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Abstract

Bilevel optimization have gained growing interests, with numerous applications
being found in meta learning, minimax games, reinforcement learning, and nested
composition optimization. This paper studies the problem of decentralized dis-
tributed stochastic bilevel optimization over a network where each agent can only
communicate with its neighbors, and gives examples from multi-task, multi-agent
learning and federated learning. In this paper, we propose a gossip-based decen-
tralized bilevel learning algorithm that allows networked agents to solve both the
inner and outer optimization problems in a single timescale and share information
through network propagation. We show that our algorithm enjoys the eO( 1

K✏2 ) per-
agent sample complexity for general nonconvex bilevel optimization and eO( 1

K✏ )
for Polyak-Łojasiewicz objectives, achieving a speedup that scales linearly with
the network size K. The sample complexities are optimal in both ✏ and K. We test
our algorithm on the examples of hyperparameter tuning and decentralized rein-
forcement learning. Simulated experiments confirmed that our algorithm achieves
the state-of-the-art training efficiency and test accuracy.

1 Introduction

In recent years, stochastic bilevel optimization (SBO) has attracted increasing attention from the
machine learning community. It has been found to provide favorable solutions to a variety of
problems, such as meta learning and hyperparameter optimization (Franceschi et al., 2018; Snell et al.,
2017; Bertinetto et al., 2018), composition optimization (Wang and Liu, 2016), two-player games
(Von Stackelberg and Von, 1952), reinforcement learning and imitation learning (Arora et al., 2020;
Hong et al., 2020). While the majority of the above mentioned work focuses on algorithm designs in
the classic centralized setting, such problems often arise in distributed/federated applications, where
agents are unwilling to share data but rather perform local updates and communicate with neighbors.
Theories and algorithms for distributed stochastic bilevel optimization are less developed.

Consider the decentralized learning setting where the data are distributed over K agents K =
{1, 2, · · · ,K} over a communication network. Each agent can only communicate with its neighbors
over the network. One example is federated learning which is often concerned with a single-server-
multi-user system, where agents communicate with a central server to solve a task cooperatively (Lan
and Zhou, 2018; Ge et al., 2018). Another example is the sensor network, where sensors are fully
decentralized and can only communicate with nearby neighbors (Taj and Cavallaro, 2011).

We consider the following decentralized stochastic bilevel optimization (DSBO) problem,

min
x2Rdx

F (x) =

(
1

K

KX

k=1

fk(x, y?(x))

)
, s.t. y?(x) = argmin

y2Rdy

(
1

K

KX

k=1

gk
�
x, y)

)
, (1)
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Figure 1: Illustration of Distributed Network Structures. In a centralized network, the agents may
cooperate to solve a specific task by communicating with the central server, commonly seen in
federated learning.

where fk(x, y) = E⇣k [fk(x, y; ⇣k)] and gk(x, y) = E⇠k [g
k(x, y; ⇠k)] may vary between agents.

The expectations E⇣k [•] and E⇠k [•] are taken with respect to the random variables ⇣k and ⇠k,
with heterogeneous distributions across agents. We consider the scenario where each gk(x, y) is
strongly convex in y. We use the notation F ⇤ = minx2Rdx F (x), f(x, y) = 1

K

P
k2K fk(x, y), and

g(x, y) = 1
K

P
k2K gk(x, y) for convenience.

1.1 Example applications of SBO

SBO was first employed to formulate the resource allocation problem (Bracken and McGill, 1973)
and has since found its applications in many classic operations research settings (Cramer et al., 1994;
Sobieszczanski-Sobieski and Haftka, 1997; Livne, 1999; Tu et al., 2020; Tu, 2021), and more recently
in machine learning problems (Franceschi et al., 2018; Snell et al., 2017; Bertinetto et al., 2018;
Wang and Liu, 2016). In particular, we introduce two applications that have recently attracted lot of
attention, namely hyperparameter optimization and compositional optimization.

