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Abstract

Deep neural networks have great representation power, but typically require large
numbers of training examples. This motivates deep active learning methods that
can significantly reduce the amount of labeled training data. Empirical successes of
deep active learning have been recently reported in the literature, however, rigorous
label complexity guarantees of deep active learning have remained elusive. This
constitutes a significant gap between theory and practice. This paper tackles this
gap by providing the first near-optimal label complexity guarantees for deep active
learning. The key insight is to study deep active learning from the nonparametric
classification perspective. Under standard low noise conditions, we show that active
learning with neural networks can provably achieve the minimax label complexity,
up to disagreement coefficient and other logarithmic terms. When equipped with an
abstention option, we further develop an efficient deep active learning algorithm that
achieves polylog( 1

ε ) label complexity, without any low noise assumptions. We also
provide extensions of our results beyond the commonly studied Sobolev/Hölder
spaces and develop label complexity guarantees for learning in Radon BV2 spaces,
which have recently been proposed as natural function spaces associated with
neural networks.

1 Introduction

We study active learning with neural network hypothesis classes, sometimes known as deep active
learning. Active learning agent proceeds by selecting the most informative data points to label: The
goal of active learning is to achieve the same accuracy achievable by passive learning, but with much
fewer label queries (Settles, 2009; Hanneke, 2014). When the hypothesis class is a set of neural
networks, the learner further benefits from the representation power of deep neural networks, which
has driven the successes of passive learning in the past decade (Krizhevsky et al., 2012; LeCun
et al., 2015). With these added benefits, deep active learning has become a popular research area,
with empirical successes observed in many recent papers (Sener and Savarese, 2018; Ash et al.,
2019; Citovsky et al., 2021; Ash et al., 2021; Kothawade et al., 2021; Emam et al., 2021; Ren et al.,
2021). However, due to the difficulty of analyzing a set of neural networks, rigorous label complexity
guarantees for deep active learning have remained largely elusive.

To the best of our knowledge, there are only two papers (Karzand and Nowak, 2020; Wang et al.,
2021) that have made the attempts at theoretically quantifying active learning gains with neural
networks. While insightful views are provided, these two works have their own limitations. The
guarantees provided in Karzand and Nowak (2020) only work in the 1d case where data points are
uniformly sampled from [0, 1] and labeled by a well-seperated piece-wise constant function in a
noise-free way (i.e., without any labeling noise). Wang et al. (2021) study deep active learning by
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linearizing the neural network at its random initialization and then analyzing it as a linear function;
moreover, as the authors agree, their error bounds and label complexity guarantees can in fact be
vacuous in certain cases. Thus, it’s fair to say that up to now researchers have not identified cases
where deep active learning are provably near minimax optimal (or even with provably non-vacuous
guarantees), which constitutes a significant gap between theory and practice.

In this paper, we bridge this gap by providing the first near-optimal label complexity guarantees
for deep active learning. We obtain insights from the nonparametric setting where the conditional
probability (of taking a positive label) is assumed to be a smooth function (Tsybakov, 2004; Audibert
and Tsybakov, 2007). Previous nonparametric active learning algorithms proceed by partitioning
the action space into exponentially many sub-regions (e.g., partitioning the unit cube [0, 1]d into ε−d

sub-cubes each with volume εd), and then conducting local mean (or some higher-order statistics)
estimation within each sub-region (Castro and Nowak, 2008; Minsker, 2012; Locatelli et al., 2017,
2018; Shekhar et al., 2021; Kpotufe et al., 2021). We show that, with an appropriately chosen set of
neural networks that globally approximates the smooth regression function, one can in fact recover
the minimax label complexity for active learning, up to disagreement coefficient (Hanneke, 2007,
2014) and other logarithmic factors. Our results are established by (i) identifying the “right tools” to
study neural networks (ranging from approximation results (Yarotsky, 2017, 2018) to complexity
measure of neural networks (Bartlett et al., 2019)), and (ii) developing novel extensions of agnostic
active learning algorithms (Balcan et al., 2006; Hanneke, 2007, 2014) to work with a set of neural
networks.

While matching the minimax label complexity in nonparametric active learning is existing, such
minimax results scale as Θ(poly(1

ε )) (Castro and Nowak, 2008; Locatelli et al., 2017) and do not
resemble what is practically observed in deep active learning: A fairly accurate neural network
classifier can be obtained by training with only a few labeled data points. Inspired by recent results
in parametric active learning with abstention (Puchkin and Zhivotovskiy, 2021; Zhu and Nowak,
2022), we develop an oracle-efficient algorithm showing that deep active learning provably achieves
polylog( 1

ε ) label complexity when equipped with an abstention option (Chow, 1970). Our algorithm
not only achieves an exponential saving in label complexity (without any low noise assumptions), but
is also highly practical: In real-world scenarios such as medical imaging, it makes more sense for
the classifier to abstain from making prediction on hard examples (e.g., those that are close to the
boundary), and ask medical experts to make the judgments.

