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A Theoretical analysis

In this section we give further details on the theoretical results presented in Section 4. We start by
giving the exact conditions needed for Theorem 4.2 to hold.

A.1 Full conditions for Theorem 4.2

In order to state Theorem 4.2, we define θ0 as the unique value such that f̄(θ) ≤ f̄(θ0) ∀θ ∈ Θ,
where f̄(·) = Ep(fn(·)). If we split f(x; θ) into two parts,

f(x, θ) = f (1)(x, θ) + f (2)(x, θ),

then we require that there exist constants ϵ0, L0, L1, L2 > 0 such that:

• A1: For all x, f(x, θ) is differentiable and strongly concave in θ with constant L0.
• A2: For all 0 < ϵ < ϵ0 and ∥θ − θ0∥ ≤ ϵ,

|f (2)(x, θ)| ≤ R(x)r(ϵ)∥θ − θ0∥2,

where R(x), r(ϵ) are positive functions, r is monotone increasing, limϵ→0 r(ϵ) = 0, and

4r(ϵ0) [Ep(R(X)) + 1] ≤ L0, Ep(R(X)2) <∞.

• A3: For all ∥θ − θ0∥ ≤ ϵ0,

f̄(θ0)− f̄(θ) ≤ L1∥θ − θ0∥2, Varp(f(X; θ0)− f(X; θ)) ≤ L2∥θ − θ0∥2.

• A4: inf∥θ−θ0∥≤ϵ0 π0(θ) > 0, and supθ π0(θ) <∞.

Here, the functions R(x), r(ϵ) control the size of the “discarded part” f (2) locally around θ0; these
should be small to ensure that f(x, θ) ≈ f (1)(x, θ) locally. Note also that when r(ϵ) ≍ ϵ as ϵ→ 0,
the result of Theorem 4.2 holds even if D is increasing such that D = o(logN).

A.2 Discussion on conditions of Theorems 4.1 to 4.3

In order for Theorem 4.1 to hold, we require that S0 is finite dimensional (say with dimension d),
where S0 is the vector space of functions on Θ spanned by {f(x, ·);x ∈ X}. For this to hold, we
need to find a set of d basis functions for the space, even though X may be potentially uncountable.
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There are two settings in which we can clearly see that this holds. The first of these is when
f(xn, θ) = log p(xn|θ) and we can write the likelihood as a d-dimensional exponential family. The
standard exponential family form gives us the desired basis for S0. The second setting is when X is
in fact a finite set. If x ∈ X can only take d values, then we can easily find a basis as before.

In the exponential family case, we can gain some more intuition on the behaviour of J(δ). Consider
a full rank, d-dimensional exponential family with fn(θ) = log p(xn|θ). We can write

(f1 − f̄)(θ) = A(θ)T (B(X1)− Ep(B(X1)))−K(X1),

where X1 is the first observed data point (corresponding to the potential f1), B(·) is the (full rank)
sufficient statistic and A(θ) is the natural parameter. K(X1) arises from the log-base density, and is
a function of X only. If there exists µ such that RA :=

∫
A(θ)A(θ)T dµ(θ) has rank d, then

J(δ)
δN→∞−−−−−→ inf

a∈S0;∥a∥=1
Pr
(
⟨a, f1 − f̄⟩L2(µ) > 0

)
> 0.

We can see this as follows. Firstly, J(δ) is monotonically increasing as δN → ∞. Hence, we can
interchange the limit with the infimum to see that

lim
δN→∞

J(δ) = inf
a∈S0;∥a∥=1

Pr

(
⟨a, f1 − f̄⟩L2(µ) > lim

δN→∞

2rµ√
Nδ

)
,

and limδN→∞
2rµ√
Nδ

= 0. To see that this limit is strictly positive, note that the rank condition means
that S0 = span (A1(θ), . . . , Ad(θ)). Thus, a ∈ S0 ⇐⇒ a = V TA for some V . Choosing µ such
that Eµ(A) = 0,

⟨a, f1 − f̄⟩L2(µ) = V T

(∫
A(θ)A(θ)T dµ(θ)

)
(B(X1)− Ep(B(X1)))− V TEµ(A)K(X1)

= V TRA(B(X1)− Ep(B(X1))) using our choice of µ.

Thus

Pr
(
⟨a, f1 − f̄⟩L2(µ) ≥ 0

)
= Pr

(
V TRA(B(X1)− Ep(B(X1))) ≥ 0

)
.

Furthermore, ∥a∥ = 1 ⇐⇒ V TRAV = 1. Since Ep

(
V TRA(B(X1)− Ep(B(X1)))

)
= 0,

Pr
(
V TRA(B(X1)− Ep(B(X1))) ≥ 0

)
= 0

⇐⇒ V TRA(B(X1)− Ep(B(X1))) = 0 almost surely.

However, this is impossible since both RA and B are of full rank. Thus, ∀V , Pr(V ) :=
Pr
(
V TRA(B(X1)− Ep(B(X1))) ≥ 0

)
> 0. Now, if ∃Vn such that Pr(Vn) → 0, the fact that

we are on the compact space ∥a∥ = 1 means that there exists a subsequence Vnk
→ V∗ with

V T
∗ RAV∗ = 1. We would then have

V T
nk
RA(B(X1)− Ep(B(X1)))

d−→ V T
∗ RA(B(X1)− Ep(B(X1))),

where d−→ indicates convergence in distribution. Then at the limit, Pr(V∗) = 0, which we have shown
is impossible. Thus, we do indeed have that

lim
δN→∞

J(δ) = inf Pr(V ) > 0.

In this case, we can set δ = ω(1/N), such that with probability ≥ 1− ω(1/N), we indeed have that
minw∈WN

KL(πw||π) = 0 for M ≳ d logN .

In order for Theorem 4.2 to hold, we require additional smoothness and concavity conditions on
f(x, θ). The smoothness conditions are satisfied if, for example, f(x; θ) is C3 in θ, as discussed
in Section 4. For example, we can consider a logistic regression problem. Here, we are not in the
exponential family setting. However, the logistic regression log-likelihood is concave and C3 in θ.
Hence we can find f (1) and f (2) via a second-order Taylor expansion. Finally, A4 is satisfied by any
prior that is strictly positive and finite, such as the Cauchy prior we use in our logistic regression
experiment.
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However, the logistic log-likelihood is concave but not strictly concave. Thus A1 does not hold, and
our logistic regression experiment is not covered by the assumptions of Theorem 4.2. It is therefore
reassuring to see that our method obtains favourable empirical results in this experiment, and we
conjecture that the strong concavity condition is sufficient but not necessary. We leave the relaxing of
this condition to future work.

In the statement of Theorem 4.3, we suppose that ∃ ϵ ∈ [0, 1) and δ ≥ 0 such that for all w ∈W

∥ (G(w)+τI)−1
H(w)(1−w⋆)∥ ≤ ϵ∥w−w⋆∥+δ, (18)

where w⋆ = projW⋆(w) and W ⋆ ⊆ argminw∈W KL(πw||π).
If we can show that

∀θ ∈ Θ,

M∑
m=1

w⋆
mfm(θ) =

∑
n

fn(θ), (19)

then

H(w)(1− w⋆) = Covw
[
g, fT (1− w⋆)

]
= 0. (20)

and so thus the assumption will hold with ϵ = δ = 0.

Theorem 4.1 tells us that πw⋆(θ) = π(θ) for almost all values of θ. This implies that Eq. (19) also
holds for almost all values of θ, and so Eq. (20) holds. This means that the assumption in Theorem 4.3
does in fact hold with ϵ = δ = 0.

Thus, in any setting where the conditions of Theorem 4.1 hold (such as the two discussed above),
Theorem 4.3 holds as well. This reasoning also gives us some intuition into how we can generalise
this. Intuitively, we require that

∀θ ∈ Θ,

M∑
m=1

w⋆
mfm(θ) ≈

∑
n

fn(θ), (21)

so that H(w)(1− w⋆) ≈ 0. Essentially, we see that the better the quality of the optimal coreset w⋆,
the tighter the bound we can find for Eq. (18). We conjecture that if ∃ ξ such that we can uniformly
bound

sup
θ∈Θ

∣∣∣∣∣
M∑

m=1

w⋆
mfm(θ)−

∑
n

fn(θ)

∣∣∣∣∣ ≤ ξ,

then we can find ϵ and δ such that Eq. (18) holds. We leave the theoretical examination of this claim
for future work.

B Proofs

In this section we give the full proofs of Theorems 4.1 to 4.3. The proofs of Theorems 4.1 and 4.2 are
quite technical, so in each case we give start by giving a roadmap of the proof ideas.

B.1 Proof of Theorem 4.1

Roadmap.

1. We start the proof by giving in Eq. (22) a sufficient condition for our desired result to hold.
Proving that this condition holds will be the target of the rest of the proof.

2. The next step is to show that this is indeed a sufficient condition. We do this by deriving the
form for the KL divergence found in Eq. (25).

