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Abstract

A novel approach to rank estimation, called geometric order learning (GOL), is
proposed in this paper. First, we construct an embedding space, in which the di-
rection and distance between objects represent order and metric relations between
their ranks, by enforcing two geometric constraints: the order constraint compels
objects to be sorted according to their ranks, while the metric constraint makes
the distance between objects reflect their rank difference. Then, we perform the
simple k nearest neighbor (k-NN) search in the embedding space to estimate the
rank of a test object. Moreover, to assess the quality of embedding spaces for
rank estimation, we propose a metric called discriminative ratio for ranking (DRR).
Extensive experiments on facial age estimation, historical color image (HCI) clas-
sification, and aesthetic score regression demonstrate that GOL constructs effective
embedding spaces and thus yields excellent rank estimation performances. The
source codes are available at https://github.com/seon92/GOL

1 Introduction

In rank estimation, we estimate the rank (or ordered class) of an object. It is different from ordinary
classification, for its classes are arranged in a natural order. For example, in movie rating, classes
can be ordered from ‘outstanding’ to ‘very good,’ ‘satisfactory,’ ‘unsatisfactory,’ and ‘poor.’ Rank
estimation is a fundamental problem and, e.g., used for various computer vision tasks including facial
age estimation (Shin et al., 2022), aesthetic quality assessment (Schifanella et al., 2015), and HCI
classification (Palermo et al., 2012).

For rank estimation, many techniques (Li et al., 2021; Liu et al., 2018) adopt the ordinal regression
framework, which employs a classifier or a regressor to predict the rank of an object directly. However,
they may fail to yield reliable estimates, for there is no clear distinction between ranks in many cases.
For instance, in facial age estimation, the aging process — causing variations in facial shapes, sizes,
and texture — has large individual differences due to factors such as genes, diet, and lifestyle.

To address this issue, comparison-based algorithms (Lim et al., 2020; Lee & Kim, 2021; Li et al.,
2014; Nguyen et al., 2018) have been proposed. Instead of predicting the rank directly, they learn a
binary relation between objects, such as order or metric (Hrbacek & Jech, 1984). These relations
provide useful information for rank estimation: an order indicates the relative priority between objects
x and y, while a metric informs of the distance between them.

In order learning (Lim et al., 2020; Lee & Kim, 2021), a comparator is learned to classify the
relationship between x and y into one of three cases: x is ‘greater than,’ ‘similar to,’ or ‘smaller than’
y. Then, they estimate the rank of a test object by comparing it with multiple reference objects with
known ranks. This approach is based on the idea that it is easier to predict ordering relationships
between objects than to estimate the absolute ranks; telling the older one between two people is easier
than estimating their exact ages. However, order learning disregards how much x is different from y.
In other words, it ignores metric information.
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(a) Order learning (b) Metric learning (c) Proposed

Figure 1: Comparison of embedding spaces of (a) order learning (Lim et al., 2020), (b) metric learning
(Schroff et al., 2015), and (c) the proposed algorithm. For each method, we train ResNet18 (He et al.,
2016) to classify the RetinaMNIST data (Yang et al., 2021) into the five ordinal classes, depicted
by blue, orange, yellow, pink, and green markers. For visualization on the unit sphere, the output
dimension of a network is reduced to 3 via a fully connected layer, and each feature is normalized.

On the other hand, metric learning algorithms (Li et al., 2014; Nguyen et al., 2018) employ the triplet
constraint on three objects (x, y, z). It enforces the distance between x and y to be less than that
between x and z in the embedding space if the ranks of (x, y, z) are in the increasing or decreasing
order. By its design, the triplet constraint does not fully exploit the order among objects.

Figures 1 (a) and (b) compare embedding spaces, obtained by order learning and metric learning,
respectively. Order learning sorts instances according to ranks in general, but instances in each class
are scattered in the embedding space. In contrast, metric learning reduces within-class scattering but
does not sort instances properly. For example, both blue and orange ranks are adjacent to the yellow
one, although they should be arranged in the order of blue, orange, and yellow. Unlike ordinary
classification, different errors have different severities in rank estimation: misclassifying an object
in the blue rank as a yellow one is severer than mistaking it for an orange one. Ordering in the
embedding space is important to avoid such severe errors.

