 :

using a number of samples that is O

(d/e)+1og(1/6))
62

Proof. By uniform convergence, sampling © (dlog i.i.d. samples from a distribu-

tion Dy, with probability at least 1 — ¢, yields an e-covering on D. By Sauer-Shelah’s lemma,
the resulting covering H/, is of size O ((log(d/e) + % log(1/5)/e?)?). Repeating this proce-
dure for each D € D, with probability at least 1 — nd, we have an e-covering of D of size
O (n(log(d/e) + 5 1og(1/6)/e*)*) € poly (¢?,,d,n) and can appeal to Corollary|(C.11 O
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Lemma C.16 (Corollary 3.7 in Haussler, Welzl). Let F be a function class consisting of functions
from X to [0, 1] and P a probability measure on X. Given N > Sa—d log g?d + % log % random samples
x from P, with probability at least 1 — 6, the projection of F on x constitutes an e-net. That is, for

any fi, fa € F where Prop(fi(x) # fa(x)) > & || f1(z) — f2(2)[ > 0.
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Algorithm 5 Resampling-based Multi-Distribution Learning (R-MDL)

Input: Parameter space O, initial parameter §(°) € ©, training set X and validation set X T, for
D in D where n := |D|, iterations 7', minibatch size B, adversary minibatch size B’, blackbox
minibatch learning algorithm A;
Initialize: ¢(*) = [1/n]™;
for iterationst = 1,2,...,7T do
For each D € D, sample B’ /n points th) from the empirical distribution of X7},. In other
words, sample uniformly with replacement from X7,.

Run Hedge update on adversary using datasets [¢(6, X gt) )] pep- In other words, letting exp be
component-wise exponentiation, - be component-wise multiplication, and 7 some learning rate:

0 = g - exp(—n[l(8, X3")] pen)
a0 exp(=nle(0. 25" pen) |

Sample B datapoints from the mixture over the empirical distributions of {Xp } pep weighted
by ¢). In other words, sample with replacement from X' with probability qg).
Run minibatch update on learner, with () = A(p(¢=1) x®)),

end for

Return: 6(7).

D Experiment Details

R-MDL Algorithm The R-MDL algorithm is defined in full in Algorithm[5] This algorithm is
implemented in the Github repository ericzhao28/multidistributionlearning,

Additional Observation: R-MDL converges faster than ERM or GDRO. The R-MDL methods
in Table 2] used a fraction of the training epochs that their GDRO counterparts used. The ratio of
R-MDL to GDRO training epochs is 1:3, 2:5, 1:2 on the Waterbirds, CelebA, and MultiNLI datasets
respectively. This fast convergence rate is predicted by our theory, particularly Corollary [5.2] In
our Figure|l] we also replicate the Figure 2 of Sagawa et al. [36], appending our additional results
on R-MDL. We again see a trend of faster test error convergence (solid lines) and more uniform
per-group risks by the R-MDL algorithm.

Datasets Our experiments were performed on three datasets: Multi-NLI, CelebA, and Waterbirds
[36]. We use identical preprocessing settings and dataset splits as Sagawa et al. [36]. Our experiments,
unless otherwise specified, replicate the exact hyperparameter settings adopted by Sagawa et al. [36]]
for their Table 2 experiments. This includes the choice of random seeds, batch sizes, learning rates,
learning schedules, and regularization. We defer readers to Sagawa et al. [36] or to our public source
code for replication details.

The Multi-NLI dataset [42] concerns the following natural language inference task: determine if
one statement is entailed by, neutral with, or contradicts a given statement. This dataset is challenging
because traditional ERM models are prone to spuriously correlating “contradiction” labels with the
existence of negation words. The dataset is divided into 6 distributions: the Cartesian product of the
label space (entailment, neutral, contradiction) and an indicator of whether the sentence contains
a negation word. The label space annotations were annotated by [42] while negation labels were
annotated by Sagawa et al. [36]. There are 206,175 datapoints available in the Multi-NLI dataset;
the smallest distribution (entailment + negation) is represented by only 1,521 datapoints. We use a
randomly shuffled 50-20-30 training-validation-testing split.