1.1 Problem setting

Let X denote the instance space and Y denote the label space. We focus on the binary classification
problem where Y := {+1,−1}. The joint distribution over X × Y is denoted as DXY . We use
DX to denote the marginal distribution over the instance space X , and use DY|x to denote the
conditional distribution of Y with respect to any x ∈ X . We consider the standard active learning
setup where x ∼ DX but its label y ∼ DY|x is only observed after issuing a label query. We
define η(x) := Py∼DY|x(y = +1) as the conditional probability of taking a positive label. The
Bayes optimal classifier h? can thus be expressed as h?(x) := sign(2η(x)− 1). For any classifier
h : X → Y , its (standard) error is calculated as err(h) := P(x,y)∼DXY (h(x) 6= y); and its (standard)
excess error is defined as excess(h) := err(h)− err(h?). Our goal is to learn an accurate classifier
with a small number of label querying.

The nonparametric setting. We consider the nonparametric setting where the conditional prob-
ability η is characterized by a smooth function. Fix any α ∈ N+, the Sobolev norm of a function
f : X → R is defined as ‖f‖Wα,∞ := maxα,|α|≤α ess supx∈X |Dαf(x)|, where α = (α1, . . . , αd),
|α| = ∑d

i=1 αi and Dαf denotes the standard α-th weak derivative of f . The unit ball in the Sobolev
space is defined asWα,∞

1 (X ) := {f : ‖f‖Wα,∞ ≤ 1}. Following the convention of nonparametric
active learning (Castro and Nowak, 2008; Minsker, 2012; Locatelli et al., 2017, 2018; Shekhar et al.,
2021; Kpotufe et al., 2021), we assume X = [0, 1]d and η ∈ Wα,∞

1 (X ) (except in Section 4).

Neural Networks. We consider feedforward neural networks with Rectified Linear Unit (ReLU)
activation function, which is defined as ReLU(x) := max{x, 0}. Each neural network fdnn : X → R
consists of several input units (which corresponds to the covariates of x ∈ X ), one output unit
(which corresponds to the prediction in R), and multiple hidden computational units. Each hidden

2



computational unit takes inputs {xi}Ni=1 (which are outputs from previous layers) and perform the
computation ReLU(

∑N
i=1 wixi + b) with adjustable parameters {wi}Ni=1 and b; the output unit

performs the same operation, but without the ReLU nonlinearity. We use W to denote the total
number of parameters of a neural network, and L to denote the depth of the neural network.

1.2 Contributions and paper organization

Neural networks are known to be universal approximators (Cybenko, 1989; Hornik, 1991). In this
paper, we argue that, in both passive and active regimes, the universal approximatability makes neural
networks “universal classifiers” for classification problems: With an appropriately chosen set of
neural networks, one can recover known minimax rates (up to disagreement coefficients in the active
setting) in the rich nonparametric regimes.1 We provide informal statements of our main results in
the sequel, with detailed statements and associated definitions/algorithms deferred to later sections.

In Section 2, we analyze the label complexity of deep active learning under the standard Tsybakov
noise condition with smoothness parameter β ≥ 0 (Tsybakov, 2004). LetHdnn be an appropriately
chosen set of neural network classifiers and denote θHdnn

(ε) as the disagreement coefficient (Hanneke,
2007, 2014) at level ε. We develop the following label complexity guarantees for deep active learning.

Theorem 1 (Informal). There exists an algorithm that returns a neural network classifier ĥ ∈ Hdnn

with excess error Õ(ε) after querying Õ(θHdnn
(ε

β
1+β ) · ε− d+2α

α+αβ ) labels.

The label complexity presented in Theorem 1 matches the active learning lower bound Ω(ε−
d+2α
α+αβ )

(Locatelli et al., 2017) up to the dependence on the disagreement coefficient (and other logarithmic
factors). Since θHdnn

(ε) ≤ ε−1 by definition, the label complexity presented in Theorem 1 is never
worse than the passive learning rates Θ̃(ε−

d+2α+αβ
α+αβ ) (Audibert and Tsybakov, 2007). We also discover

conditions under which the disagreement coefficient with respect to a set of neural network classifiers
can be properly bounded, i.e., θHdnn

(ε) = o(ε−1) (implying strict improvement over passive learning)
and θHdnn

(ε) = o(1) (implying matching active learning lower bound).

In Section 3, we develop label complexity guarantees for deep active learning when an additional
abstention option is allowed (Chow, 1970; Puchkin and Zhivotovskiy, 2021; Zhu and Nowak, 2022).
Suppose a cost (e.g. 0.49) that is marginally smaller than random guessing (which has expected cost
0.5) is incurred whenever the classifier abstains from making a predication, we develop the following
label complexity guarantees for deep active learning.

Theorem 2 (Informal). There exists an efficient algorithm that constructs a neural network classifier
ĥdnn with Chow’s excess error Õ(ε) after querying polylog(1

ε ) labels.

The above polylog( 1
ε ) label complexity bound is achieved without any low noise assumptions.