3. We then proceed by lower bounding the probability that the quantity on the right side of
Eq. (22) lies within a ball of a given radius.

4. Next, we find a lower bound for the probability that we can get the left hand side of Eq. (22)
to be equal to any value within the same ball as above.
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5. If the events introduced in 2. and 3. hold, then we will be able to satisfy our sufficient
condition Eq. (22). This implies that our desired result will also hold. Thus we can combine
the two relevant lower bounds detailed in 2. and 3. to get a lower bound on the probability
of our desired result holding.

6. Obtaining this final lower bound requires setting a condition on the coreset size M . We
conclude the proof by rewriting condition to make it more interpretable.

Proof. We select M indices uniformly at random from [N ], corresponding to M potential functions
fn(θ). Because the functions fn are generated i.i.d. and the indices chosen uniformly, the particular
indices selected are unimportant for this proof; without loss of generality, we can assume the M
selected indices are n = 1, . . . ,M .

Let µ be a probability measure such that S0 is the associated d dimensional subspace of L2(µ) and let
M ∈ [N ]. In what follows, we assume that all norms and inner products are the weightedL2(µ) norms
and inner products respectively, unless otherwise stated. Further, define f̃N (·) =

∑N
n=1[fn−f̄ ](·)/N .

We show below that with probability ≥ 1− δ, there exists v1, · · · , vM ≥ 0 with
∑

m vm = 1 such
that

M∑
m=1

(fm − f̄)vm = f̃N . (22)

For such a v = (v1, · · · , vM ), set w(v) = Nv (with the implicit convention that w(v)j = 0 for
j > M ). Our goal is to prove that KL(πw(v)||π) = 0. We do this by starting with the form for the
KL divergence derived in the proof of Lemma 3 of Campbell and Beronov [1]:

KL(πw(v)||π) = 2(1− w)TE [C(γ(T ))] (1− w),

where:

• T ∼ Beta(1, 2).

• γ(t) is the path defined by γ(t) = (1 − t)w + t1 for t ∈ [0, 1], coreset weights w ∈ RN ,
and unit vector 1 ∈ RN .

• C(w) is the Fisher information metric Amari [2, p. 33,34] defined as:

C(w) := Covw[f, f ]

:= Eπw

[
(f − Eπw(f)) (f − Eπw(f))

T
]
.

Note that we have changed the notation from that of [1], to avoid a clash of notation with
terms already defined in our work.

Using the fact that the p.d.f. of a Beta(1, 2) distribution is given by fT (t) = 2(1− t), we therefore
have that

KL(πw(v)||π) = 2(1− w)TE [C(γ(T ))] (1− w)

= 2(1− w)T
[∫ 1

0

2(1− t)C(γ(t))dt

]
(1− w)

= 4(1− w)T
[∫ 1

0

(1− t)Ew(v),t

[(
f − Eπγ(t)

(f)
) (
f − Eπγ(t)

(f)
)T ]

dt

]
(1− w)

= 4

∫ 1

0

(1− t)Ew(v),t

[(
(1− w)T

(
f − Ew(v),t(f)

))2]
dt

= 4

∫ 1

0

(1− t)Ew(v),t

( N∑
n=1

(1− wn)fn − Ew(v),t

(
N∑

n=1

(1− wn)fn

))2
dt,

(23)
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where Ew(v),t refers to taking expectations under πw(v),t, the coreset posterior corresponding to
weights given by γ(t) = (1− t)w + t1. To be explicit:

πw(v),t(θ) =
et

∑
n fn+(1−t)

∑
n wnfnπ0(θ)∫

Θ
et

∑
n fn+(1−t)

∑
n wnfnπ0(θ)dθ

. (24)

We now note that

1

N

N∑
n=1

(1− wn)fn =
1

N

N∑
n=1

(fn − f̄)− 1

N

N∑
n=1

wn(fn − f̄)

= f̃N −
∑
m

vm(fm − f̄),

and thus

t
∑
n

fn + (1− t)
∑
n

wnfn =
∑
n

fn − (1− t)
∑
n

(1− wn)fn

=
∑
n

fn −N(1− t)[f̃N −
∑
m

vm(fm − f̄)].

Thus, by substituting into Eq. (24), we can write Ew(v),t as

Ew(v),t(h) =

∫
Θ
h(θ)e

∑
n fn(θ)−N(1−t)[f̃N−

∑
m vm(fm−f̄)]π0(θ)dθ∫

Θ
e
∑

n fn(θ)−N(1−t)[f̃N−
∑

m vm(fm−f̄)]π0(θ)dθ
.

Furthermore, substituting into Eq. (23) we have that

KL(πw(v)||π) = 4N2

∫ 1

0

(1− t)Ew(v),t

(f̃N −
∑
m

vm(fm − f̄)− Ew(v),t

(
f̃N −

∑
m

vm(fm − f̄)

))2
dt.

(25)

If we can prove Eq. (22), Eq. (25) would give us that KL(πw(v)||π) = 0, thus completing the proof. Of
course, if Eq. (22) holds then the coreset and full posteriors are equal, so KL(πw(v)||π) is trivially zero.
However, targeting this expression will also be helpful for the proof of Theorem 4.2. In order to prove
Eq. (22), first note that ∥f̃N∥2L2(µ) = Eµ

((
1
N

∑
n(fn − f̄)

)2)
. With r2µ = Eµ

(
Ep([f1 − f̄ ]2)

)
, we

have by Markov’s inequality that, ∀δ > 0,

Pr

(
∥f̃N∥2L2(µ) >

r2µ
Nδ

)
≤ Nδ

r2µ
Ep

Eµ

( 1

N

∑
n

(fn − f̄)

)2


=
Nδ

r2µ
Eµ

Ep

( 1

N

∑
n

(fn − f̄)

)2


=
Nδ

r2µ

1

N
Eµ

(
Ep

((
f1 − f̄

)2))
= δ.

Defining tN :=
√
r2µ/(Nδ), it is enough to show that, with high probability, the convex hull of

(fm − f̄),m ∈ [M ] contains the ball (in S0) centered at 0 and with radius tN . As in the theorem
statement, S0 is defined as the vector space of functions on Θ spanned by {f(x, ·);x ∈ X}. This
boils down to bounding

Pr

(
inf

a∈S0;∥a∥=1
max
m

⟨a, fm − f̄⟩ ≥ tN

)
from below, since on this event any point in the ball will be in the convex hull. Moreover, with
probability ≥ 1− δ, f̃N is in this ball, and thus Eq. (22) will be satisfied.
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From Böröczky and Wintsche [3, Corollary 1.2], the unit sphere in d-dimensions can be covered by

Nd(ϕ) =
C · cosϕ
sind ϕ

d
3
2 log(1 + d cos2 ϕ) ≤ ϕ−dAd, Ad = Ce

d
2 d

3
2 log(1 + d)

balls of radius 0 < ϕ ≤ arccos 1√
d+1

and centers (ai)i≤Nd(ϕ), where C is a universal constant.
Moreover,

inf
a∈S0;∥a∥=1

max
m

⟨a, fm − f̄⟩ ≥ min
i≤Nd(ϕ)

max
m=1,...,M

[
⟨ai, fm − f̄⟩ − ϕ∥fm − f̄∥L2(µ)

]
.

For any a ∈ S0 with ∥a∥ = 1, by independence,

Pr

(
max

m=1,...,M

[
⟨a, fm − f̄⟩ − ϕ∥fm − f̄∥L2(µ)

]
≤ tN

)
= Pr

(
⟨a, f1 − f̄⟩ − ϕ∥f1 − f̄∥L2(µ) ≤ tN

)M
.

For any ϕ > 0, if ⟨a, f1 − f̄⟩ ≤ 2tN and ∥f1 − f̄∥L2(µ) > tN/ϕ then necessarily ⟨a, f1 − f̄⟩ −
ϕ∥f1 − f̄∥L2(µ) ≤ tN by the triangle inequality. Thus, we can use the union bound to bound the
above by

Pr
(
⟨a, f1 − f̄⟩ − ϕ∥f1 − f̄∥L2(µ) ≤ tN

)M ≤
[
Pr
(
⟨a, f1 − f̄⟩ ≤ 2tN

)
+ Pr

(
∥f1 − f̄∥ > tN/ϕ

)]M
We have, for all a ∈ S0 with ∥a∥ = 1,

Pr(⟨a, f1 − f̄⟩ > 2tN ) ≥ inf
a∈S0;∥a∥=1

Pr
(
⟨a, f1 − f̄⟩ > 2tN

)
= J(δ),

using the definition of J(δ) as given in the statement of Theorem 4.1. Thus,
Pr(⟨a, f1 − f̄⟩ ≤ 2tN ) ≤ 1− J(δ).

Furthermore, choosing ϕ2 = J(δ)/(4Nδ), we have by Chebychev’s inequality that
Pr
(
∥f1 − f̄∥ > tN/ϕ

)
≤ J(δ)/2.