We propose a novel algorithm, GOL, to estimate the rank of an object reliably by exploiting both
order and metric relations. To this end, we construct an embedding space, in which the direction
and distance between objects represent the order and metric relations between their ranks. For the
construction, we formulate two geometric constraints in the embedding space: 1) the order constraint
enforces the feature vectors of instances to be arranged according to their ranks, and 2) the metric
constraint makes the distance between instances reflect their rank difference. To satisfy these two
constraints simultaneously, we introduce reference points that guide the region of each rank in the
embedding space. Then, we use the simple k-NN rule in the embedding space to estimate the rank of
a test instance. Extensive experiments show that GOL constructs high-quality embedding spaces and
thus provides excellent rank estimation performances.

The contributions of this paper can be summarized as follows.

• GOL is the first attempt to design an embedding space in which the direction and distance
between objects represent their order and metric relations.

• We introduce a novel metric, called DRR, to assess the quality of embedding spaces for rank
estimation. Then, it is shown that GOL effectively sorts and separates instances according
to their ranks in an embedding space, as illustrated in Figure 1 (c).

• GOL achieves state-of-the-art performances on various benchmark datasets for facial age
estimation, HCI classification, and aesthetic score regression. Specifically, GOL performs
the best in 20 out of 25 benchmark tests.

2 Related Work

Ordinal regression: Many ordinal regression methods have been developed to estimate the rank of
an object directly using classifiers or regressors. Rothe et al. (2015) employed tens of classifiers to
yield the average of their predictions as output. Yi et al. (2014) developed a regressor to estimate the
rank of an image using multi-scale patches. Also, Frank & Hall (2001) employed multiple binary
classifiers, each of which tells whether the rank of an object is higher than a series of thresholds or
not. However, such direct estimation of ranks is challenging even for human beings in general; e.g.,
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humans usually predict only a rough range of another one’s age with limited confidence. Thus, Diaz &
Marathe (2019) trained a regressor using soft ordinal labels to alleviate penalties on close predictions.
Furthermore, Li et al. (2021) and Li et al. (2022) modeled the uncertainty of each prediction as a
Gaussian distribution. In contrast to these methods, the proposed algorithm provides more accurate
rank estimates, although it uses only a single encoder network with the simple k-NN rule and makes
no complicated probabilistic assumptions.

Order learning: Lim et al. (2020) first proposed the notion of order learning, which learns ordering
relationships between objects and determines the rank of an unseen object by comparing it with
references with known ranks. It yields promising results because relative assessment is easier than
absolute assessment in general. Lee & Kim (2021) improved the performance of order learning
by finding more reliable references. They decomposed object information into an order-related
feature and an identity feature and showed that objects with similar identity features can be compared
more reliably. Also, Shin et al. (2022) extended the classification approach in (Lim et al., 2020;
Lee & Kim, 2021) to a regression-based one. These order learning methods, however, require a
significant computational cost to find reliable references from an entire training set. Moreover, for
rank estimation, they should do comparisons with many references with different ranks because they
consider only relative priorities between objects. On the contrary, the proposed algorithm simply
carries out the k-NN search to yield outstanding rank estimation results.

Metric learning: Metric learning aims to construct an embedding space in which the distance
between objects reflects their semantic difference. Most metric learning algorithms (Schroff et al.,
2015; Deng et al., 2019) are for ordinary classification, clustering, or image retrieval tasks. Therefore,
they enforce an object to be located near other objects in the same class in the embedding space but
far from objects in different classes. However, in rank estimation, this approach may be suboptimal
because it does not consider ordinal relationships among classes. For example, in movie rating, it
does not discriminate the class difference between ‘outstanding’ and ‘very good’ from that between
‘outstanding’ and ‘poor.’ To alleviate this problem, Xiao et al. (2009) designed a metric, called
labeled distance, to measure semantic similarities between objects and attempted to preserve local
semantic structures in the feature space. Moreover, to preserve the ordinal relationships, Li et al.
(2012) developed a metric learning algorithm to make the distances between objects proportional
to their rank differences. Also, Tian et al. (2016) employed a series of margins to explicitly impose
different embedding distances according to rank differences. Suárez et al. (2021) attempted to sort
the embedding distances between pairs of objects according to their rank differences.