Such exponential label savings theoretically justify the great empirical performances of deep active
learning observed in practice (e.g., in Sener and Savarese (2018)): It suffices to label a few data
points to achieve a high accuracy level. Moreover, apart from an initialization step, our algorithm
(Algorithm 4) developed for Theorem 2 can be efficiently implemented in Õ(ε−1) time, given a
convex loss regression oracle over an appropriately chosen set of neural networks; in practice, the
regression oracle can be approximated by running stochastic gradient descent.

Technical contributions. Besides identifying the “right tools” (ranging from approximation results
(Yarotsky, 2017, 2018) to complexity analyses (Bartlett et al., 2019)) to analyze deep active learning,
our theoretical guarantees are empowered by novel extensions of active learning algorithms under
neural network approximations. In particular, we deal with approximation error in active learning
under Tsybakov noise, and identify conditions that greatly relax the approximation requirement in
the learning with abstention setup; we also analyze the disagreement coefficient, both classifier-based
and value function-based, with a set of neural networks.These analyses together lead to our main
results for deep active learning (e.g., Theorem 1 and Theorem 2). More generally, we establish a

1As a byproduct, our results also provide a new perspective on nonparametric active learning through the
lens of neural network approximations. Nonparametric active learning was previously tackled through space
partitioning and local estimations over exponentially many sub-regions (Castro and Nowak, 2008; Minsker,
2012; Locatelli et al., 2017, 2018; Shekhar et al., 2021; Kpotufe et al., 2021).
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bridge between approximation theory and active learning; we provide these general guarantees in
Appendix B (under Tsybakov noise) and Appendix D (with the abstention option), which can be
of independent interests. Benefited from these generic algorithms and guarantees, in Section 4, we
extend our results into learning smooth functions in the Radon BV2 space (Ongie et al., 2020; Parhi
and Nowak, 2021, 2022a,b; Unser, 2022), which is recently proposed as a natural space to analyze
neural networks.

1.3 Related work

Active learning concerns about learning accurate classifiers without extensive human labeling. One of
the earliest work of active learning dates back to the CAL algorithm proposed by Cohn et al. (1994),
which set the cornerstone for disagreement-based active learning. Since then, a long line of work
have been developed, either directly working with a set classifier (Balcan et al., 2006; Hanneke, 2007;
Dasgupta et al., 2007; Beygelzimer et al., 2009, 2010; Huang et al., 2015; Cortes et al., 2019) or work
with a set of regression functions (Krishnamurthy et al., 2017, 2019). These work mainly focus on the
parametric regime (e.g., learning with a set of linear classifiers), and their label complexities rely on
the boundedness of the so-called disagreement coefficient (Hanneke, 2007, 2014; Friedman, 2009).
Active learning in the nonparametric regime has been analyzed in Castro and Nowak (2008); Minsker
(2012); Locatelli et al. (2017, 2018); Kpotufe et al. (2021). These algorithms rely on partitioning of
the input space X ⊆ [0, 1]d into exponentially (in dimension) many small cubes, and then conduct
local mean (or some higher-order statistics) estimation within each small cube.

It is well known that, in the worst case, active learning exhibits no label complexity gains over the
passive counterpart (Kääriäinen, 2006). To bypass these worst-case scenarios, active learning has been
popularly analyzed under the so-called Tsybakov low noise conditions (Tsybakov, 2004). Under Tsy-
bakov noise conditions, active learning has been shown to be strictly superior than passive learning in
terms of label complexity (Castro and Nowak, 2008; Locatelli et al., 2017). Besides analyzing active
learning under favorable low noise assumptions, more recently, researchers consider active learning
with an abstention option and analyze its label complexity under Chow’s error (Chow, 1970). In par-
ticular, Puchkin and Zhivotovskiy (2021); Zhu and Nowak (2022) develop active learning algorithms
with polylog( 1

ε ) label complexity when analyzed under Chow’s excess error. Shekhar et al. (2021)
study nonparametric active learning under a different notion of the Chow’s excess error, and propose al-
gorithms with poly(1

ε ) label complexity; their algorithms follow similar procedures of those partition-
based nonparametric active learning algorithms (e.g., Minsker (2012); Locatelli et al. (2017)).

Inspired by the success of deep learning in the passive regime, active learning with neural networks
has been extensively explored in recent years (Sener and Savarese, 2018; Ash et al., 2019; Citovsky
et al., 2021; Ash et al., 2021; Kothawade et al., 2021; Emam et al., 2021; Ren et al., 2021). Great
empirical performances are observed in these papers, however, rigorous label complexity guarantees
have largely remains elusive (except in Karzand and Nowak (2020); Wang et al. (2021), with
limitations discussed before). We bridge the gap between practice and theory by providing the
first near-optimal label complexity guarantees for deep active learning. Our results are built upon
approximation results of deep neural networks (Yarotsky, 2017, 2018; Parhi and Nowak, 2022b)
and VC/pseudo dimension analyses of neural networks with given structures (Bartlett et al., 2019).