Hyperparameter Optimization The problem of hyper-parameter tuning (Okuno et al., 2021) often
takes the following form:

min
x2Rd

(
X

i2Dval

`i(y
?(x))

)
, s.t. y?(x) 2 argmin

y2Rdy

8
<

:
X

j2Dtrain

`j(y) +R(x, y)

9
=

; , (2)

where Dtrain and Dval are two datasets used for training and validation, respectively, y 2 Rdy is a
vector of unknown parameters to optimize, `j(y) is a convex loss over data i, and x 2 Rd is a vector
of hyper-parameters for a strongly convex regularizer R(x, y). For any hyper-parameter x 2 Rd,
the inner-level problem solves for the best parameter y?(x) over the training set Dtrain under the
regularized training loss `j(y) +R(x, y). The goal is to find the hyper-parameter x⇤

2 Rd whose
corresponding best response y?(x) yields the least loss over the validation set Dval. In practice,
continuous hyperparameters are often tuned by a grid search which is exponentially expensive. An
efficient SBO algorithm should find the optimal parameters in time increasingly polynomially with
the dimension, rather than exponentially. When the training and validation sets are distributed across
nodes, the problem becomes a distributed SBO.

Compositional Optimization Let g(x, ⇠) : Rd
! Rdy and f(y, ⇣) : Rdy ! R be two stochastic

mappings. Stochastic compositional optimization (SCO) (Wang et al., 2017a) takes the form

min
x2X

E⇣ [f(E⇠[h(x; ⇠)]; ⇣)].

SCO applies to risk management (Yang et al., 2019; Ruszczynski, 2021), machine learning (Chen
et al., 2021b), and reinforcement learning (Wang et al., 2017b). SCO was identified as a special
case of SBO by (Chen et al., 2021c). To see this, we take the inner optimization objective to be
g(x, y) = E⇠[(y�h(x, ⇠))2]. Thus y?(x) = argminy g(x, y) becomes y?(x) = E⇠[h(x; ⇠)], arriving
at an instance of SBO.
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1.2 Challenges with Distributed SBO

Despite the recent rapid development of distributed single-level optimization, a method appropriate to
DSBO remains elusive. The major hurdle to solving DSBO lies in the absence of explicit knowledge
of y?(x), so that an unbiased gradient for rf(x, y?(x)) is not available. Recently, by applying the
implicit function theorem, (Couellan and Wang, 2016; Ghadimi and Wang, 2018) showed that the
gradient of a non-distributed SBO can be expressed as

rxf(x, y
?(x))�r

2
xyg(x, y

?(x))[r2
yyg(x, y

?(x))]�1
ryf(x, y

?(x)), (3)

providing a connection between SBO and classical stochastic optimization. Since then, various
algorithms have been proposed to obtain sharp estimators for y?(x) and reduce the bias of the
constructed gradients (Chen et al., 2021a; Hong et al., 2020; Ji et al., 2021; Yang et al., 2021). These
techniques result in tight convergence analysis and give rise to algorithms widely used in applications.
However, no prior algorithms can be applied to the distributed setting.

Solving Problem (1) becomes challenging in the distributed setting in several aspects:

1. Even in single-agent SBO, the lack of y?(x) makes outer optimization nontrivial, and estimat-
ing y?(x) requires additional stochastic approximation, weighted averaging, and sophisticated
calculation.

2. Calculating the outer gradient is highly nontrivial, even when we have an inner solution y. Note
that
1

K

X

k2K

�
r

2
xyg

k(x, y)[r2
yyg

k(x, y)]�1
ryf

k(x, y)
�
6= r

2
xyg(x, y)[r

2
yyg(x, y)]

�1
ryf(x, y). (4)

In other words, even if the inner problem is solved, the outer gradient requires a new estimation
mechanism.

3. Now we move to SBO over distributed networks. In network learning, communication between
agents can be limited by the network structure and communication protocol, so taking a simple
average across agents may require multiple communication rounds.

Because of the above difficulties, it remains unclear how to estimate the outer gradient sharply under
a distributed network. In an attempt to tackle this problem, this paper studies the convergence theory
and sample complexity of gossip-based algorithms. In particular, we ask two theoretical questions:

(i) How does the sample complexity of DSBO scale with the optimality gap and network size?
(ii) How is the efficiency of DSBO affected by the network structure?

In this paper, we develop a gossip-based stochastic approximation scheme where each agent solves
an optimization problem collaboratively by sampling stochastic first- and second-order information
using its data and making gossip communications with its neighbors. In addition, we develop novel
techniques for convergence analysis to characterize the convergence behavior of our algorithm. To
the best of our knowledge, our work is the first to formulate DSBO mathematically and propose an
algorithm with theoretical convergence guarantees. Moreover, we show that our algorithm enjoys an
eO( 1

K✏2 ) sample complexity for finding ✏-stationary points for nonconvex objectives, where eO(·) hides
logarithmic factors, and enjoys an eO( 1

K✏ ) sample complexity for Polyak-Łojasiewicz (PL) functions,
subsuming strongly convex optimization. These results subsume the state-of-the-art results for non-
federated stochastic bilevel optimization (Chen et al., 2021c) and central-server regimes (Tarzanagh
et al., 2022), showing that almost no degradation is induced by network consensus. Further, the above
results suggest that our algorithm exhibits a linear speed-up effect for decentralized settings; that is,
the required per-agent sample complexities decrease linearly with the number of agents.

