
A Appendix

A.1 Program induction with dreamcoder

DreamCoder was run in two modes for the reported analyses: with and without library learning.
All parameters matched between the two modes except those exclusive to library learning: 4 itera-
tions of DreamCoder, 10 CPUs, 2 minute timeout for program enumeration, 2 minute timeout for
recognition model training, and 50% of tasks used to train the recognition model were randomly
sampled “dreams”. The recognition model was trained to predict a unigram distribution over DSL
primitives and library components. No task batching was enabled, so every task was solved at
every iteration. Parameters only relevant to library learning were: structure penalty λ = 1.5, refac-
toring steps n = 1.

A.2 Details of training and hyperparameter tuning of meta-reinforcement learning agents

Meta-learning can be considered as a bi-level optimization problem where there is an outer-loop
of learning in which the model learns a useful inductive bias across different tasks of the same
task distribution and an inner-loop of learning which takes that inductive bias and rapidly learns
or adapts within a specific task [1]. In recurrent-based meta-reinforcement learning architectures
like ours, in which tasks are fed sequentially to the model, the outer loop is explicitly implemented
as a reinforcement learning algorithm that updates the weights across tasks and the inner loop is
implicitly implemented in the activation dynamics of the recurrent network [2, 3] which employs
fast adaptation within a specific task. See Ortega et al. [4] for a formal explanation of this adap-
tation. In our case, the LSTM weights are updated in the outer loop across different grids to give
the LSTM a useful prior learned from patterns or abstractions seen across different grid tasks. The
activation dynamics within the LSTM utilizes this prior, along with the history of observations
within the episode, to implement a fast algorithm to solve the current grid task for the inner loop.

This work’s agent’s encoder processes the board through a convolutional layer and a fully con-
nected layer and passes this output into the LSTM along with the previous action and reward (see
Fig. 3B). To implement the grounding mechanism (Fig.6A), we take the encoder’s output, and pass
it through two additional fully connected layers to predict the task embedding. All agents were
trained using Proximal Policy Optimization (PPO; Schulman et al. 5 using the Stable Baselines
package Raffin et al. 6) for one million episodes. We performed a hyperparameter sweep separately
for the agents without the grounding loss (i.e. original agents) and with the grounding loss, since
we have to tune the new ctask weight on the grounding loss jointly. We performed a hyperparam-
eter sweep for: batch size, n_steps (number of steps to run in an environment update), gamma,
learning rate, learning rate schedule (constant or linear), clip range, number of epochs, the λ for
Generalized Advantage Estimate (GAE λ), max grad norm, activation function, value loss coeffi-
cient, entropy coefficient, and grounding loss coefficient for agents with the grounding loss. The
hyperparameter sweep was done by sampling from the space of hyperparameter using the Tree-
Structured Parzen Estimator [7]. We evaluated 200 samples of hyperparameters from the space
for all agents. Both grounding and non-grounding agents used the same hyperparameter spaces to
sweep over. We initially did a separate hyperparameter sweep for different grounding agents, but
we found in initial experiments that they all reached similar hyperparameter values and training
reward after the search. Hyperparameters were evaluated by training on 100,000 episodes and
looking at the training reward. The environments used during test time (Fig.3B and Fig. 6) were
completely held-out during this process. We trained each grounding agent (and the non-grounding
agent) fifteen times and ran their policy fifteen times for each held-out test task distribution (GSP
and control tasks). Training was run on a university cluster using NVIDIA P100 GPUs with 16 GB
of memory.

A.3 Gibbs Sampling with People Experiment

To generate a task distribution of boards directly from humans we used Gibbs Sampling with Peo-
ple, or GSP (see Harrison et al. 8 and a similar task for binary sequences in Griffiths et al. 9). GSP
samples internal prior distributions by putting humans “in the loop” of a Gibbs sampler. In our
case, the stimulus space consisted of the space of 4× 4 boards, and each of the 16 stimulus dimen-
sions corresponded to the binary color of each tile, namely, red or blue. One of these dimensions
was masked out (i.e. “greyed”) for the prediction task. Each GSP trial consisted of a prediction