2 Label complexity of deep active learning

We analyze the label complexity of deep active learning in this section. We first introduce the
Tsybakov noise condition in Section 2.1, and then identify the “right tools” to analyze classification
problems with neural network classifiers in Section 2.2 (where we also provide passive learning
guarantees). We establish our main active learning guarantees in Section 2.3.

2.1 Tsybakov noise condition

It is well known that active learning exhibits no label complexity gains over the passive counterpart
without additional low noise assumptions (Kääriäinen, 2006). We next introduce the Tsybokov low
noise condition (Tsybakov, 2004), which has been extensively analyzed in active learning literature.
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Definition 1 (Tsybakov noise). A distribution DXY satisfies the Tsybakov noise condition with
parameter β ≥ 0 and a universal constant c ≥ 1 if, ∀τ > 0,

Px∼DX (|η(x)− 1/2| ≤ τ) ≤ c τβ .

The case with β = 0 corresponds to the general case without any low noise conditions, where no
active learning algorithm can outperform the passive counterpart (Audibert and Tsybakov, 2007;
Locatelli et al., 2017). We use P(α, β) to denote the set of distributions satisfying: (i) the smoothness
conditions introduced in Section 1.1 with parameter α > 0; and (ii) the Tsybakov low noise condition
(i.e., Definition 1) with parameter β ≥ 0. We assume DXY ∈ P(α, β) in the rest of Section 2.
As in Castro and Nowak (2008); Hanneke (2014), we assume the knowledge of noise/smoothness
parameters.

2.2 Approximation and expressiveness of neural networks

Neural networks are known to be universal approximators (Cybenko, 1989; Hornik, 1991): For any
continuous function g : X → R and any error tolerance κ > 0, there exists a large enough neural
network fdnn such that ‖fdnn − g‖∞ := supx∈X |fdnn(x)− g(x)| ≤ κ. Recently, non-asympototic
approximation rates by ReLU neural networks have been developed for smooth functions in the
Sobolev space, which we restate in the following.2

Theorem 3 (Yarotsky (2017)). Fix any κ > 0. For any f? = η ∈ Wα,∞
1 ([0, 1]d), there exists a

neural network fdnn withW = O(κ−
d
α log 1

κ ) total number of parameters arranged in L = O(log 1
κ )

layers such that ‖fdnn − f?‖∞ ≤ κ.

The architecture of the neural network fdnn appearing in the above theorem only depends on the
smooth function spaceWα,∞

1 ([0, 1]d), but otherwise is independent of the true regression function f?;
also see Yarotsky (2017) for details. Let Fdnn denote the set of neural network regression functions
with the same architecture. We construct a set of neural network classifiers by thresholding the
regression function at 1

2 , i.e.,Hdnn := {hf := sign(2f(x)−1) : f ∈ Fdnn}. The next result concerns
about the expressiveness of the neural network classifiers, in terms of a well-known complexity
measure: the VC dimension (Vapnik and Chervonenkis, 1971).
Theorem 4 (Bartlett et al. (2019)). Let Hdnn be a set of neural network classifiers of the same
architecture and with W parameters arranged in L layers. We then have

Ω(WL log(W/L)) ≤ VCdim(Hdnn) ≤ O(WL log(W )).

With these tools, we can construct a set of neural network classifiers Hdnn such that (i) the best
in-class classifier ȟ ∈ Hdnn has small excess error, and (ii)Hdnn has a well-controlled VC dimension
that is proportional to smooth/noise parameters. More specifically, we have the following proposition.

Proposition 1. Suppose DXY ∈ P(α, β). One can construct a set of neural network classifierHdnn

such that the following two properties hold simultaneously:

inf
h∈Hdnn

err(h)− err(h?) = O(ε) and VCdim(Hdnn) = Õ(ε−
d

α(1+β) ).

With the approximation results obtained above, to learn a classifier with O(ε) excess error, one only
needs to focus on a set of neural networksHdnn with a well-controlled VC dimension. As a warm-up,
we first analyze the label complexity of such procedure in the passive regime (with fast rates).
Theorem 5. Suppose DXY ∈ P(α, β). Fix any ε, δ > 0. Let Hdnn be the set of neural network

classifiers constructed in Proposition 1. With n = Õ(ε−
d+2α+αβ
α(1+β) ) i.i.d. sampled points, with

probability at least 1− δ, the empirical risk minimizer ĥ ∈ Hdnn achieves excess error O(ε).

The label complexity results obtained in Theorem 5 matches, up to logarithmic factors, the passive
learning lower bound Ω(ε−

d+2α+αβ
α(1+β) ) established in Audibert and Tsybakov (2007), indicating that

our proposed learning procedure with a set of neural networks is near minimax optimal.3

2As in Yarotsky (2017), we hide constants that are potentially α-dependent and d-dependent into the Big-Oh
notation.