2 Related Works

Bilevel optimization was first formulated by (Bracken and McGill, 1973) for solving resource
allocation problems. Later, a class of constrained-based algorithms was proposed by (Hansen
et al., 1992; Shi et al., 2005), which treats the inner-level optimality condition as constraints to
the out-level problem. Recently, (Couellan and Wang, 2016) examined the finite-sum case for
unconstrained strongly convex lower-lower problems and proposed a gradient-based algorithm that
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Stochastic Bilevel Optimization
BSA stocBio ALSET FEDNEST This Work

Network Single-Agent Central-Server Decentralized
Samples in ⇣ O(✏�2) O(✏�2) O(✏�2) O(✏�2) O( 1

K✏2 ) O( 1
K✏2 + K

(1�⇢)2✏ )

Samples in ⇠ eO(✏�3) eO(✏�2) eO(✏�2) eO(✏�2) eO( 1
K✏2 )

eO( 1
K✏2 + K

(1�⇢)2✏ )

Stochastic Compositional Optimization
SCGD NASA ALSET FEDNEST This Work

Network Single-Agent Central-Server Decentralized
Samples in ⇣ O(✏�4) O(✏�2) O(✏�2) O(✏�2) O( 1

K✏2 ) O( 1
K✏2 + K

(1�⇢)2✏ )

Samples in ⇠ O(✏�4) O(✏�2) O(✏�2) O(✏�2) O( 1
K✏2 ) O( 1

K✏2 + K
(1�⇢)2✏ )

Table 1: Summary of per-agent sample complexities for nonconvex stochastic bilevel and compo-
sitional optimization in different settings: BSA (Ghadimi and Wang, 2018), ALSET (Chen et al.,
2021c), stocBio (Ji et al., 2021), FEDNEST (Tarzanagh et al., 2022), SCGD (Wang and Liu, 2016),
and NASA (Ghadimi et al., 2020). Given the weight matrix W , ⇢ = kW �

1
K 11>

k
2
2.

exhibits asymptotic convergence under certain step-sizes. For SBO, (Ghadimi and Wang, 2018)
developed a double-loop algorithm and established the first known complexity results. Subsequently,
various methods have been employed to improve the sample complexity, including two-timescale
stochastic approximation (Hong et al., 2020), acceleration (Chen et al., 2021a), momentum (Khanduri
et al., 2021), and variance reduction (Guo et al., 2021; Ji et al., 2021; Yang et al., 2021).

Distributed optimization was developed to handle real-world large-scale datasets (Dekel et al., 2012;
Feyzmahdavian et al., 2016) and graph estimation (Wang et al., 2015). Centralized and decentralized
systems are both important problems that have drawn significant attention. A centralized system
considers the network topology where there is a central agent that communicates with the remaining
agents (Lan and Zhou, 2018), while in a decentralized system (Gao and Huang, 2020; Koloskova et al.,
2019; Lan et al., 2020; McMahan et al., 2017), each agent can only communicate with its neighbors
by using gossip (Lian et al., 2017b) or gradient tracking (Pu and Nedić, 2021) communication
strategies, with applications in multi-agent reinforcement learning (Xu et al., 2020). Variance
reduction approaches (Xin et al., 2020, 2021; Lian et al., 2017a) have also been applied to improve
the convergence rate of decentralized optimization. Random projection schemes have been studied
to handle large sets of constraints (Wang and Bertsekas, 2015, 2016; Liu et al., 2015). All of the
above trials were made on vanilla stochastic optimization problems. We are the first to study the
decentralized bilevel optimization problem to our knowledge. Table 1 compares this work with prior
arts under different settings.

3 Problem Setup

Assumption 3.1 (Sampling Oracle SO) Agent k may query the sampler and receive an indepen-
dent locally sampled unbiased first- and second-order information rxfk(x, y; ⇣k), ryfk(x, y; ⇠k),
rygk(x, y; ⇠k), r2

yyg
k(x, y; ⇠k), and r

2
xyg

k(x, y; ⇠k).