1

Table 1: Hyperparameters Chosen

Agent No Grounding Loss Grounding Loss
batch_size 16 256
n_steps 2048 8
gamma 0.9 0.9
learning_rate 0.000516501 0.000376021
lr_schedule linear linear
ent_coef 1.3907E-05 1.45674E-06
clip_range 0.3 0.3
n_epochs 10 5
gae_lambda 0.8 0.95
max_grad_norm 2 0.6
vf_coef 0.000914363 0.016291309
activation_fn relu tanh
grounding_coef 0 0.494866282

Figure 1: Reward Curves of Different Grounding Agents

task of predicting what color the single masked square is in the grid conditional on the colors of
all other squares on the grid. Once a decision is made, the resulting stimulus is passed on to a new
participant who repeats the task with another masked square and so on. A sample is generated
once a full sweep through the all sixteen squares is completed, similar to the standard procedure of
Gibbs sampling. In each trial, participants were presented with a board with one of its tiles covered
(indicated by a white tile) as well as the following prompt “what should be the underlying color of
the covered white tile such that the board is described by a very simple rule?”. They then delivered
their answer by clicking on a button that corresponded to their color of choice. Overall, we ran
100 GSP chains in parallel for 15 sweeps each, and chains were initialized with randomly sampled
boards. The order in which tiles were masked out within each sweep was also randomized across
chains to avoid potential biases.

Participants were recruited on Amazon Mechanical Turk (AMT) and a total of 272 participants
completed the study. To ensure that participants did not suffer from any color perception defi-
ciencies, we ran the Ishihara color blindness test [10] as a pre-screening task. This also helped in
screening out automated scripts (“bots”) that masquerade as participants [11].

A.4 Human Language Description Experiment

We took 500 of the highest probability GSP boards and randomly assigned subjects 25 of the
boards such that each subject gets a unique set of boards and each board gets 9-12 descriptions
each from different people. The prompt people were given was: “Your goal is to describe this pat-
tern of red squares in words. Be as detailed as possible. Someone should be able to reproduce the
entire board given your description. You may be rewarded based on how detailed your description
is.“ We used Prolific (http://www.prolific.co) for anonymous subject recruiting. Participants
were paid at a rate of approximately $12 per hour (with a total study cost of $1844) and were fully
anonymized through the whole process. All text data focused on just the board stimuli and did not
include any personally-identifiable content. The experiment contained writing about artificial grid
stimuli, so potential risks to subjects were very minimal. Subjects gave their consent through a

2

di
ff.

 f
ro

m
 c

on
tr

ol
 (

z-
sc

or
e)

w
hi

te
 t

ile
s

(z
-s

co
re

)

P
rim

iti
ve

P
ro

gr
am

Li
br

ar
y

P
ro

gr
am

R
L

B
as

el
in

e

H
um

an

D
N

N
 C

on
tr

ol

1.0

0.5

0.0

-0.5

0.0

-0.5

-1.0

-1.5

-2.0
Machine Generated (Control)
Human Generated (GSP)

Figure 2: Grounding results for control experiment where we co-train with DNN representations
from the hidden layer of a network trained to predict randomly held-out tiles of the GSP boards.
Although co-training with this network does improve performance on human and machine gener-
ated boards relative to the original agent, it does not selectively improve performance on human-
generated boards and impair performance on machine-generated boards like co-training with the
DreamCoder recognition model does.

standard consent form at the start of the experiment (where they had to confirm that they agree and
give their consent).

A.5 DNN Co-training Control Experiment

For the program results, we co-trained the RL agent with representations from the recognition
DNN model used in DreamCoder that proposes programs given a board. The recognition model’s
architectural modifications, training objective, and data distribution play a critical role in develop-
ing useful representations that can be distinguished from a more generic DNN trained on the GSP
boards. The DreamCoder DNN’s architecture is built to specifically predict a probability distri-
bution over the current routines in the library (this includes high-level routines added to the DSL
during library learning). The recognition model is trained to predict the most likely programs for
a given grid by balancing a program’s description length and its score (its training objective). In
addition, the data it trains on comes both from the GSP task dataset, as well as from grids that are
randomly sampled from the current DSL/grammar (“dreams”: its training data).

As a comparison point, we provide results (Fig. A2) when cotraining with representations from
a "generic DNN" that is trained on a more standard task on the GSP boards (predicting randomly
held-out tiles). The results show that the selective performance improvement on human-generated
tasks vs machine-generated tasks is unique to cotraining representations from the DreamCoder
DNN as opposed to a standard DNN. The recognition model’s specific architectural modifications,
training objective, and data distribution used for program induction within the DreamCoder frame-
work play a critical role in developing representations that can be distinguished from those of a
more ‘vanilla’ DNN and can serve as a distinct and effective cotraining target that can better instill
human inductive biases.