3Similar passive learning guarantees have been developed with different tools and analyses, e.g., see results
in Kim et al. (2021).
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2.3 Deep active learning and guarantees

The passive learning procedure presented in the previous section treats every data point equally, i.e., it
requests the label of every data point. Active learning reduces the label complexity by only querying
labels of data points that are “more important”. We present deep active learning results in this section.
Our algorithm (Algorithm 1) is inspired by RobustCAL (Balcan et al., 2006; Hanneke, 2007, 2014)
and the seminal CAL algorithm (Cohn et al., 1994); we call our algorithm NeuralCAL to emphasize
that it works with a set of neural networks.

For any accuracy level ε > 0, NeuralCAL first initialize a set of neural network classifiers H0 :=
Hdnn such that (i) the best in-class classifier ȟ := arg minh∈Hdnn

err(h) has excess error at mostO(ε),

and (ii) the VC dimension ofHdnn is upper bounded by Õ(ε−
d

α(1+β) ) (see Section 2.2 for more details).
NeuralCAL then runs in epochs of geometrically increasing lengths. At the beginning of epoch m,
based on previously labeled data points, NeuralCAL updates a set of active classifierHm such that,
with high probability, the best classifier ȟ remains uneliminated. Within each epoch m, NeuralCAL
only queries the label y of a data point x if it lies in the region of disagreement with respect to the
current active set of classifierHm, i.e., DIS(Hm) := {x ∈ X : ∃h1, h2 ∈ Hm s.t. h1(x) 6= h2(x)}.
NeuralCAL returns any classifier ĥ ∈ Hm that remains uneliminated after M − 1 epoch.

Algorithm 1 NeuralCAL
Input: Accuracy level ε ∈ (0, 1), confidence level δ ∈ (0, 1).

1: LetHdnn be a set of neural networks classifiers constructed in Proposition 1.
2: Define T := ε−

2+β
1+β ·VCdim(Hdnn), M := dlog2 T e, τm := 2m for m ≥ 1 and τ0 := 0.

3: Define ρm := O

((
VCdim(Hdnn)·log(τm−1)·log(M/δ)

τm−1

) 1+β
2+β

)
for m ≥ 2 and ρ1 := 1.

4: Define R̂m(h) :=
∑τm−1

t=1 Qt1(h(xt) 6= yt) with the convention that
∑0
t=1 . . . = 0.

5: InitializeH0 := Hdnn.
6: for epoch m = 1, 2, . . . ,M do
7: Update active setHm :=

{
h ∈ Hm−1 : R̂m(h) ≤ infh∈Hm−1 R̂m(h) + τm−1 · ρm

}

8: if epoch m = M then
9: Return any classifier ĥ ∈ HM .

10: for time t = τm−1 + 1, . . . , τm do
11: Observe xt ∼ DX . Set Qt := 1(xt ∈ DIS(Hm)).
12: if Qt = 1 then
13: Query the label yt of xt.

Since NeuralCAL only queries labels of data points lying in the region of disagreement, its label
complexity should intuitively be related to how fast the region of disagreement shrinks. More
formally, the rate of collapse of the (probability measure of) region of disagreement is captured by
the (classifier-based) disagreement coefficient (Hanneke, 2007, 2014), which we introduce next.
Definition 2 (Classifier-based disagreement coefficient). For any ε0 and classifier h ∈ H, the
classifier-based disagreement coefficient of h is defined as

θH,h(ε0) := sup
ε>ε0

Px∼DX (DIS(BH(h, ε)))

ε
∨ 1,

where BH(h, ε) := {g ∈ H : P(x ∈ X : g(x) 6= h(x)) ≤ ε}. We also define θH(ε0) :=
suph∈H θH,h(ε0).

The guarantees of NeuralCAL follows from a more general analysis of RobustCAL under approxi-
mation. In particular, to achieve fast rates (under Tsybakov noise), previous analysis of RobustCAL
requires that the Bayes classifier is in the class (or a Bernstein condition for every h ∈ H) (Hanneke,
2014). These requirements are stronger compared to what we have in the case with neural network
approximations. Our analysis extends the understanding of RobustCAL under approximation. We
defer such general analysis to Appendix B, and present the following guarantees.
Theorem 6. Suppose DXY ∈ P(α, β). Fix any ε, δ > 0. With probability at least 1− δ, Algorithm 1
returns a classifier ĥ ∈ Hdnn with excess error Õ(ε) after querying Õ(θHdnn

(ε
β

1+β ) · ε− d+2α
α+αβ ) labels.
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We next discuss in detail the label complexity of deep active learning proved in Theorem 6.

• Ignoring the dependence on disagreement coefficient, the label complexity appearing in Theorem 6
matches, up to logarithmic factors, the lower bound Ω(ε−

d+2α
α+αβ ) for active learning (Locatelli

et al., 2017). At the same time, the label complexity appearing in Theorem 6 is never worse than
the passive counterpart (i.e., Θ̃(ε−

d+2α+αβ
α(1+β) ) since θHdnn

(ε
β

1+β ) ≤ ε− β
1+β .