3 Proposed Algorithm

3.1 Preliminary – Order and Metric

Mathematically, both order and metric are binary relations (Hrbacek & Jech, 1984). An order
(Schröder, 2003), denoted by ≤, on a set Θ = {θ0, θ1, . . . , θM−1} should satisfy the properties of

• Reflexivity: θi ≤ θi for all i,

• Antisymmetry: θi ≤ θj and θj ≤ θi imply θi = θj ,

• Transitivity: θi ≤ θj and θj ≤ θk imply θi ≤ θk.

On the other hand, a metric (Rudin, 1991) is a distance function d satisfying

• Nonnegativity: d(θi, θj) ≥ 0 for all i, j, and d(θi, θj) = 0 if and only if θi = θj ,

• Commutativity: d(θi, θj) = d(θj , θi) for all i, j,

• Triangle inequality: d(θi, θk) ≤ d(θi, θj) + d(θj , θk) for all i, j, k.

In rank estimation, an order describes the priorities of ranks or classes in the set Θ = {θ0, . . . , θM−1},
where each rank represents one or more object instances. For example, in age estimation, θi
may represent i-year-olds, and θ17 < θ32 indicates that 17-year-olds are younger than 32-year-
olds. Let θ(·) be the rank function, and let x and y be instances. Then, θ(x) = θ17 means that
person x is 17-year-old. Also, a metric describes the difference between ranks in Θ. For example,
d(θ(x), θ(y)) = 15 means that two people x and y are 15 years apart.
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Figure 2: An overview of the proposed GOL algorithm. It is recommended to watch the accompanying
video of the proposed algorithm.

3.2 Embedding Space Construction

Given an object instance x, the objective is to estimate its rank θ(x). In such rank estimation, an order
and a metric convey complementary information: the order provides directional information between
ranks, while the metric does length (or magnitude of difference) information. In age estimation, let
us consider three age ranks θ2, θ17, and θ32. Since θ2 < θ17 < θ32, the order informs that θ2 and θ32

are at the opposite sides with respect to θ17. On the other hand, since d(θ2, θ17) = d(θ32, θ17) = 15,
the metric indicates how far θ2 and θ32 are from θ17. In this case, both lengths are identically 15.

For rank estimation, the pairwise comparison methods (Lim et al., 2020; Lee & Kim, 2021; Nguyen
et al., 2018) attempt to learn these relations. However, Lim et al. (2020) and Lee & Kim (2021)
exploit the order relation only, whereas Nguyen et al. (2018) use the metric relation only to train their
neural networks. Thus, the conventional methods may yield sub-optimal results.

To learn both order and metric relations, we propose a geometric approach called GOL. It contains
two types of geometric constraints that enforce directional (order) and distance (metric) relationships
between object instances according to their ranks in an embedding space. Specifically, the order
constraint sorts instances directionally according to the ranks, while the metric constraint separates
two instances farther if their rank difference is larger. Figure 2 is an overview of GOL.

Order constraint: Suppose that there are M ranks in a training set X . Without loss of generality,
the ranks are assumed to be consecutive integers in Θ = {0, 1, . . . ,M − 1}. In Figure 2, an encoder
h maps each instance x ∈ X into a feature vector hx = h(x) in an embedding space. As h, we
adopt VGG16 (Simonyan & Zisserman, 2015) without fully connected layers. The output of the last
pooling layer is normalized so that htxhx = 1. Thus, the embedding space is a unit hypersphere.

As in Lim et al. (2020) and Lee & Kim (2021), we classify the ordering between two instances x and
y in X into three categories:

x � y if θ(x)− θ(y) > τ, x ≈ y if |θ(x)− θ(y)| ≤ τ, x ≺ y if θ(x)− θ(y) < −τ, (1)

where τ is a threshold. For instance ordering, notations ‘≺,≈,�’ are used instead of ‘<,=, >.’

The order constraint encourages instances to be sorted according to their ordering relationships.
In other words, for two instances x and y with ordering x ≺ y, the vector from hx to hy should
be aligned with the direction of the rank increment in the embedding space. To model such rank
directions, we introduce M reference points, r0, r1, . . . , rM−1, which are learnable parameters
guiding the positions of the M ranks in the embedding space. These reference points are randomly
initialized by the Glorot normal method (Glorot & Bengio, 2010) and jointly optimized with encoder
parameters during training.