Assumption 3.2 (Gossip Protocol) The network gossip protocol is specified by a K ⇥K symmetric
weight matrix W with nonnegative entries. Each agent k may receive information from its neighbors,
e.g., zj , j 2 Nk, and aggregate them by a weighted sum

P
j2Nk

wk,jzj . Further, matrix W satisfies

(i) W is doubly stochastic such that
P

i wi,j = 1 and
P

j wi,j = 1 for all i, j 2 [K].

(ii) There exists a constant ⇢ 2 (0, 1) such that kW �
1
K 11>

k
2
2 = ⇢, where kAk2 denotes the

spectral norm of A 2 RK⇥K .

These assumptions on the adjacency matrix are crucial to ensure the convergence of decentralized
algorithms and are commonly made in the literature of decentralized optimization (Lian et al., 2017b).

Assumption 3.3 Let Cf , Lf be positive scalars. The outer level functions {fk
}k2K satisfy the

followings.
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(i) There exists at least one optimal solution to Prob. (1).

(ii) Both rxfk(x, y) and ryfk(x, y) are Lf -Lipschitz continuous in (x, y) such that for all
x1, x2 2 Rdx and y1, y2 2 Rdy ,

krxf
k(x1, y1)�rxf

k(x2, y2)k  Lf (kx1 � x2k+ ky1 � y2k),

and kryf
k(x1, y1)�ryf

k(x2, y2)k  Lf (kx1 � x2k+ ky1 � y2k).

(iii) For all x 2 Rdx and y 2 Rdy ,

E[kryf
k(x, y; ⇣k)k2]  C2

f and E[krxf
k(x, y; ⇣k)k2]  C2

f .

Assumption 3.4 Let Cg, Lg, eLg, µg,g be positive scalars. The inner level functions {gk}k2K
satisfy the followings.

(i) For all x 2 Rdx , g(x, y) is µg-strongly convex in y.

(ii) For all x 2 Rdx and y 2 Rdy , gk(x, y) is twice continuously differentiable in (x, y).

(iii) rygk(x, y), r2
xyg

k(x, y), and r
2
yyg

k(x, y) are Lipschitz continuous in (x, y) such that for
all x1, x2 2 Rdx and y1, y2 2 Rdy ,

kryg
k(x1, y1)�ryg

k(x2, y2)k  Lg(kx1 � x2k+ ky1 � y2k),

kr
2
xyg

k(x1, y1)�r
2
xyg

k(x2, y2)kF  eLg(kx1 � x2k+ ky1 � y2k),

and kr
2
yyg

k(x1, y1)�r
2
yyg

k(x2, y2)kF  eLg(kx1 � x2k+ ky1 � y2k).

(iv) For all x 2 Rdx , y 2 Rdy , rygk(x, y; ⇠k), r
2
yyg

k(x, y; ⇠k), and r
2
xyg

k(x, y; ⇠k)

have bounded second-order moments such that E[krygk(x, y; ⇠k)k2]  C2
g ,

E[kr2
yyg

k(x, y; ⇠k)k22]  L2
g , and E[kr2

xyg
k(x, y; ⇠k)k22]  L2

g .

(v) For all x 2 Rdx , y 2 Rdy , I� 1
Lg

r
2
yyg

k(x, y; ⇠k) has bounded second moment such that
E[kI� 1

Lg
r

2
yyg

k(x, y; ⇠k)k22]  (1� g)2, where 0 < g 
µg

Lg
 1.

We defer the detailed assumptions to Section A.1 of the supplement.

Note that we denote by kAk2 = �max(A) the induced 2-norm for any matrix A. Here we point out
that the above assumptions allow heterogeneity between functions fk’s and gk’s over the agents, and
the smoothness and boundedness conditions are commonly adopted in SBO (Hong et al., 2020; Chen
et al., 2021a).

4 Algorithm

As discussed in Section 1.2, the key challenge to solving DSBO is that each agent only has access
to its own data but is required to construct estimators for the gradients and Hessian averaged across
all agents. It is particularly challenging to construct such estimators when limited by the network’s
communication protocol.

To overcome this issue, we propose a gossip-based DSBO algorithm where each agent k 2 K

iteratively updates a solution pair (xk
t , y

k
t ) by using the combination of gossip communications and

weighted-average stochastic approximation, where ykt serves as an estimator of the best response
y?t := y?(x̄t) with x̄t :=

1
K

P
k2K xk

t . The full algorithm is given in Alg. 1.