• We also identify cases when θHdnn
(ε

β
1+β ) = o(ε−

β
1+β ), indicating strict improvement over passive

learning (e.g., when DX is supported on countably many data points), and when θHdnn
(ε

β
1+β ) =

O(1), indicating matching the minimax active lower bound (e.g., when DXY satisfies conditions
such as decomposibility defined in Definition 4. See Appendix C.2 for detailed discussion).4

Our algorithm and theorems lead to the following results, which could benefit both deep active
learning and nonparametric learning communities.

• Near minimax optimal label complexity for deep active learning. While empirical successes
of deep active learning have been observed, rigorous label complexity analysis remains elusive
except for two attempts made in Karzand and Nowak (2020); Wang et al. (2021). The guarantees
provided in Karzand and Nowak (2020) only work in very special cases (i.e., data uniformly
sampled from [0, 1] and labeled by well-separated piece-constant functions in a noise-free way).
Wang et al. (2021) study deep active learning in the NTK regime by linearizing the neural network
at its random initialization and analyzing it as a linear function; moreover, as the authors agree,
their error bounds and label complexity guarantees are vacuous in certain cases. On the other
hand, our guarantees are minimax optimal, up to disagreement coefficient and other logarithmic
factors, which bridge the gap between theory and practice in deep active learning.

• New perspective on nonparametric learning. Nonparametric learning of smooth functions have
been mainly approached by partitioning-based methods (Tsybakov, 2004; Audibert and Tsybakov,
2007; Castro and Nowak, 2008; Minsker, 2012; Locatelli et al., 2017, 2018; Kpotufe et al., 2021) :
Partition the unit cube [0, 1]d into exponentially (in dimension) many sub-cubes and conduct local
mean estimation within each sub-cube (which additionally requires a strictly stronger membership
querying oracle). Our results show that, in both passive and active settings, one can learn globally
with a set of neural networks and achieve near minimax optimal label complexities.

3 Deep active learning with abstention: Exponential speedups

While the theoretical guarantees provided in Section 2 are near minimax optimal, the label complexity
scales as poly( 1

ε ), which doesn’t match the great empirical performance observed in deep active learn-
ing. In this section, we fill in this gap by leveraging the idea of abstention and provide a deep active
learning algorithm that achieves exponential label savings. We introduce the concepts of abstention
and Chow’s excess error in Section 3.1, and provide our label complexity guarantees in Section 3.2.

3.1 Active learning without low noise conditions

The previous section analyzes active learning under Tsybakov noise, which has been extensively
studied in the literature since Castro and Nowak (2008). More recently, promising results are observed
in active learning under Chow’s excess error, but otherwise without any low noise assumption (Puchkin
and Zhivotovskiy, 2021; Zhu and Nowak, 2022). We introduce this setting in the following.

Abstention and Chow’s error (Chow, 1970). We consider classifier of the form ĥ : X → Y∪{⊥}
where ⊥ denotes the action of abstention. For any fixed 0 < γ < 1

2 , the Chow’s error is defined as

errγ(ĥ) := P(x,y)∼DXY (ĥ(x) 6= y, ĥ(x) 6= ⊥) + (1/2− γ) · P(x,y)∼DXY (ĥ(x) = ⊥).

4We remark that disagreement coefficient is usually bounded/analyzed under additional assumptions onDXY ,
even for simple cases with a set of linear classifiers (Friedman, 2009; Hanneke, 2014). The label complexity
guarantees of partition-based nonparametric active algorithms (e.g., Castro and Nowak (2008)) do not depend on
the disagreement coefficient, but they are analyzed under stronger assumptions, e.g., they require the strictly
stronger membership querying oracle. See Wang (2011) for a discussion. We left a comprehensive analysis of
the disagreement coefficient with a set of neural network classifiers for future work.
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The parameter γ can be chosen as a small constant, e.g., γ = 0.01, to avoid excessive abstention: The
price of abstention is only marginally smaller than random guess (which incurs cost 0.5). The Chow’s
excess error is then defined as excessγ(ĥ) := errγ(ĥ)− err(h?) (Puchkin and Zhivotovskiy, 2021).

At a high level, analyzing with Chow’s excess error allows slackness in predications of hard examples
(e.g., data points whose η(x) is close to 1

2 ) by leveraging the power of abstention. Puchkin and
Zhivotovskiy (2021); Zhu and Nowak (2022) show that polylog(1

ε ) is always achievable in the
parametric settings. We generalize their results to the nonparametric setting and analyze active
learning with a set of neural networks.

3.2 Exponential speedups with abstention

In this section, we work with a set of neural network regression functions Fdnn : X → [0, 1] (that
approximates η) and then construct classifiers h : X → Y ∪ {⊥} with an additional abstention
action. To work with a set of regression functions Fdnn, we analyze its “complexity” from the
lenses of pseudo dimension Pdim(Fdnn) (Pollard, 1984; Haussler, 1989, 1995) and value function
disagreement coefficient θval

Fdnn
(ι) (for some ι > 0) (Foster et al., 2020). We defer detailed definitions

of these complexity measures to Appendix D.1.

Algorithm 2 NeuralCAL++
Input: Accuracy level ε ∈ (0, 1), confidence level δ ∈ (0, 1), abstention parameter γ ∈ (0, 1/2).