Finally we obtain, using the union bound and the above results, that

Pr

(
inf

a∈S0;∥a∥=1
max
m

⟨a, fm − f̄⟩ < tN

)
≤ Pr

(
min

i≤Nd(ϕ)
max

m=1,...,M

[
⟨ai, fm − f̄⟩ − ϕ∥fm − f̄∥L2(µ)

]
< tN

)
≤

∑
i≤Nd(ϕ)

Pr

(
max

m=1,...,M

[
⟨ai, fm − f̄⟩ − ϕ∥fm − f̄∥L2(µ)

]
< tN

)
≤

∑
i≤Nd(ϕ)

[
Pr
(
⟨ai, f1 − f̄⟩ ≤ 2tN

)
+ Pr

(
∥f1 − f̄∥ > tN/ϕ

)]M
≤

∑
i≤Nd(ϕ)

(1− J(δ) + J(δ)/2)M

= Nd(ϕ)(1− J(δ)/2)M .

For M such that MJ(δ) ≥ 4 log (Nd(ϕ)), we then have that

Nd(ϕ)(1− J(δ)/2)M ≤ eMJ(δ)/4eM log(1−J(δ)/2)

≤ eMJ(δ)/4e−MJ(δ)/2 = e−MJ(δ)/4.

Using the union bound, we can therefore see that Eq. (22) holds with probability ≥ 1−δ−e−MJ(δ)/4.

Noting that Nd(ϕ) ≤ ϕ−dAd, a sufficient condition on M for this to hold is that

M ≥ 4

J(δ)
log
(
ϕ−dAd

)
=

4

J(δ)
log

((
J(δ)

4Nδ

)−d/2

Ad

)

=
2d

J(δ)

[
logN + log

(
4δ

J(δ)

)
+ log

(
A

2/d
d

)]
≥ 2d

J(δ)

[
logN + log

(
4δ

J(δ)

)
+ C1

]
,
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where C1 is a constant such that C1 ≤ log
(
A

2/d
d

)
. This arrives at the condition on M in the theorem

statement, and thus completes the proof.

B.2 Proof of Theorem 4.2

Roadmap.

1. The goal of this proof is to upper bound Eq. (25). We start by using a substitution to find an
initial upper bound in the form of an integral.

2. Next, we split this integral up into two different terms, which we call Iϵ,1 and Iϵ,2, that
together sum to the full integral as shown in Eq. (26). These terms can both be expressed as
fractions, and share a common denominator. We will then find upper bound for these two
terms separately.

3. We start by targeting Iϵ,1, and in particular upper bounding its numerator. We do this across
a series of steps which provide sequential upper bounds. The aim is to find a final upper
bound which is simpler, while retaining the necessary asymptotic properties. The final upper
bound is given in Eq. (31).

4. As part of this process, we assume that a certain set of events occur, and lower bound
the probability that they do. These probability bounds will be incorporated into the high
probability bound for the final result.

5. Obtaining this upper bound on the numerator of Iϵ,1 also requires the introduction a condition
similar to the one that was central to the proof of Theorem 4.1. This condition is given in
Eq. (27).

6. Next, we lower bound the common denominator of Iϵ,1 and Iϵ,2. This involves a series of
steps similar to those involved in upper bounding the numerator of Iϵ,1, and again we need
to assume a set of events occurring. As before, we lower bound the probabilities that they
do occur, and these probability bounds will be incorporated into the high probability bound
for the final result. The final lower bound is given in Eq. (40).

7. Similarly, we need to introduce two more important conditions that are required for our
lower bound on the denominator to hold. These are given BY Eqs. (32) and (35).

8. So far, we have obtained in Eq. (44) an upper bound on Iϵ,1, which holds with a probability
that we have obtained a lower bound for, under certain specific conditions that we specify in
Eqs. (41) to (43).

9. The next step is to upper bound Iϵ,2, and in particular its numerator (since we have already
lower bounded its denominator). We do this using similar techniques to before, which
introduces additional terms into the final high probability bounds. The final upper bound is
given in Eq. (45).

10. This gives us an upper bound on our original target (i.e. Eq. (25)), which holds with a
probability that we have lower bounded, and assuming that the conditions Eqs. (41) to (43)
hold.

11. The final step is to lower bound the probability that Eqs. (41) to (43) all hold. This can be
done in the same way as in the proof for Theorem 4.1, and we omit the full details.

12. Incorporating the above probability lower bounds, we finally have our desired upper bound
for the original target, and a lower bound for the probability that this bound holds. This is
what we refer to as our “high probability bound” in this roadmap.

Proof. By the concavity and differentiability of f(x, ·) we have f(x; θ) ≤ f(x; θ0) +

∇θf(x; θ0)
T (θ−θ0)−L0∥θ−θ0∥2. Set SN (θ0) =

∑
n ∇θfn(θ0)/

√
N and recall that by definition

of θ0 as the maximizer of f̄ = Ep(f1(θ)), Ep (∇θf1(θ0)) = 0.
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Starting from Eq. (25), we first use the fact that f̃N (·) =
∑N

n=1[fn − f̄ ](·)/N to rewrite

f̃N −
∑
m

vm(fm − f̄)− Ew(v),t[f̃N −
∑
m

vm(fm − f̄)]

=

∑
n fn(θ)− fn(θ0)

N
−
∑
m

vm(fm(θ)− fm(θ0))− Ew(v),t

[∑
n fn(θ)− fn(θ0)

N
−
∑
m

vm(fm(θ)− fm(θ0))

]
.

Substituting this into Eq. (25), and using the fact that, for any random variable X ,
E
[
(X − E(X))

2
]
= E

(
X2
)
− E (X)

2 ≤ E
(
X2
)
, we can upper bound Eq. (25) by

KL(πw(v)||π) ≤ 4N2

∫ 1

0

(1− t)Ew(v),t

( 1

N

∑
n

fn(θ)− fn(θ0)−
∑
m

vm(fm(θ)− fm(θ0))

)2
 dt.

We now decompose, for each t ∈ (0, 1), the integral over Θ in the above into an integral over
Bϵ = {∥θ − θ0∥ ≤ ϵ} and an integral over Bc

ϵ . Here, 0 < ϵ < ϵ0, where ϵ0 is as defined in the
assumptions of Theorem 4.2. We can rewrite Ew(v),t(h) as

Ew(v),t(h) =

∫
Θ
h(θ)e

∑
n fn(θ)−N(1−t)[f̃N (θ)−

∑
m vm(fm(θ)−f̄(θ))]π0(θ)dθ∫

Θ
e
∑

n fn(θ)−N(1−t)[f̃N (θ)−
∑

m vm(fm(θ)−f̄(θ))]π0(θ)dθ

=

∫
Θ
h(θ)et

∑
n fn(θ)+N(1−t)

∑
m vmfm(θ)π0(θ)dθ∫

Θ
et

∑
n fn(θ)+N(1−t)

∑
m vmfm(θ)π0(θ)dθ

× e−t
∑

n fn(θ0)−N(1−t)
∑

m vmfm(θ0)

e−t
∑

n fn(θ0)−N(1−t)
∑

m vmfm(θ0)

=

∫
Θ
h(θ)et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))]π0(θ)dθ∫

Θ
et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))]π0(θ)dθ

=

∫
Bc

ϵ
h(θ)et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))]π0(θ)dθ∫

Θ
et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))]π0(θ)dθ

+

∫
Bϵ
h(θ)et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))]π0(θ)dθ∫

Θ
et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))]π0(θ)dθ

:= Iϵ,1(h) + Iϵ,2(h)

Writing Iϵ,1 = Iϵ,1

((
1
N

∑
n fn(θ)− fn(θ0)−

∑
m vm(fm(θ)− fm(θ0))

)2)
, and similarly for

Iϵ,2, we can thus upper bound Eq. (25) by

KL(πw(v)||π) ≤ 4N2

∫ 1

0

(1− t) (Iϵ,1 + Iϵ,2) dt (26)

We first prove that the integral Iϵ,1 over Bc
ϵ is small. Using the concavity bound for fn, and recalling

that
∑

m vm = 1, we have that

t
∑
n

(fn(θ)− fn(θ0)) +N(1− t)
∑
m

vm(fm(θ)− fm(θ0))

≤ t
∑
n

(
∇θfn(θ0)

T (θ − θ0)− L0∥θ − θ0∥2
)
+N(1− t)

∑
m

vm
(
∇θfm(θ0)

T (θ − θ0)− L0∥θ − θ0∥2
)

= t
[√

NSN (θ0)
T (θ − θ0)−NL0∥θ − θ0∥2

]
+N(1− t)

[∑
m

vm∇θfm(θ0)
T (θ − θ0)− L0∥θ − θ0∥2

]
.