Here we briefly explain the idea of our DSBO algorithm. Suppose agent k would like to estimate
rxf(xk

t , y
k
t ) by skt , under Alg. 1 Step 6, it would query the stochastic first-order information using

its own data, make gossip communications with neighbors, and update its estimators by taking the
weighted average of its previous estimate skt�1, neighbors j’s estimate sjt�1, and the newly sampled
gradient rxfk(xk

t , y
k
t ; ⇣

k
t ). Roughly speaking, this procedure can be viewed as taking a weighted

average of the gradients sampled by all agents over the network, except that the effect of consensus
should also been taken into account.
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Algorithm 1 Gossip-Based Decentralized Stochastic Bilevel Optimization

input: Step-sizes {↵t}, {�t}, {�t}, total iterations T , sampling oracle SO, weight matrix W ,
smoothness constant Lg , hessian sampling parameter b
xk
0 = 0, yk0 = 0, uk

0 = 0, sk0 = 0, ht
0 = 0, vk0,i = µgI for i = 1, 2, · · · , b

1: for t = 0, 1, · · · , T � 1 do
2: for k = 1, · · · ,K do
3: Local sampling: Query SO at (xk

t , y
k
t ) to obtain rxfk(xk

t , y
k
t ; ⇣

k
t ), ryfk(xk

t , y
k
t ; ⇣

k
t ),

rygk(xk
t , y

k
t ; ⇠

k
t ), r2

xyg
k(xk

t , y
k
t ; ⇠

k
t ), and {r

2
yyg

k(xk
t , y

k
t ; ⇠

k
t,i)}

b
i=1.

4: Outer loop update: xk
t+1 =

P
j2Nk

wk,jx
j
t � ↵t

�
skt � uk

t q
k
t h

k
t

�
.

5: Inner loop update: ykt+1 =
P

j2Nk
wk,jy

j
t � �trygk(xk

t , y
k
t ; ⇠

k
t ).

6: Estimate rxf(xt, yt): skt+1 = (1� �t)
P

j2Nk
wk,js

j
t + �trxfk(xk

t , y
k
t ; ⇣

k
t ).

7: Estimate ryf(xt, yt): hk
t+1 = (1� �t)

P
j2Nk

wk,jh
j
t + �tryfk(xk

t , y
k
t ; ⇣

k
t ).

8: Estimate r
2
xyg(xt, yt): uk

t+1 = (1� �t)
P

j2Nk
wk,ju

j
t + �tr

2
xyg

k(xk
t , y

k
t ; ⇠

k
t ).

9: Estimate [r2
yyg(xt, yt)]�1: Set Qk

t+1,0 = I
10: for i = 1, · · · , b do
11: vkt+1,i = (1� �t)

P
j2Nk

wk,jv
j
t,i + �tr

2
yyg

k(xk
t , y

k
t ; ⇠

k
t,i),

12: Qk
t+1,i = I+ (I� 1

Lg
vkt+1,i)Q

k
t+1,i�1

13: end for
14: Set qkt+1 = 1

Lg
Qk

t+1,b

15: end for
16: end for
output: x̄t =

1
K

P
k2K xk

t

The updates for ryf and r
2
xyg are conducted in a similar manner (Steps 7 & 8), but it requires

extra efforts to evaluate [r2
yyg]

�1, because it has no unbiased estimator. To be specific, we note
that 1

K

P
k2K[r

2
yyg

k]�1
6= [ 1K

P
k2K r

2
yyg

k]�1, making the unbiased estimator of the desired
term unavailable even if each agent has an unbiased estimator for [r2

yyg
k]�1. This is indeed a

unique challenge for decentralized bilevel optimization. To overcome this issue, we propose a novel
approach that each agent k constructs b independent estimators {vkt,j}bj=1 for r2

yyg(x
k
t , y

k
t ) using

consensus and stochastic approximation. We then estimate r
2
yyg(x

k
t , y

k
t ) by utilizing the following

approximation.

⇣ 1

Lg
r

2
yyg(x

k
t , y

k
t )
⌘�1

⇡ I+
bX

j=1

⇣
I�

1

Lg
r

2
yyg(x

k
t , y

k
t )
⌘j

⇡ I+
bX

i=1

iY

j=1

⇣
I�

1

Lg
vkt,j

⌘
.

We provide details in Steps 9 - 14.

Finally, each agent will compute the gradient (3) using the estimators obtained in the above procedure
and update the outer solution xk

t by using the combination of gossip communication and stochastic
gradient descent (Step 4). The inner loop solution ykt can be updated similarly by Step 5.