1: Let Fdnn be a set of neural network regression functions obtained by (i) applying Theorem 3
with an appropriate approximation level κ (which satisfies 1

κ = poly( 1
γ ) polylog( 1

ε γ )), and
(ii) applying a preprocessing step on the set of neural networks obtained from step (i). See
Appendix E for details.

2: Define T :=
θval
Fdnn

(γ/4)·Pdim(Fdnn)

ε γ , M := dlog2 T e, and Cδ := O(Pdim(Fdnn) · log(T/δ)).
3: Define τm := 2m for m ≥ 1, τ0 := 0, and βm := 3(M −m+ 1)Cδ .
4: Define R̂m(f) :=

∑τm−1

t=1 Qt(f̂(xt)− yt)2 with the convention that
∑0
t=1 . . . = 0.

5: for epoch m = 1, 2, . . . ,M do
6: Get f̂m := arg minf∈Fdnn

∑τm−1

t=1 Qt(f(xt)− yt)2.

7: (Implicitely) Construct active set Fm :=
{
f ∈ Fdnn : R̂m(f) ≤ R̂m(f̂m) + βm

}
.

8: Construct classifier ĥm : X → {+1,−1,⊥} as

ĥm(x) :=

{
⊥, if [lcb(x;Fm)− γ

4 , ucb(x;Fm) + γ
4 ] ⊆

[
1
2 − γ, 1

2 + γ
]
;

sign(2f̂m(x)− 1), o.w.

and query function gm(x) := 1
(

1
2 ∈

(
lcb(x;Fm)− γ

4 , ucb(x;Fm) + γ
4

))
· 1(ĥm(x) 6= ⊥).

9: if epoch m = M then
10: Return classifier ĥM .
11: for time t = τm−1 + 1, . . . , τm do
12: Observe xt ∼ DX . Set Qt := gm(xt).
13: if Qt = 1 then
14: Query the label yt of xt.

We now present NeuralCAL++ (Algorithm 2), a deep active learning algorithm that leverages
the power of abstention. NeuralCAL++ first initialize a set of set of neural network regression
functions Fdnn by applying a preprocessing step on top of the set of regression functions obtained
from Theorem 3 with a carefully chosen approximation level κ. The preprocessing step mainly
contains two actions: (1) clipping fdnn : X → R into f̌dnn : X → [0, 1] (since we obviously have
η(x) ∈ [0, 1]); and (2) filtering out fdnn ∈ Fdnn that are clearly not a good approximation of η. After
initialization, NeuralCAL++ runs in epochs of geometrically increasing lengths. At the beginning
of epoch m ∈ [M ], NeuralCAL++ (implicitly) constructs an active set of regression functions Fm
that are “close” to the true conditional probability η. For any x ∼ DX , NeuralCAL++ constructs
a lower bound lcb(x;Fm) := inff∈Fm f(x) and an upper bound ucb(x;Fm) := supf∈Fm f(x)
as a confidence range of η(x) (based on Fm). An empirical classifier with an abstention option
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ĥm : X → {+1,−1,⊥} and a query function gm : X → {0, 1} are then constructed based on the
confidence range (and the abstention parameter γ). For any time step twithin epochm, NeuralCAL++
queries the label of the observed data point xt if and only if Qt := gm(xt) = 1. NeuralCAL++
returns ĥM as the learned classifier.

NeuralCAL++ is adapted from the algorithm developed in Zhu and Nowak (2022), but with novel
extensions. In particular, the algorithm presented in Zhu and Nowak (2022) requires the existence
of a f ∈ F such that ‖f − η‖∞ ≤ ε (to achieve ε Chow’s excess error), Such an approximation
requirement directly leads to poly( 1

ε ) label complexity in the nonparametric setting, which is
unacceptable. The initialization step of NeuralCAL++ (line 1) is carefully chosen to ensure that
Pdim(Fdnn), θ

val
Fdnn

(γ4 ) = poly( 1
γ ) · polylog( 1

ε ); together with a sharper analysis of concentration
results, these conditions help us derive the following deep active learning guarantees (also see
Appendix D for a more general guarantee).
Theorem 7. Fix any ε, δ, γ > 0. With probability at least 1− δ, Algorithm 2 (with an appropriate
initialization at line 1) returns a classifier ĥ with Chow’s excess error Õ(ε) after querying poly( 1

γ ) ·
polylog( 1

ε δ ) labels.

We discuss two important aspects of Algorithm 2/Theorem 7 in the following, i.e., exponential
savings and computational efficiency. We defer more detailed discussions to Appendix F.1.

• Exponential speedups. Theorem 7 shows that, equipped with an abstention option, deep active
learning enjoys polylog( 1

ε ) label complexity. This provides theoretical justifications for great
empirical results of deep active learning observed in practice. Moreover, Algorithm 2 outputs
a classifier that abstains properly, i.e., it abstains only if abstention is the optimal choice; such
a property further implies polylog( 1

ε ) label complexity under standard excess error and Massart
noise (Massart and Nédélec, 2006).