If ∑
m

vm∇θfm(θ0) =
SN (θ0)√

N
(27)

then

t
∑
n

(fn(θ)− fn(θ0)) +N(1− t)
∑
m

vm(fm(θ)− fm(θ0)) ≤
√
NSN (θ0)

T (θ − θ0)−NL0∥θ − θ0∥2.
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Using this bound, we can bound Iϵ,1 by

Iϵ,1

:=

∫
Bc

ϵ

[
1
N

∑
n fn(θ)− fn(θ0)−

∑
m vm(fm(θ)− fm(θ0))

]2
et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))]π0(θ)dθ∫

Θ
et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))]π0(θ)dθ

≤

∫
Bc

ϵ

[
1
N

∑
n fn(θ)− fn(θ0)−

∑
m vm(fm(θ)− fm(θ0))

]2
e
√
NSN (θ0)

T (θ−θ0)−NL0∥θ−θ0∥2

π0(θ)dθ∫
Θ
et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))]π0(θ)dθ

.

Completing the square in the exponent of the numerator, we can rewrite it as

√
NSN (θ0)

T (θ − θ0)−NL0∥θ − θ0∥2

= −NL0

(
∥θ − θ0∥2 −

SN (θ0)
T (θ − θ0)√
NL0

)
= −NL0

∥∥∥∥(θ − θ0)−
SN (θ0)

2
√
NL0

∥∥∥∥2 + ∥SN (θ0)∥2

4L0

We now assume that ∥SN (θ0)∥ ≤
(
2−

√
2
)
ϵL0

√
N . By Markov’s inequality,

Pr
(
∥SN (θ0)∥ ≥

(
2−

√
2
)
ϵL0

√
N
)
≤

Ep

(
∥SN (θ0)∥2

)(
2−

√
2
)2
ϵ2NL2

0

≤ 3
Ep

(
∥
∑

n ∇θfn(θ0)∥2
)

ϵ2N2L2
0

= 3

∑
n Ep

(
∥∇θfn(θ0)∥2

)
ϵ2N2L2

0

= 3
Ep

(
∥∇θf1(θ0)∥2

)
ϵ2NL2

0

,

and thus the probability that ∥SN (θ0)∥ ≤
(
2−

√
2
)
ϵL0

√
N is bounded from below by 1 −

3Ep(∥∇θf1(θ0)∥2)/(L2
0Nϵ

2). Here, and throughout, we assume that N is large enough such that
the relevant probabilities we use for our high-probability bounds are ≥ 0. When this event occurs,∥∥∥∥(θ − θ0)−

SN (θ0)

2
√
NL0

∥∥∥∥ ≥ ∥θ − θ0∥ −
∥∥∥∥ SN (θ0)

2
√
NL0

∥∥∥∥
≥ ∥θ − θ0∥ −

(
2−

√
2
)
ϵL0

√
N

2
√
NL0

≥ ∥θ − θ0∥ −

(
2−

√
2

2

)
ϵ

≥ ∥θ − θ0∥ −

(
2−

√
2

2

)
∥θ − θ0∥ on Bc

ϵ

=
1√
2
∥θ − θ0∥.

Thus ∥∥∥∥(θ − θ0)−
SN (θ0)

2
√
NL0

∥∥∥∥2 ≥ 1

2
∥θ − θ0∥2,

since both sides are positive numbers.
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For ease of notation, we define ∆n := fn(θ)− fn(θ0). We can then bound Iϵ,1 by

Iϵ,1 ≤
e

∥SN (θ0)∥2
4L0

∫
Bc

ϵ

[
1
N

∑
n ∆n −

∑
m vm∆m

]2
e
−NL0

∥∥∥(θ−θ0)−
SN (θ0)

2
√

NL0

∥∥∥2

π0(θ)dθ∫
Θ
et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))]π0(θ)dθ

≤
eϵ

2NL0/8
∫
Bc

ϵ

[
1
N

∑
n ∆n −

∑
m vm∆m

]2
e−NL0∥θ−θ0∥2/2π0(θ)dθ∫

Θ
et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))]π0(θ)dθ

.

To further simplify the upper bound on the numerator, we define ∆̄ := Ep(∆n) and consider the
event where∫
Bc

ϵ

[
1

N

∑
n

∆n −
∑
m

vm∆m

]2
e−NL0∥θ−θ0∥2/2π0(θ)dθ ≤ e−NL0ϵ

2/4

∫
Θ

Ep(∆1 − ∆̄)2(θ)π0(θ)dθ.

(28)

The probability of Eq. (28) holding can be bounded from below by using Markov’s inequality,

Pr

∫
Bc

ϵ

[
1

N

∑
n

∆n −
∑
m

vm∆m

]2
e−NL0∥θ−θ0∥2/2π0(θ)dθ > e−NL0ϵ

2/4

∫
Θ

Ep(∆1 − ∆̄)2(θ)π0(θ)dθ


≤
eNL0ϵ

2/4Ep

(∫
Bc

ϵ

[
1
N

∑
n ∆n −

∑
m vm∆m

]2
e−NL0∥θ−θ0∥2/2π0(θ)dθ

)
∫
Θ
Ep(∆1 − ∆̄)2(θ)π0(θ)dθ

. (29)

We now use the fact that (a− b)2 ≤ 2a2 + 2b2 to bound[
1

N

∑
n

∆n −
∑
m

vm∆m

]2
=

[∑
n(∆n − ∆̄)

N
−
∑
m

vm(∆m − ∆̄)

]2

≤ 2

(∑
n(∆n − ∆̄)

N

)2

+ 2

(∑
m

vm(∆m − ∆̄)

)2

≤ 2

(∑
n(∆n − ∆̄)

N

)2

+ 2

(
max
M

(∆m − ∆̄)
∑
m

vm

)2

≤ 2

(∑
n(∆n − ∆̄)

N

)2

+ 2max
M

(∆m − ∆̄)2.

Combined with the fact that ∥θ − θ0∥ ≥ ϵ on Bc
ϵ , we can bound Eq. (29) above by

≤
2

(∫
Bc

ϵ
Ep

[(∑
n(∆n−∆̄)

N

)2
+maxM (∆m − ∆̄)2

]
e−NL0∥θ−θ0∥2/4π0(θ)dθ

)
∫
Θ
Ep(∆1 − ∆̄)2(θ)π0(θ)dθ

. (30)

Then, by the definition of ∆̄, and the independence of the fn and therefore ∆n,

Ep

[(∑
n(∆n − ∆̄)

N

)2

+max
M

(∆m − ∆̄)2

]
=

1

N2

∑
n

Ep

(
(∆n − ∆̄)2

)
+ Ep

[
max
M

(∆m − ∆̄)2
]

≤ 1

N
Ep

(
(∆1 − ∆̄)2

)
+ Ep

[
M∑

m=1

(∆m − ∆̄)2

]

=
1

N
Ep

(
(∆1 − ∆̄)2

)
+MEp

(
(∆1 − ∆̄)2

)
.
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Thus, Eq. (30) can be upper bounded by

≤
2
∫
Bc

ϵ
e−NL0∥θ−θ0∥2/4Ep(∆1 − ∆̄)2(θ)

(
1
N +M

)
π0(θ)dθ∫

Θ
Ep(∆1 − ∆̄)2(θ)π0(θ)dθ

≤
2
∫
Bc

ϵ
e−NL0ϵ

2/4Ep(∆1 − ∆̄)2(θ) (2M)π0(θ)dθ∫
Θ
Ep(∆1 − ∆̄)2(θ)π0(θ)dθ

≤ 4Me−NL0ϵ
2/4.

This tells us that the probability of Eq. (28) holding can be bounded from below by 1−4Me−NL0ϵ
2/4.

We have now obtained an upper bound on the numerator of Iϵ,1 that holds with high probability. To
summarize the result so far: if

∑
m vm∇θfm(θ0) =

SN (θ0)√
N

, we have that for any 0 < ϵ < ϵ0,

Iϵ,1 ≤
e−ϵ2NL0/8

∫
Θ
Ep(∆1 − ∆̄)2(θ)π0(θ)dθ∫

Θ
et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))π0(θ)dθ

. (31)

with probability at least

1− 4Me−NL0ϵ
2/4 − 3

Ep

(
∥∇θf1(θ0)∥2

)
ϵ2NL2

0

.