We highlight the following key features of our DSBO algorithm: (1) each agent only communicates
its estimates instead of the raw data in the gossip-communication process, preserving data privacy.
(2) agent k makes O(|Nk|) communications with its neighbors in each round, which is much less
than the total number of agents in a naive approach. (3) the algorithm is robust to contingencies in the
network. If a communication channel fails, the agents can still jointly learn provided that the network
is still connected. By contrast, a single-center-multi-user network would fail completely in case of a
center failure.

5 Theory

In this section, we analyze the performance of our DSBO algorithm for both nonconvex and PL
objectives and derive the convergence rates for both cases.
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5.1 Nonconvex Objectives

We first consider the scenario where overall the objective function F (x) is nonconvex. For nonconvex
objectives, given the total number of iterations T , we employ the step-sizes in a constant form such
that

↵t = C0

q
K
T ,�t = �t =

q
K
T , and b = ⇥(log(T )) for all t = 0, 1, · · · , T, (5)

where C0 > 0 is a small constant.

Compounded effect of consensus and SBO: As discussed earlier, to derive the convergence rate of
SBO under decentralized federated setting, the key step is to quantify the compounded effect between
the consensus errors induced by the network structure and the biases induced by estimating gradient
within (3). Unlike the central-server or non-federated regimes, the consensus errors induced by the
decentralized network structure must be handled carefully. We conduct a thorough analysis to derive
the contraction of consensus errors, and further show that both the bias and variance of the averaged
estimator diminish to zero, establishing a nontrivial convergence argument for the desired gradient
and Hessian. In particular, the estimators preserve a concentration property so that their variances
decrease proportionally to 1/K, suggesting that the network consensus effect does not degrade the
concentration of the generated stochastic samples. To achieve the best possible convergence rate, we
carefully set the algorithm parameters, including the step-sizes ↵t, �t and averaging weights �t, to
control the above consensus errors and biases.

We provide the convergence rate of Alg. 1 in the following theorem and defer the detailed proof to
Section B.7 of the supplementary material.

Theorem 5.1 Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold. Letting x̄t =
1
K

P
k2K xk

t , then

1

T

T�1X

t=0

E[krF (x̄t)k
2]  O

✓
1

p
KT

◆
+O

✓
K

T (1� ⇢)2

◆
.

More details and proof are deferred to Section B.7 of the supplement.

Effect of consensus: In this result, the O( K
T (1�⇢)2 ) term represents the errors induced by the consen-

sus of the network. Despite the depending on the network structure, this term diminishes to zero in
the order of O(1/T ), becoming a small order term when T is large. Consequently, given the network
topology, the asymptotic convergence behavior of DSBO is independent of the network structure,
answering question (ii) raised in Section 1.
Linear speedup: Because each agent queries O(b) stochastic samples per round, clearly the
required iteration and per-agent sample complexities for finding an ✏-stationary point such that
1
T

PT�1
t=0 E[krF (x̄t)k2]  ✏ are O( 1

K✏2 ) and eO( 1
K✏2 ), respectively. This result implies that our

algorithm achieves a linear speed-up effect proportionate to the number of agents K. In other words,
in the presence of more agents, each agent needs to obtain fewer stochastic samples to achieve
a specified accuracy. Meanwhile, our rate also matches the best-known O(1/K✏2) iteration and
per-agent sample complexities under the decentralized vanilla stochastic gradient descent settings
(Lian et al., 2018). This is the first time such a result has been established for DSBO problems.
Single-center-multi-user-federated SBO: We point out that a simplified version of our algorithm
solves single-center-multi-user-federated SBO, where the central server collects information directly
from each agent and calculates the gradient by employing the weighted-average stochastic approxi-
mation scheme for the collected information. In such a scenario, the agents no longer communicate
by gossip with neighbors but synchronously receive a common solution from the central server, so
that the consensus effect disappears. In Theorem D.1, we show that a variant of our algorithm can
indeed achieve the same O( 1p

KT
) convergence rate in this setting.

5.2 PL Objectives

Next we study the case where the objective function satisfies the following µ-PL condition.

Assumption 5.2 There exists a constant µ > 0 such that the objective satisfies the PL condition:

2µ(F (x)� F ⇤)  krF (x)k2.

7



Note that the class of strongly convex functions is a special case of PL functions. To utilize the µ-PL
property and achieve fast convergence, unlike the nonconvex case (5) where the step-sizes are set as
constants depending on the total number of iterations T , we employ step-sizes in a diminishing form
that

↵t =
2

µ(C1 + t)
,�t = �t =

C1

C1 + t
, and b = ⇥(log(T )) for t � 1, (6)

where C1 > 0 is a large constant. By following an analytical process similar to that of the nonconvex
scenario, in the next result, we derive the convergence rate of Alg. 1 for µ-PL objectives.