• Computational efficiency. Suppose one can efficiently implement a (weighted) square
loss regression oracle over the initialized set of neural networks Fdnn: Given any set S
of weighted examples (w, x, y) ∈ R+ × X × Y as input, the regression oracle outputs
f̂dnn := arg minf∈Fdnn

∑
(w,x,y)∈S w(f(x)− y)

2 .5 Algorithm 2 can then be efficiently
implemented with poly( 1

γ ) · 1
ε oracle calls.

While the label complexity obtained in Theorem 7 has desired dependence on polylog( 1
ε ), its

dependence on γ can be of order γ− poly(d). Our next result shows that, however, such dependence is
unavoidable even in the case of learning a single ReLU function.
Theorem 8. Fix any γ ∈ (0, 1/8). For any accuracy level ε sufficiently small, there exists a problem
instance such that (1) η ∈ W1,∞

1 (X ) and is of the form η(x) := ReLU(〈w, x〉+ a) + b; and (2) for
any active learning algorithm, it takes at least γ−Ω(d) labels to identify an ε-optimal classifier, for
either standard excess error or Chow’s excess error (with parameter γ).

4 Extensions

Previous results are developed in the commonly studied Sobolev/Hölder spaces. Our techniques,
however, are generic and can be adapted to other function spaces, given neural network approximation
results. In this section, we provide extensions of our results to the Radon BV2 space, which was
recently proposed as the natural function space associated with ReLU neural networks (Ongie et al.,
2020; Parhi and Nowak, 2021, 2022a,b; Unser, 2022).6

The Radon BV2 space. The Radon BV2 unit ball over domain X is defined as R BV2
1(X ) :=

{f : ‖f‖R BV2(X ) ≤ 1}, where ‖f‖R BV2(X ) denotes the Radon BV2 norm of f over domain X .7

Following Parhi and Nowak (2022b), we assume X = {x ∈ Rd : ‖x‖2 ≤ 1} and η ∈ R BV2
1(X ).

5In practice, one can approximate this oracle by running stochastic gradient descent.
6Other extensions are also possible given neural network approximation results, e.g., recent results established

in Lu et al. (2021).
7We provide more mathematical backgrounds and associated definitions in Appendix G.

9



The Radon BV2 space naturally contains neural networks of the form fdnn(x) =
∑K
k=1 vi ·

ReLU(w>i x + bi). On the contrary, such fdnn doesn’t lie in any Sobolev space of order α ≥ 2
(since fdnn doesn’t have second order weak derivative). Thus, if η takes the form of the afore-
mentioned neural network (e.g., η = fdnn), approximating η up to κ from a Sobolev perspective
requires Õ(κ−d) total parameters, which suffers from the curse of dimensionality. On the other side,
however, such bad dependence on dimensionality goes away when approximating from a Radon BV2

perspective, as shown in the following theorem.

Theorem 9 (Parhi and Nowak (2022b)). Fix any κ > 0. For any f? ∈ R BV2
1(X ), there exists a

one-hidden layer neural network fdnn of width K = O(κ−
2d
d+3 ) such that ‖f? − fdnn‖∞ ≤ κ.

Equipped with this approximation result, we provide the active learning guarantees for learning a
smooth function within the Radon BV2 unit ball as follows.
Theorem 10. Suppose η ∈ R BV2

1(X ) and the Tsybakov noise condition is satisfied with parameter
β ≥ 0. Fix any ε, δ > 0. There exists an algorithm such that, with probability at least 1− δ, it learns
a classifier ĥ ∈ Hdnn with excess error Õ(ε) after querying Õ(θHdnn

(ε
β

1+β ) · ε−
4d+6

(1+β)(d+3) ) labels.

Compared to the label complexity obtained in Theorem 6, the label complexity obtained in the
above theorem doesn’t suffer from the curse of dimensionality: For d large enough, the above label
complexity scales as ε−O(1) yet label complexity in Theorem 6 scales as ε−O(d). Active learning
guarantees under Chow’s excess error in the Radon BV2 space are similar to results presented in
Theorem 7, and are thus deferred to Appendix G.

5 Discussion

We provide the first near-optimal deep active learning guarantees, under both standard excess error
and Chow’s excess error. Our results are powered by generic algorithms and analyses developed for
active learning that bridge approximation guarantees into label complexity guarantees. We outline
some natural directions for future research below.

• Disagreement coefficients for neural networks. While we have provided some results regarding
the disagreement coefficients for neural networks, we believe a comprehensive investigation on
this topic is needed. For instance, can we discover more general settings where the classifier-based
disagreement coefficient can be upper bounded by O(1)? It is also interesting to explore sharper
analyses on the value function disagreement coefficient.

• Adaptivity in deep active learning. Our current results are established with the knowledge of
some problem-dependent parameters, e.g., the smoothness parameters regarding the function
spaces and the noise levels. It will be interesting to see if one can develop algorithms that can
automatically adapt to unknown parameters, e.g., by leveraging techniques developed in Locatelli
et al. (2017, 2018).
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