We continue by finding a lower bound for the denominator of Iϵ,1. We decompose fn into f (1)n and
f
(2)
n and assume that∑

m

vm(f (1)m (θ)− f (1)m (θ0))−
∑

n(f
(1)
n (θ)− f

(1)
n (θ0))

N
= 0. (32)

Then

t
∑
n

(fn(θ)− fn(θ0)) +N(1− t)

[∑
m

vm(fm(θ)− fm(θ0))

]

=
∑
n

(fn(θ)− fn(θ0)) +N(1− t)

[∑
m

vm(fm(θ)− fm(θ0))−
∑

n(fn(θ)− fn(θ0))

N

]

=
∑
n

(fn(θ)− fn(θ0)) +N(1− t)

[∑
m

vm(f (2)m (θ)− f (2)m (θ0))−
∑

n(f
(2)
n (θ)− f

(2)
n (θ0))

N

]

=
∑
n

(fn(θ)− fn(θ0)) +N(1− t)

[∑
m

vmf
(2)
m (θ)−

∑
n f

(2)
n (θ)

N

]
, (33)

using Eq. (32) and the fact that f (2)n (θ0) = 0 by assumption A2. For any 0 < ϵ′ < ϵ0, and
∥θ − θ0∥ ≤ ϵ′, we use assumption A2 again, along with the fact that a− b ≥ −|a| − |b|, to bound
Eq. (33) from below by

≥
∑
n

(fn(θ)− fn(θ0))−N(1− t)

∣∣∣∣∣∑
m

vmf
(2)
m (θ)−

∑
n f

(2)
n (θ)

N

∣∣∣∣∣
≥
∑
n

(fn(θ)− fn(θ0))−N(1− t)r(ϵ′)∥θ − θ0∥2
[∣∣∣∣∣∑

m

vmR(xm)

∣∣∣∣∣+
∣∣∣∣∑nR(xn)

N

∣∣∣∣
]

≥
∑
n

(fn(θ)− fn(θ0))

−N(1− t)r(ϵ′)∥θ − θ0∥2
[
2Ep(R(X)) +

∣∣∣∣∣∑
m

vm(R(xm)− Ep(R(X)))

∣∣∣∣∣+ |
∑

n(R(xn)− Ep(R(X)))|
N

]
(34)
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using the fact that R(x) > 0 by assumption. Next, we assume that∣∣∣∣∣∑
m

vm(R(xm)− Ep(R(X))

∣∣∣∣∣ ≤ 1 and
|
∑

n(R(xn)− Ep(R(X))|
N

≤ 1. (35)

We can bound the probability of the second inequality holding from below by 1−Varp(R(X))/N
via Chebychev’s inequality:

Pr

∣∣∣∣∣ 1N ∑
n

R(xn)− Ep(R(X))

∣∣∣∣∣ ≥
√
Varp

(
1
N

∑
nR(xn)

)√
Varp

(
1
N

∑
nR(xn)

)
 ≤ Varp

(
1

N

∑
n

R(xn)

)
=

1

N
Varp(R(X)).

Substituting the two assumptions from Eq. (35) into Eq. (34) above, we obtain that

t
∑
n

(fn(θ)− fn(θ0)) +N(1− t)
∑
m

vm(fm(θ)− fm(θ0))

≥
∑
n

(fn(θ)− fn(θ0))− 2Nr(ϵ′)∥θ − θ0∥2 [Ep(R(X)) + 1]

=
∑
n

(fn(θ)− fn(θ0))− γNr(ϵ′)∥θ − θ0∥2, where γ := 2 [Ep(R(X)) + 1] .

Then we can bound the denominator of Iϵ,1 from below by∫
Θ

et
∑

n(fn(θ)−fn(θ0))+N(1−t)
∑

m vm(fm(θ)−fm(θ0))]π0(θ)dθ

≥
∫
Bϵ′

et
∑

n(fn(θ)−fn(θ0))+N(1−t)
∑

m vm(fm(θ)−fm(θ0))]π0(θ)dθ

≥
∫
Bϵ′

e
∑

n fn(θ)−fn(θ0)−γNr(ϵ′)∥θ−θ0∥2

π0(θ)dθ

≥π0,inf
∫
Bϵ′

e
∑

n fn(θ)−fn(θ0)−γNr(ϵ′)∥θ−θ0∥2

dθ

≥π0,infe−ta(ϵ
′)

∫
Bϵ′

1∑
n fn(θ)−fn(θ0)≥N(f̄(θ)−f̄(θ0))−tae

−L′
1(ϵ

′)N∥θ−θ0∥2

dθ (36)

where π0,inf := inf
θ∈Bϵ′

π0(θ), L′
1(ϵ

′) := L1 + γr(ϵ′), and ta(ϵ
′) :=

(
DL2

L′
1(ϵ

′)a

)1/2

for a > 0,

where the last line follows from assumption A3 and the definition of L′
1(ϵ

′). The next goal is to
bound Eq. (36) from below by

≥ π0,infe
−ta(ϵ

′)

2

∫
Bϵ′

e−L′
1(ϵ

′)N∥θ−θ0∥2

dθ (37)

with high probability. To begin, by Markov’s inequality,

Pr

∫
Bϵ′

1∑
n fn(θ)−fn(θ0)≥N(f̄(θ)−f̄(θ0))−ta(ϵ′)e

−L′
1(ϵ

′)N∥θ−θ0∥2

dθ <

∫
Bϵ′

e−L′
1(ϵ

′)N∥θ−θ0∥2

dθ

2


= Pr

∫
Bϵ′

1∑
n fn(θ)−fn(θ0)<N(f̄(θ)−f̄(θ0))−ta(ϵ′)e

−L′
1(ϵ

′)N∥θ−θ0∥2

dθ >

∫
Bϵ′

e−L′
1(ϵ

′)N∥θ−θ0∥2

dθ

2


≤

2
∫
Bϵ′

Pr
(∑

n fn(θ)− fn(θ0) < N(f̄(θ)− f̄(θ0))− ta(ϵ
′)
)
e−L′

1(ϵ
′)N∥θ−θ0∥2

dθ∫
Bϵ′

e−L′
1(ϵ

′)N∥θ−θ0∥2
dθ

. (38)

The first equality here follows from the fact that

1∑
n fn(θ)−fn(θ0)≥N(f̄(θ)−f̄(θ0))−ta(ϵ′)e

−L′
1(ϵ

′)N∥θ−θ0∥2

+ 1∑
n fn(θ)−fn(θ0)<N(f̄(θ)−f̄(θ0))−ta(ϵ′)e

−L′
1(ϵ

′)N∥θ−θ0∥2

= e−L′
1(ϵ

′)N∥θ−θ0∥2

.
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Thus we can see that if the integral of one of the terms on the left hand side of the above is less than
half the integral of the right hand side, then the integral of the other must be greater than half the
integral of the right hand side.

We can apply Markov’s inequality again to bound the probability inside the integral,

Pr

(∑
n

fn(θ)− fn(θ0) < N(f̄(θ)− f̄(θ0))− ta(ϵ
′)

)

=Pr

(
1

N

∑
n

fn(θ0)− fn(θ)− Ep

(
1

N

∑
n

fn(θ0)− fn(θ)

)
>
ta(ϵ

′)

N

)

≤ N2

ta(ϵ′)2
Varp

(
1

N

∑
n

fn(θ0)− fn(θ)

)

=
N

ta(ϵ′)2
Varp (f1(θ0)− f1(θ))

≤ N

ta(ϵ′)2
L2∥θ − θ0∥2,

using assumption A3. Substituting this into Eq. (38) yields

2
∫
Bϵ′

Pr
(∑

n fn(θ)− fn(θ0) < N(f̄(θ)− f̄(θ0))− ta(ϵ
′)
)
e−L′

1(ϵ
′)N∥θ−θ0∥2

dθ∫
Bϵ′

e−L′
1(ϵ

′)N∥θ−θ0∥2
dθ

≤
2L2

∫
Bϵ′

N∥θ − θ0∥2e−L′
1(ϵ

′)N∥θ−θ0∥2

dθ

ta(ϵ′)2
∫
Bϵ′

e−L′
1(ϵ

′)N∥θ−θ0∥2
dθ

=
L2

L′
1(ϵ

′)ta(ϵ′)2

∫
∥u∥≤ϵ′

√
2NL′

1(ϵ
′)
∥u∥2e−∥u∥2/2du∫

∥u∥≤ϵ′
√

2NL′
1(ϵ

′)
e−∥u∥2/2du

(39)

where we make the substitution u =
√
2NL′

1(ϵ
′)(θ−θ0), and cancel the Jacobian terms in numerator

and denominator. If ϵ′ ≥
√

D
2NL′

1(ϵ
′) , the integral in the denominator can be bounded below by

∫
∥u∥≤ϵ′

√
2NL′

1(ϵ
′)

e−∥u∥2/2du ≥ (2π)
D/2

∫
∥u∥2≤D

(2π)
−D/2

e−∥u∥2/2du

= (2π)
D/2

Pr (Y ≤ D) , Y ∼ χ2
D

≥ 1

2
(2π)

D/2
,

since the median of a χ2
k-distribution is ≤ k. Since Θ ⊆ RD, we can upper bound the integral in the

numerator by∫
∥u∥≤ϵ′

√
2NL′

1(ϵ
′)