Theorem 5.3 Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold and the function satisfies the µ-PL
Assumption 5.2. Letting x̄T = 1

K

P
k2K xk

T , then

E[F (x̄T )]� F ⇤
 O

✓
1

KT

◆
+O

✓
lnT

T 2(1� ⇢)2

◆
.

The iteration and per-agent sample complexities for finding an ✏-optimal point E[F (x̄T )]� F ⇤
 ✏

are O( 1
K✏ ) and eO( 1

K✏ ), respectively.

Details and proof are deferred to Section C.2 of the supplement. This result shows that our algorithm
achieves a faster convergence rate for functions satisfying the µ-PL condition in terms of both iteration
and sample complexities. First, as in the nonconvex scenario, the consensus error decays in the
order of eO( 1

T 2(1�⇢)2 ). Dominated by O( 1
KT ), such on order of consensus decaying order indicates

that the network structure will not affect Alg. 1’s asymptotic convergence behavior under µ-PL
objectives. Meanwhile, the above result implies that Alg. 1 speeds up linearly with the number of
agents and matches the optimal O(1/✏) sample complexity for single-server vanilla strongly-convex
stochastic optimization (Rakhlin et al., 2011). As a result, our algorithm achieves the optimal sample
complexities for decentralized stochastic bilevel optimization, establishing the benchmark.

6 Numerical Experiments

In this section, we validate the practical performance of our algorithm in two examples: hyper-
parameter optimization and policy evaluation in Markov Decision Processes (MDP), on artificially
constructed decentralized ring networks. We run the experiments on a single server desktop computer.
We provide the details of federate hyper-parameter optimization and federated policy evaluation.

Hyper-parameter Optimization We consider federated hyper-parameter optimization (2) for a
handwriting recognition problem over the Australia handwriting dataset (Chang and Lin, 2011)
consisting of data points (wi, zi), where wi 2 R14 is the feature and zi 2 {0, 1} indicates whether
this data point belongs to category “1” or not. In our experiment, we consider the sigmoid loss
function that li(z) = 1/(1 + exp(�z)) and a strongly convex regularizer R(x, y) =

Pd
i=1

xi
2 kyik

2.
We consider a ring network of K agents where each agent i preserves two neighbors (i�1) and (i+1)
and conducts a gossip communication strategy with adjacency matrix wi,j =

1
3 for j 2 {i�1, i, i+1}.

Before testing Alg. 1, we first randomly split the dataset for training and validation, and then allocates
both training and validation dataset over K agents. We then run Algorithm 1 for T = 20000 iterations,
with b = 200, ↵t = 0.1

p
K/T , and �t = �t = 10

p
K/T .

To provide a benchmark for comparison, we implement a baseline algorithm Decentralized Bilevel
Stochastic Approximation (DBSA) algorithm, a naive extension of the double-loop BSA algorithm
(Ghadimi and Wang, 2018) in the decentralized setting, formally stated in Section E.1 of the supple-
mentary materials.

We first consider K = 5, test Alg. 1 for 5⇥ 104 iterations, and compare its performance with DBSA.
We report the validation loss against total samples in Figure 2 and observe that DSBO exhibits
better performance than DBSA. In particular, Further, we observe that our algorithm outperforms the
baseline algorithm DBSA in that it requires fewer samples for DSBO to achieve a certain accuracy.

To investigate the efficiency of Alg. 1 to the network structure, we test Alg. 1 over K = 5, 10, 20,
and report the details of training and validation loss in Figure 2. Further, comparing the performances
of Alg. 1 over different agents K = 5, 10, 20, we observe that Alg. 1 converges faster when using
more agents. This observation suggests that Alg. 1 exhibits a speed-up effect when using more agents.
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Figure 2: (a) Empirical averaged training loss against total samples for DSBO K = 5, 10, 20 and
DBSA K = 5. (b) Empirical averaged validation loss against iteration for DSBO K = 5, 10, 20. All
figures are generated through 10 independent simulations over the Australia handwriting dataset.

We provide additional experiments on networks of larger size (K = 100) and various topologies
(fully-connected and randomly-connected) in Section E.1 of the supplement.