A.6 Broader Impact Statement

This work aims to guide artificial agents through human-like behavior. One way in which this work
achieves this goal is by co-training with human-generated language descriptions. Although all
language data collected in this study was anonymized and devoid of personally-identifiable infor-
mation, a larger discussion is to be had in scaling this approach up while respecting the privacy

3

and anonymity of people’s data. Should an approach like ours be massively scaled, a conversation
about careful checks on data privacy must be had in order to prevent leakage of private information
in downstream agent behaviors.

Current artificial systems are not built explicitly to exhibit human-like qualities or behavior. Our
work on explicitly training in human-like biases into artificial systems’ behavior can be greatly
beneficial in terms of being more easily interpretable by humans and being more easily amenable
to human-machine collaborations.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for informa-
tion on how to answer these questions. For each question, change the default [TODO] to [Yes]
, [No] , or [N/A] . You are strongly encouraged to include a justification to your answer, either
by referencing the appropriate section of your paper or providing a brief inline description. For
example:

• Did you include the license to the code and datasets? [Yes]
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note
that the Checklist section does not count towards the page limit. In your paper, please delete
this instructions block and only keep the Checklist section heading above along with the ques-
tions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the pa-

per’s contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See towards the end of the

discussion section.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

section A.4 of the Appendix.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] We discuss potential negative societal impacts in section A.4 and human
data collection in section A.3.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Code will be
available in the supplementary material for reviewers and is publicly available here.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See section A.2 of appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See figure captions and section A.2 of appendix.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] See section A.2 of ap-
pendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new as-
sets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the authors

responsible for creating the task paradigm that we used.

4

https://github.com/sreejank/language_and_programs

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL?

[Yes] Data and code are available here.
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [Yes] See section A.3 on human data collection of appendix.
(e) Did you discuss whether the data you are using/curating contains personally identifi-

able information or offensive content? [Yes] ee section A.3 on human data collection
of appendix.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] See section A.3 on human data collection of appendix.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [Yes] See section A.3 on human data collec-
tion of appendix.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] See section A.3 on human data collection
of appendix.

References
[1] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in

neural networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

[2] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi
Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement
learn. arXiv preprint arXiv:1611.05763, 2016.

[3] Matthew Botvinick, Sam Ritter, Jane X Wang, Zeb Kurth-Nelson, Charles Blundell, and
Demis Hassabis. Reinforcement learning, fast and slow. Trends in cognitive sciences, 23(5):
408–422, 2019.

[4] Pedro A Ortega, Jane X Wang, Mark Rowland, Tim Genewein, Zeb Kurth-Nelson, Razvan
Pascanu, Nicolas Heess, Joel Veness, Alex Pritzel, Pablo Sprechmann, et al. Meta-learning of
sequential strategies. arXiv preprint arXiv:1905.03030, 2019.

[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[6] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and
Noah Dormann. Stable baselines3, 2019.

[7] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. Advances in neural information processing systems, 24, 2011.

[8] Peter Harrison, Raja Marjieh, Federico Adolfi, Pol van Rijn, Manuel Anglada-Tort, Ofer
Tchernichovski, Pauline Larrouy-Maestri, and Nori Jacoby. Gibbs sampling with people.
Advances in Neural Information Processing Systems, 33:10659–10671, 2020.

[9] Thomas L Griffiths, Dylan Daniels, Joseph L Austerweil, and Joshua B Tenenbaum. Subjective
randomness as statistical inference. Cognitive psychology, 103:85–109, 2018.

[10] JH Clark. The ishihara test for color blindness. American Journal of Physiological Optics,
1924.

[11] Michael Chmielewski and Sarah C Kucker. An mturk crisis? shifts in data quality and the
impact on study results. Social Psychological and Personality Science, 11(4):464–473, 2020.

5

https://github.com/sreejank/language_and_programs

	Appendix
	Program induction with dreamcoder
	Details of training and hyperparameter tuning of meta-reinforcement learning agents
	Gibbs Sampling with People Experiment
	Human Language Description Experiment
	DNN Co-training Control Experiment
	Broader Impact Statement