∥u∥2e−∥u∥2/2du ≤ (2π)
D/2

∫
∥u∥2 (2π)−D/2

e−∥u∥2/2du = D (2π)
D/2

,

and thus Eq. (39) can be upper bounded by

L2

L′
1(ϵ

′)ta(ϵ′)2

∫
∥u∥≤ϵ′

√
2NL′

1(ϵ
′)
∥u∥2e−∥u∥2/2du∫

∥u∥≤ϵ′
√

2NL′
1(ϵ

′)
e−∥u∥2/2du

≤ 2L2D

L′
1(ϵ

′)ta(ϵ′)2
= 2a,
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using the definition of ta(ϵ′). Thus with probability at least 1 − 2a, we can bound Eq. (36) from
below by

Eq. (36) ≥ π0,infe
−ta(ϵ

′)

2

∫
Bϵ′

e−L′
1(ϵ

′)N∥θ−θ0∥2

dθ

≥ π0,infe
−ta(ϵ

′)

2

(
1

2L′
1(ϵ

′)N

)D/2 ∫
∥u∥≤ϵ′

√
2L′

1(ϵ
′)N

e−∥u∥2/2dθ

≥ π0,infe
−ta(ϵ

′)

4

(
π

L′
1(ϵ

′)N

)D/2

, (40)

using the same substitution and χ2 bound as before. This gives us our final lower bound on the
denominator of Iϵ,1. To summarize the result at this point: assuming that∑

m

vm∇θfm(θ0) =
SN (θ0)√

N
(41)

∑
m

vm(f (1)m (θ)− f (1)m (θ0)) =

∑
n(f

(1)
n (θ)− f

(1)
n (θ0))

N
(42)∣∣∣∣∣∑

m

vm(R(xm)− Ep(R(X))

∣∣∣∣∣ ≤ 1, (43)

we have that for any a > 0,
√

D
2NL′

1(ϵ
′) ≤ ϵ′ < ϵ0, and 0 ≤ ϵ < ϵ0,

Iϵ,1 ≤
e−NL0ϵ

2/8
∫
Θ
Ep(∆1 − ∆̄)2(θ)π0(θ)dθ∫

Θ
et

∑
n(fn(θ)−fn(θ0))+N(1−t)

∑
m vm(fm(θ)−fm(θ0))π0(θ)dθ

≤ ND/2eta(ϵ
′)−NL0ϵ

2/8

(
4

π0,inf

∫
Θ

Ep(∆1 − ∆̄)2(θ)π0(θ)dθ

(
L′
1(ϵ

′)

π

)D/2
)
, (44)

with probability at least

1− 4Me−NL0ϵ
2/4 − 3

Ep

(
∥∇θf1(θ0)∥2

)
ϵ2NL2

0

− Varp(R(X))

N
− 2a.

We now bound Iϵ,2, corresponding to the integral over Bϵ. Throughout we assume that the same set
of events occur as used in the analysis of Iϵ,1. Note that the denominator of Iϵ,2 is the same as in Iϵ,1,
so we apply the same bound; here we focus on the numerator. Since r(ϵ)γ ≤ L0/2 by A2, we can
obtain the following bound for all θ ∈ Bϵ:

t
∑
n

(fn(θ)− fn(θ0)) +N(1− t)
∑
m

vm(fm(θ)− fm(θ0))

≤
∑
n

(fn(θ)− fn(θ0)) +N(1− t)r(ϵ)∥θ − θ0∥2γ

≤
√
NSN (θ0)

T (θ − θ0)−NL0∥θ − θ0∥2 +N(1− t)r(ϵ)∥θ − θ0∥2γ

≤
√
NSN (θ0)

T (θ − θ0)−
NL0

2
∥θ − θ0∥2

= −NL0

2

(
∥θ − θ0∥2 −

2SN (θ0)
T (θ − θ0)√
NL0

)
≤ ∥SN (θ0)∥2

2L0
− NL0

2

∥∥∥∥θ − θ0 −
SN (θ0)√
NL0

∥∥∥∥2 .
As before we write, for θ ∈ Bϵ,∑

n fn(θ)− fn(θ0)

N
−
∑
m

vm(fm(θ)− fm(θ0)) =

∑
n f

(2)
n (θ)− f

(2)
n (θ0)

N
−
∑
m

vm(f (2)m (θ)− f (2)m (θ0)),
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so the right hand side is bounded above by

r(ϵ)∥θ − θ0∥2
[
2Ep(R(X)) +

|
∑

n(R(xn)− Ep(R(X))|
N

+

∣∣∣∣∣∑
m

vm((R(xm)− Ep(R(X)))

∣∣∣∣∣
]

≤ r(ϵ)∥θ − θ0∥2γ,
and therefore

Iϵ,2 ≤
4r(ϵ)2γ2eta(ϵ

′)(L′
1(ϵ

′)N)D/2
∫
Bϵ

∥θ − θ0∥4e
∥SN (θ0)∥2

2L0
−NL0

2

∥∥∥θ−θ0−
SN (θ0)√

NL0

∥∥∥2

π0(θ)dθ

πD/2π0,inf
.

We further bound the numerator using a similar technique as in the analysis of Iϵ,1:

∥θ − θ0∥2 =

(
∥θ − θ0∥ −

∥SN (θ0)∥√
NL0

+
∥SN (θ0)∥√

NL0

)2

≤ 2

(
∥θ − θ0∥ −

∥SN (θ0)∥√
NL0

)2

+ 2

(
∥SN (θ0)∥√

NL0

)2

≤ 2

∥∥∥∥(θ − θ0)−
SN (θ0)√
NL0

∥∥∥∥2 + 2

(
∥SN (θ0)∥√

NL0

)2

.

Note that by Markov’s inequality,

∀ζ > 0, ∥SN (θ0)∥2 ≤ D/ζ,

with probability ≥ 1− ζEp(∥∇θf1(θ0)∥2)/D. If we further restrict to this event, we have that

Iϵ,2 ≤ 4eta(ϵ
′)r(ϵ)2γ2π0,sup(L

′
1(ϵ

′)N)D/2

πD/2π0,inf

∫
Bϵ

∥θ − θ0∥4e
∥SN (θ0)∥2

2L0
−NL0

2

∥∥∥θ−θ0−
SN (θ0)√

NL0

∥∥∥2

dθ

≤ 16eta(ϵ
′)r(ϵ)2γ2π0,sup(L

′
1(ϵ

′)N)D/2e
D

2L0ζ

πD/2π0,inf

×
∫
Bϵ

(∥∥∥∥(θ − θ0)−
SN (θ0)√
NL0

∥∥∥∥2 + (∥SN (θ0)∥√
NL0

)2
)2

e
−NL0

2

∥∥∥θ−θ0−
SN (θ0)√

NL0

∥∥∥2

dθ

≤ 16eta(ϵ
′)r(ϵ)2γ2π0,sup(L

′
1(ϵ

′)N)D/2e
D

2L0ζ (NL0)
−(D/2+2)

πD/2π0,inf

×
∫ (

∥u∥4 + 2∥u∥2∥SN (θ0)∥2

L0
+

∥SN (θ0)∥4

L2
0

)
e−

1
2∥u∥

2

du

≤ 16eta(ϵ
′)r(ϵ)2γ2π0,sup(L

′
1(ϵ

′)N)D/2e
D

2L0ζ (NL0)
−(D/2+2)(2π)D/2

πD/2π0,inf

×
∫ (

∥u∥4 + 2∥u∥2D
L0ζ

+
D2

L2
0ζ

2

)
(2π)−D/2e−

1
2∥u∥

2

du

≤ 16eta(ϵ
′)D2r(ϵ)2γ2π0,sup(2L

′
1(ϵ

′)/L0)
D/2e

D
2L0ζ

N2L2
0π0,inf

[
3 +

2

L0ζ
+

1

L2
0ζ

2

]
≤ 16eta(ϵ

′)D2r(ϵ)2γ2π0,sup(2L
′
1(ϵ

′)/L0)
D/2e

D
2L0ζ

ζ2N2L2
0π0,inf

[
3 +

2

L0
+

1

L2
0

]
, (45)

using the substitution u =
√
NL0

(
(θ − θ0)− SN (θ0)/(

√
NL0)

)
. Noting that ta(ϵ′) = Θ(

√
1/a),

we will set
√
a = ζ . What remains is to lower bound the probability that the three conditions Eqs. (41)

to (43) hold. Denoting by ψ(x) ∈ Rd1 the coordinates of f (1)(x, ·)− f (1)(x, θ0) in an orthonormal
basis of S1, we define Z(x) ∈ Rd, d ≤ d1 +D, as

Z(x) :=

[
ψ(x)

indep (∇θf(x; θ0))

]
, (46)
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where indep (·) selects the linearly independent components of the ∇θf(x; θ0) (considered as func-
tions of x). Without loss of generality we can choose R(x) to be linearly independent of Z(x) as a
function of x. In this case, the three conditions hold simultaneously if∑
m

vmψj(xm) =

∑
n ψj(xn)

N
∀j,

∑
m

vm(R(xm)− EpR(X)) = 0,
∑
m

vm∇fm(θ0) =

∑
n ∇fn(θ0)
N

.