Distributed Policy Evaluation for Reinforcement Learning We consider a multi-agent MDP
problem that arises in reinforcement learning. Let S be the state space. For any state s 2 S , we denote
the value function by V (s). We consider the scenario where the value function can be approximated
by a linear function such that V (s) = �>

s x
⇤, where �s 2 Rm is a feature and x⇤

2 Rm is an unknown
parameter. To obtain the optimal x⇤, we consider the following regularized Bellman minimization
problem

min
x

F (x) = 1
2|S|

X

s2S

�
�>
s x� Es0 [r(s, s

0) + ��>
s0x | s]

�2
+ �kxk2

2 ,

where r(s, s0) is the random reward incurred by a transition s to s0, � 2 (0, 1) is the discount factor,
� is the coefficient for the l2-regularizer, and the expectation is taken over all random transitions from
s to s0.

In the federated learning setting, we consider a ring network of K agents. Here each agent k has access
to its own data with a heterogeneous random reward function rk and can only communicate with its
two neighbors k + 1 and k � 1. We denote by y⇤s (x) = �>

s x� Es0 [
1
K

P
k2K rk(s, s0) + ��>

s0x | s]
where rk(s, s0) is the random reward function for agent k. The above problem can then be recast as a
bilevel optimization problem

min
x2Rd

f(x, y?(x)) = 1
2|S|

X

s2S
(y⇤s (x))

2 + �kxk2

2 .

As pointed out by (Wang et al., 2016), the above problem is �-strongly convex.

In our experiments, we simulate an environment with state space |S| = 100 and set the regularizer
parameter � = 1. We test the performance of Alg.1 over three cases with K = 5, 10, 20 and conduct
10 independent simulations for each K. We implement a baseline double-loop algorithm DSGD that
first estimates y⇤s (xt) with t samples in iteration t and then optimizes the solution xt. We defer the
implementation details of the environment and above algorithms to Section E.2 of the supplement.

We first consider K = 5, run Alg. 1 for 104 iterations and compare its performance with DSGD.
We plot the empirical averaged mean square error kx̄t � x⇤

k
2 against total samples generated by all

agents in Figure 2. This empirical result suggests that Alg. 1 outperforms the DSGD. To investigate
the convergence rate of DSBO, we compare the performance of DSBO over all three scenarios with
K = 5, 10, 20 and plot the trajectory of the averaged log-error log(kx̄t � x⇤

k
2) averaged, with one a

straight line of slope -1 provided for comparison. We observe that for all four cases, the slopes of
log(kx̄t � x⇤

k
2) are close to -1, matching our theoretical claim in Theorem 5.3 that Alg. 1 converges

at a rate of O(1/t) for strongly convex objectives.

In the above experiment, we also note that Alg. 1 converges faster when using more agents. To further
demonstrate the linear speedup effect, we compute the total generated samples for finding an ✏-optimal
solution kx̄t � x⇤

k
2
 ✏ and plot the 75% confidence region of the log-sample against the number

of agents K = 5, 10, 20 in Figure 3. We observe that it takes a roughly same number of samples to
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Figure 3: (a) Empirical averaged MSEkx̄t � x⇤
k
2 against total samples for DSBO K = 5, 10, 20

and DSGD K = 5. (b) Empirical averaged log-MSE log(kx̄t � x⇤
k
2) against log-iteration log(t) for

DSBO K = 5, 10, 20. (c) 75% confidence region of log- total samples for achieving kx̄t � x⇤
k
2
 ✏,

with varying network sizes K = 5, 10, 20. All figures are generated through 10 independent
simulations.

find a 10�6-optimal solution despite different number of agents being involved. This suggests that
the per-node sample complexity decreases linearly with K, validating the linear speedup claim in
Theorem 5.3. We provide additional numerical results for other optimality level ✏ in Section E.2 of
the supplementary material to further demonstrate the linear speedup effect.

7 Conclusion

In this paper, we propose a novel formulation for decentralized stochastic bilevel optimization. We
develop a gossip-based stochastic approximation scheme to solve this problem in various settings.
We show that our proposed algorithm finds a stationary point at a rate of O( 1p

KT
) for nonconvex

objectives, and converges to the optimal solution at a rate of O( 1
KT ) for PL objectives. Numerical

experiments on hyper-parameter optimization and multi-agent federated MDP demonstrate the
practical efficiency of our algorithm, exhibit the effect of speed-up in a decentralized setting, and
validate our theoretical claims. In our future work, we wish to develop algorithms that achieve lower
iteration complexities and enjoy lower communication costs.
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