The CelebA dataset is a dataset of celebrity face images and a label space of potential physical
attributes [23]]. This dataset is challenging because traditional ERM models are prone to spuriously
correlating attribute labels with demographic information such as race and gender. Following Sagawa
et al. [36]], we divide the dataset into 4 distributions: the Cartesian product of the blond vs dark hair
attribute label (“Blond_Hair”) with the “gender” attribute label (“Male”’). Note that the authors of
Liu et al. [23] limited the “gender” attribute label to binary options of male and not male. There are
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Figure 1: Training (light, dashed) and validation (dark, solid) accuracies for GDRO and R-MDL
during training, plotted on a log scale. Note that R-MDL validation accuracy will be noisier than
those of GDRO as we constrain R-MDL to limited samples (with replacement) from the validation set.
In addition, in the left-most plot, training accuracy for all groups except the blond male group (red)
dips to zero due to lack of data—this is because the blond male group (red) is the most challenging
so the adversary eventually stops sampling from other groups. Under standard regularization, the
red-group accuracy drops off in GDRO while R-MDL maintains a high red-group accuracy by heavily
sampling from the red group, as reflected in the near-perfect red-group training error.

162,770 datapoints available in the CelebA dataset; the smallest distribution (blond-hair + male) is
represented by only 1,387 datapoints. We use the official training-testing-validation dataset split.

The Waterbirds dataset is a dataset by Sagawa et al. [360] curated from a larger Caltech-UCSD
Birds-200-2011 (CUB) dataset [41]]. It concerns the task of predicting whether a bird is of some
waterbird (sub)species from an image of said bird. This dataset is challenging because traditional
ERM models are prone to spuriously correlating backgrounds with foreground subjects; for instance,
a model may often predict that a bird is a waterbird only because the image of the bird was taken at a
beach. The dataset has 4 distributions: the Cartesian product of the waterbird vs not waterbird label
with whether the background of the picture is over water. There are 4,795 datapoints available in the
Waterbirds dataset; the smallest distribution (waterbirds on land) is represented by only 56 examples.

Models We use two classes of models in our experiments: Resnet-50 [[18] and BERT [11]. We use
the torchvision [25]] implementation of the convolutional neural network Resnet-50, with a default
choice of a stochastic gradient descent optimizer with momentum 0.9 and batch size 128. Batch
normalization is used; data augmentation and dropout are not used. We use the HuggingFace [43]]
implementation of the language model BERT, with a default choice of an Adam optimizer with
dropout and batch size 32.

Hyperparameters In the Standard Regularization experiments, we use a Resnet-50 model with
an (-2 regularization parameter of A = 0.0001 and a fixed learning rate of & = 0.001 for both
Waterbirds and CelebA datasets. The ERM and Group DRO baselines are trained on CelebA for 50
epochs and Waterbirds for 300 epochs. Our multi-distribution learning method is trained on CelebA
for only 20 epochs and Waterbirds for 100 epochs; this is due to the faster training error convergence
of our method. For the MultiNLI dataset, we use a BERT model with a linearly decaying learning
rate starting at a9 = 0.00002 and no ¢-2 regularization. The ERM and Group DRO baselines are
trained on Multi-NLI for 20 epochs. Our multi-distribution learning method is trained on Multi-NLI
for only 10 epochs. Our multi-distribution learning method uses adversary learning rates 1, of 1, 1,
0.2 on Waterbirds, CelebA and MultiNLI respectively.

In the Strong Regularization experiments, we follow similar settings to the Standard Regularization
experiments. The only change is that an /-2 regularization parameter of A = 1 is used for Waterbirds
and an /-2 regularization parameter of A = 0.1 is used for CelebA. Our multi-distribution learning
method uses adversary learning rates 7, of 1 and 0.2 on Waterbirds and CelebA respectively.
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In the Early Stopping experiments, we follow similar settings to the Standard Regularization exper-
iments. The only change is that all CelebA and Waterbird experiments are run for a single epoch.
MultiNLI experiments are run for 3 epochs. Our multi-distribution learning method uses adversary
learning rates 7, of 1, 1, 1 on Waterbirds, CelebA and MultiNLI respectively.

The only hyperparameters we use that differ from prior literature are the number of training epochs
and the adversary learning rates of our method (R-MDL). The choice of epoch was not fine-tuned, and
was selected due to our observation of early training error convergence. We selected our adversary
learning rate 7). by training our method, on each dataset, for both . = 1 and . = 0.2 and selecting
the 7. yielding the highest validation-split worst-group accuracy.

Compute The total amount of compute run for the experiments in this section is approximately 50
GPU hours. A “nl-standard-8” machine was leased from the Cloud computing service Google Cloud;
the “nl-standard-8” machine was equipped with 8 Intel Broadwell chips and 1 NVIDIA Tesla V100
GPU. The cost of these computing resources totaled approximately USD $2 per hour, with a total
cost of approximately USD $100. All results described in this section, with the exception of existing
results cited from other works, were obtained with experiments on said machine. All experiments
were implemented in Python and PyTorch.
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