As in the proof of Theorem 4.1, we can derive that for δ ∈ (0, 1], if M ≳ J(δ)−1D(logN + 1),
where

J(δ) = inf
a∈Rd+1;
∥a∥=1

Pr

(〈
a, [Z(X), R(X)]T

〉
>

2Ep(∥Z(X)∥2)√
Nδ

)
, (47)

then with probability greater than 1− δ− e−J(δ)M/4, Eqs. (41) to (43) hold. We will set δ = ζ2. Our
particular choice of Z using independent components ensures that J(δ) is of full rank, and therefore
is bounded from below by 0.

We can now obtain a final high probability bound on the KL divergence by combining the bounds on
Iϵ,1 and Iϵ,2. In particular, we have that if M ≳ J(ζ2)−1D(logN + 1), we have that for any ζ > 0,√

D
2NL′

1(ϵ
′) ≤ ϵ′ < ϵ0, and 0 ≤ ϵ < ϵ0,

KL(πw(v)||π) ≤ 4N2

∫ 1

0

(1− t) (Iϵ,1 + Iϵ,2) dt

≤4ND/2+2e
1
ζ

√
DL2

L′
1(ϵ′)−NL0ϵ

2/8
(

2

π0,inf

∫
Θ

Ep(∆1 − ∆̄)2(θ)π0(θ)dθ

(
L′
1(ϵ

′)

π

)D/2
)

+
4r(ϵ)2e

1
ζ

(√
DL2

L′
1(ϵ′)+

D
2L0

)
ζ2

(
8D2γ2π0,sup(2L

′
1(ϵ

′)/L0)
D/2

L2
0π0,inf

[
3 +

2

L0
+

1

L2
0

])
with probability at least

1− e−J(ζ2)M/4 − 4Me−NL0ϵ
2/4 − 3

Ep

(
∥∇θf1(θ0)∥2

)
ϵ2NL2

0

− Varp(R(X))

N
− 3ζ2 − ζ

Ep(∥∇θf1(θ0)∥2)
D

.

If ζ−1 = o(− log r(ϵ)) as ϵ→ 0, then the second term in the KL bound converges to 0. Consequently
if logN + | log r(ϵ)| = o(Nϵ2) as N → ∞, the KL divergence converges to 0 as N → ∞. Similarly,
J(ζ2) converges to a nonzero constant as long as ζ

√
N → ∞. Both conditions are possible to satisfy,

for any r(ϵ), by making ϵ→ 0 slowly enough as a function of N .

B.3 Proof of Theorem 4.3

Proof. For step size γ ∈ [0, 1], the result ŵk+1 of the approximate Newton step prior to projection
onto W is

ŵk+1 = wk + γ(G(wk) + τI)−1H(wk)(1− wk)

= wk + γ(G(wk) + τI)−1H(wk)(w
⋆
k − wk) + γ(G(wk) + τI)−1H(wk)(1− w⋆

k)

= wk + γ(G(wk) + τI)−1G(wk)(w
⋆
k − wk) + γ(G(wk) + τI)−1H(wk)(1− w⋆

k),

where the last line follows from the fact that wk, w
⋆
k ∈ W . Consider the distance

∥∥wk+1 − w⋆
k+1

∥∥.
Since w⋆

k+1 is the projection of wk+1 onto a convex set W⋆, we have that∥∥wk+1 − w⋆
k+1

∥∥ ≤ ∥wk+1 − w⋆
k∥ .

Furthermore, since wk+1 is the projection of ŵk+1 onto W , and w⋆
k ∈ W ,

∥wk+1 − w⋆
k∥ ≤ ∥ŵk+1 − w⋆

k∥ .
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Then, we have that:

∥ŵk+1 − w⋆
k∥ =

∥∥(I − γ(G(wk) + τI)−1G(wk)
)
(wk − w⋆

k) + γ(G(wk) + τI)−1H(wk)(1− w⋆
k)
∥∥

≤
∥∥(I − γ(G(wk) + τI)−1G(wk)

)
(wk − w⋆

k)
∥∥+ γ(ϵ∥wk − w⋆

k∥+ δ)

≤ η ∥wk − w⋆
k∥+ γδ.

The first bound follows from our assumption in the theorem statement, and the triangle inequality.
The second bound follows via the following logic. Since πw ∝ exp(wT f[M ](θ))π0(θ), it has the
same support for all w ∈ W . Since G(w) is the covariance matrix of f[M ](θ), the null space
of G(w) is spanned by the set of vectors u ∈ RM such that uT f[M ](θ) = c holds πw-almost
everywhere, for some constant c ∈ R. Therefore the null space of G(w) is the same for all
w ∈ W . Since wT f[M ] = (w + u)T f[M ] (up to a constant in θ) for any w ∈ W and u in the null
space of G(w), we can augment any closed convex subset W⋆ ⊆ argminw∈W KL(πw||π) with
the null space of G(w) to form W⋆

2 = {w + u : w ∈ W⋆, u ∈ nullG(w), w + u ∈ W}, which is
still a closed convex subset of W⋆ ⊆ argminw∈W KL(πw||π). Therefore any maximal convex
subset W⋆ must be of the previous form augmented with the null space of G(w). Because w⋆

k is a
projection, w⋆

k − wk must be orthogonal to this null space. Denoting the full eigendecomposition
G(w) = V Λ(w)V T , V ∈ RM×M , Λ(w) ∈ RM×M , including zero eigenvalues, and similarly the
reduced eigendecomposition G(w) = V+Λ+(w)V

T
+ with the null space removed,∥∥(I − γ(G(wk) + τI)−1G(wk)

)
(wk − w⋆

k)
∥∥ =

∥∥V (I − γ(Λ(wk) + τ)−1Λ(wk)
)
V T (wk − w⋆

k)
∥∥

=
∥∥V+ (I − γ(Λ+(wk) + τ)−1Λ+(wk)

)
V T
+ (wk − w⋆

k)
∥∥

≤ (1− γξ)
∥∥V T

+ (wk − w⋆
k)
∥∥

= (1− γξ)
∥∥V T (wk − w⋆

k)
∥∥

= (1− γξ) ∥(wk − w⋆
k)∥ .

Finally solving the earlier recursion,

∥wk − w⋆
k∥ ≤ ηk ∥w0 − w⋆

0∥+ γδ

k−1∑
j=0

ηj

= ηk ∥w0 − w⋆
0∥+ γδ

(
1− ηk

1− η

)
.

C Experiments

In this section, we present some additional results, along with the full details of the Bayesian radial
basis function regression experiment. We also discuss the use of a Laplace approximation for the
low-cost approximation π̂ needed for the sparse regression methods: greedy iterative geodesic ascent
(GIGA) and iterative hard thresholding (IHT). Finally, we include a note on the overall performance
of those methods.

C.1 Synthetic Gaussian location model

From Fig. 1 we see that our additional results match closely those in Section 5. Our method (QNC)
consistently outperforms the other subsampling methods, while the Laplace approximation gives the
best results, by design.

C.2 Bayesian sparse linear regression

From Fig. 2 we see that our additional results match closely those in Section 5. Our method (QNC)
consistently outperforms the other methods. In order to assess the computation gains our coreset
approach achieves, a useful metric is to calculate the number of posterior samples Nsample for which
the time taken to obtain Nsample samples from the full posterior is the same as the time taken to
construct a coreset using QNC, and then take Nsample samples from the coreset posterior. Here, we
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Figure 1: Relative mean and log-variance error, forward KL divergence and per sample time to
sample from the respective posteriors for the synthetic Gaussian experiment. Our algorithm (QNC)
consistently provides an improvement in coreset quality over the other subsampling methods. All
methods provide a significant reduction in time to sample from the respective posteriors.

Figure 2: Relative mean and log-variance error, forward KL divergence, IMQ maximum mean
discrepancy (MMD) and per sample time to sample from the respective posteriors for the sparse
regression experiment. Our algorithm (QNC) consistently provides an improvement in coreset quality
over the other methods. All methods provide a significant reduction in time to sample from the
respective posteriors. The poor performance of the Laplace approximation in this heavy-tailed
example can be seen particularly clearly in the forward KL and IMQ MMD plots.

find that Nsample ≈ 60 for a coreset of size 1000. This is far fewer than you would ideally like to
have in practice.

However, we note that these results are conservative, and in fact we expect that the gains from the
coreset approach are more significant. This is because we perform sampling in each case using
STAN[4], which uses C++. However, we construct the coresets in Python, and most of the coreset
build time comes from the slowness of a non-compiled language. We expect that our estimated value
of Nsample would be far smaller if we not only performed sampling in C++, but also constructed the
coresets in C++.

In this experiment, the prior is heavy tailed, whilst the likelihood has sub-exponential tails. However,
when the data is in fact concentrated on a particular subspace of the overall space, then the posterior
can have heavy tails, even when the number of data points is large. We can clearly see this in Fig. 3,
where we plot the quantiles of the (centred and scaled) marginal posterior distribution of the parameter
λ13 to the quantiles of a standard normal distribution. This parameter is strictly positive, but we see
that the right hand tail of the distribution is significantly heavier than a normal distribution.

In the forward KL and IMQ maximum mean discrepancy (MMD) plots, we can see clearly that
the Laplace approximation is performing poorly, as it is underestimating the tails of the posterior
distribution. Calculating the IMQ stein discrepancy in this experiment is computationally intractable
with the size of dataset we consider.
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Figure 3: Quantile-quantile plot, comparing the quantiles of the (centred and scaled) marginal
posterior distribution of λ13 to the quantiles of a standard normal distribution.

Figure 4: Relative mean and log-variance error, forward KL divergence, IMQ stein discrepancy, IMQ
maximum mean discrepancy (MMD) and per sample time to sample from the respective posteriors
for the logistic regression experiment. Our algorithm (QNC) generally provides an improvement in
coreset quality over the other methods. All methods provide a significant reduction in time to sample
from the respective posteriors.

C.3 Heavy-tailed Bayesian logistic regression

From Fig. 4 we see that our additional results match closely those in Section 5. Our method (QNC)
consistently outperforms the other methods. As before, we can calculate the number of posterior
samples Nsample for which the time taken to obtain Nsample samples from the full posterior is the
same as the time taken to construct a coreset using QNC, and then take Nsample samples from the
coreset posterior. Here, we find that Nsample ≈ 120 for a coreset of size 1000. This is again far
fewer than you would ideally like to have in practice.

C.4 Bayesian radial basis function regression

Our final comparison is on a Bayesian basis function regression example, and we provide the full
details of that experiment here. We perform inference for the coefficients α ∈ RD in a linear
combination of radial basis functions bk(x) = exp

(
−1/2σ2

k (x− µk)
2
)
, k = 1, . . . , D,

yn = bTnα+ ϵn, ϵn
i.i.d.∼ N

(
0, σ2

)
, bn = [ b1 (xn) · · · bD (xn) ]

T
, α ∼ N

(
µ0, σ

2
0I
)
.
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Figure 5: Relative mean and log-variance error, forward KL divergence and per sample time to
sample from the respective posteriors for the basis regression experiment. Our algorithm (QNC)
generally provides an improvement in coreset quality over the other methods. All methods provide
a significant reduction in time to sample from the respective posteriors. The poor performance of
the Laplace approximation in this high-dimensional example can be seen particularly clearly in the
forward KL and log-variance plots.

The data consists of N = 100, 000 records of house sale log-price yn ∈ R as a function of latitude
/ longitude coordinates xn ∈ R2 in the UK. 1 In order to perform inference we generate 50 basis
functions for each of 6 scales σk ∈ {0.2, 0.4, 0.8, 1.2, 1.6, 2.0} by generating means µk uniformly
from the data, and including a basis with scale 100 (i.e. nearly constant) and mean corresponding to
the mean latitude and longitude of the data. Thus, we have 301 total basis functions, and so D = 301.
The prior and noise parameters µ0, σ

2
0 , σ

2 are equal to the empirical mean, second moment, and
variance of the price paid (yn)

N
n=1 across the whole dataset, respectively. Closed form expressions

are available for the subsampled posterior distributions [1, Appendix B], and we can sample from
them without MCMC.

From Fig. 5 we see that our additional results match closely those in Section 5. Our method (QNC)
generally outperforms the other methods, but has more trouble capturing the variance of the posterior,
compared to the other subsampling approaches. Though the Laplace approximation captures the
mean of the posterior well, it does not approximated the variance well, leading to its overall poor
performance.

C.5 Comparison with Sparse Variational Inference

In this section, we provide a comparison of our method against SVI on a smaller dataset than that
used in our original experiments. This experiment is the same as that in Section 5.1, except that we
have reduced the dimension from 100 to 50, and the dataset size from 1, 000, 000 to 10, 000. For
SVI we use 100 optimization iterations, and only run 1 trial. From Fig. 6, we see that, even in this
smaller data setting, the performance of SVI is not comparable. In reality, the number of optimization
iterations needed is much higher than 100, which is reflected in the poor performance. However,
we see that even for this number of optimization iterations the build time can be several orders of
magnitude slower than any other method. Thus, we conclude that using SVI is not feasible on the
size of datasets that we consider.

C.6 Sparse regression methods with Laplace approximation

In Section 5, we use a uniformly sampled coreset approximation of size M as the low-cost approx-
imation π̂ for GIGA and IHT. Here, we include additional results with a Laplace approximation
used for π̂. These are labeled as GIGA-LAP and IHT-LAP respectively. In Fig. 7, we see that in the
synthetic Gaussian experiment, the choice of π̂ has very little effect, and both GIGA and IHT perform
quite badly in this large, high-dimensional example. In the sparse regression and basis function
regression experiments, using a Laplace approximation for π̂ leads to a worse performance. This may
be unsurprising because the Laplace approximation (LAP) does not provide a good approximation to

1This dataset was constructed by merging housing prices from the UK land registry data https://www.gov.
uk/government/statistical-data-sets/price-paid-data-downloads with latitude & longitude co-
ordinates from the Geonames postal code data http://download.geonames.org/export/zip/. The hous-
ing price dataset contains HM Land Registry data © Crown copyright and database right 2021. This data is
licensed under the Open Government Licence v3.0. The postal code data is licensed under a Creative Commons
Attribution 4.0 License.
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Figure 6: Reverse KL divergence (left) and build time in seconds (right) for the small synthetic
Gaussian experiment.

(a) Gaussian (b) Sparse linear regression

(c) Logistic regression (d) Basis function regression

Figure 7: Reverse KL divergence (left) and build time in seconds (right) for each experiment, with
added plots for GIGA and IHT with a Laplace approximation used for π̂. We plot the median and a
shaded area between the 25th/75th percentiles over 10 random trials. Using a Laplace approximation
used for π̂ rarely provides an improvement in performance, and in some cases performs significantly
worse than with the uniform choice of π̂.

the true posterior in these settings, as detailed above and in Section 5. Only in the logistic regression
experiment do we see an improvement in performance from GIGA-LAP over GIGA.

One reason for this is that the Laplace approximation provides limited help in coreset construction.
Due to the large data set sizes used in our experiments, we only use a small number of samples
(S = 500) in the coreset construction process. However, especially in high dimensions, we need
a large number of samples to obtain a good L2 approximation to the posterior from the Laplace
approximation.

C.7 Performance of sparse regression methods

Throughout our experiments, we see that the sparse regression methods GIGA and IHT perform
poorly. One reason for this is that these methods involve approximating a high dimensional integral
with a small, fixed, number of samples. This problem persists no matter which choice of low-cost
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approximation π̂ we make, and is particularly problematic in high dimensions [5]. As noted by
[1], methods like these are further limited by using a fixed approximation π̂, rather than iteratively
updating it as in the sparse variational inference approach.

C.8 Sensitivity Analysis

In this section we perform a sensitivity analysis for the parameters S, Ktune and τ that we use in
Algorithm 1. We do this by repeating the Bayesian sparse linear regression experiment detailed in
Section 5.2 for varying values of one of these parameters at a time (with all other parameters kept
fixed). From Fig. 8 we see the following:

• S: In our original experiments, we use S = 500 throughout. From this analysis, we see
that the performance of our method holds up for substantially lower values of S (though
taking S = 10 is too low and leads to a degradation in performance). Moreover, doubling
the number of samples does not lead to significantly better performance. The build time
generally increases for larger S, as we would expect.

• τ : In our original experiments, we use τ = 0.01 throughout. From this analysis, we see
that taking too large a value of τ negatively affects the performance. This is in line with
what we expect, since larger values skew the step away from a true Newton step. Our
theory recommends taking τ as small as possible such that G(w) + τI is still (numerically)
invertible. Indeed, we see that decreasing τ can improve the performance of our model,
though our choice still provides good results. Thus, we believe ours is a conservative choice
that works well in practice.

• Ktune : In our original experiments, we use Ktune = 1 throughout. In this analysis, we see
that the choice of this parameter has very little effect on the performance of our method
for this experiment. In our original experiments, we take γk = 1 for k > Ktune. When we
perform our line search, our starting value is also γk = 1. We find that the line search stops
immediately, meaning that for every value of Ktune we get essentially the same results.
The purpose of this step in our algorithm is to guard against the case where our initial
gradient and covariance estimates are very noisy, and we may want to take a smaller step
initially. However, we see that this is in fact not needed for this experiment.
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(a) S

(b) τ

(c) Ktune

Figure 8: Sensitivity Analyses for the parameters (a) S, (b) τ and (c) Ktune. In each case, we
plot the Reverse KL divergence (left) and build time in seconds (right) for the sparse regression
experiment.
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