Let us define the direction vector v(r, s) from point r to point s on the unit hypersphere as

v(r, s) = (s− r)/‖s− r‖. (2)

Then, v(ri, rj) is called the rank direction from rank i to rank j. Also, the rank direction v(ri, rj) is
forward if i < j, and backward if i > j. Note that forward directions may differ from one another,
for they may represent different physical changes. For example, in age estimation, visual variations
from 0-years-old to 5-years-old are mainly due to craniofacial development, whereas those from
45-years-old to 50-years-old are due to skin aging (Geng et al., 2007).

4



If x ≺ y, we determine the forward and backward rank directions, respectively, by

vf = v(rθ(x), rθ(y)), (3)

vb = v(rθ(x), rθ(x)−1). (4)

Then, the encoder is trained so that the embedded features hx and hy satisfy the order constraint:

x ≺ y ⇔ vtfv(hx, hy) > vtbv(hx, hy). (5)

In other words, the direction vector v(hx, hy) should be aligned more with the forward direction vf

than with the backward direction vb.

To enforce the order constraint in (5), we compute the softmax probability pxy = [pxyf , pxyb ]t, where
pxyf = ev

t
f v(hx,hy)/(ev

t
f v(hx,hy) + ev

t
bv(hx,hy)) and pxyb = 1 − pxyf . We then define the order loss

Lorder as the cross entropy between pxy and qxy = [qxyf , qxyb ]t = [1, 0]t, given by

Lorder = qxyf log pxyf + qxyb log pxyb . (6)

The order loss for case x � y is formulated similarly in a symmetric manner.

Metric constraint: Next, we formulate a metric constraint to make the distance between instances
in the embedding space reflect their rank difference. Specifically, it is desirable that

|θ(x)− θ(y)| > τ ⇔ de(hx, hy) > γ (7)

where de is the Euclidean distance in the embedding space, and γ is a margin. Note that if |θ(x)−
θ(y)| > τ , either x ≺ y or x � y in (1).

Hence, the metric constraint in (7) is equivalent to

x ≈ y ⇔ de(hx, hy) ≤ γ (8)

From the triangle inequality, we have |de(ri, hx) − de(ri, hy)| ≤ de(hx, hy) for every reference
point ri. So, if x ≈ y, we also have |de(ri, hx)− de(ri, hy)| ≤ γ. To encourage this inequality, we
define a loss Lx≈y as

Lx≈y =
∑
i∈Θ

max(|de(ri, hx)− de(ri, hy)| − γ, 0). (9)

On the contrary, if x ≺ y, it should be that de(hx, hy) > γ. Thus, we define another loss

Lx≺y =
∑

i:i≤θ(x)

max(de(ri, hx)−de(ri, hy)+γ, 0)+
∑

j:j≥θ(y)

max(de(rj , hy)−de(rj , hx)+γ, 0).

(10)
To minimize the first sum, de(ri, hx) should be reduced, while de(ri, hy) should be increased. Thus,
reference points ri, 0 ≤ i ≤ θ(x), are trained to attract hx and repel hy, as illustrated in Figure 2.
The second sum in (10) is similar. We do not use reference points rl, θ(x) < l < θ(y), which tend
to be between hx and hy and unhelpful for guiding them. The derivation of Lx≺y in (10) from the
metric constraint in (7) is provided in Appendix B. Also, Lx�y is formulated symmetrically.

Then, we define the metric loss Lmetric as

Lmetric = [x � y] · Lx�y + [x ≈ y] · Lx≈y + [x ≺ y] · Lx≺y (11)

where [·] is the indicator function. Note that, in (9) or (10), we make hx and hy attract or repel
each other indirectly through reference points ri. This is because the direct attraction or repulsion
using de(hx, hy) may cause hx and hy to move in arbitrary directions. Because the reference points
are trained also with the order loss in (6), they provide proper directional guidance of attraction or
repulsion in (9) or (10). Experimental analysis on Lx≺y in (10) is available in Section 4.4.

Loss function: In addition to the losses for the order and metric constraints, we employ the center
loss (Nguyen et al., 2018), which aims at locating each reference point ri at the center of all instances
with rank i.

Lcenter = de(rθ(x), hx) + de(rθ(y), hy). (12)
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Table 1: Comparison of B2W and DRR scores on the MORPH II, CACD, and Adience datasets.

MORPH II (setting A) CACD (validation split) Adience

Algorithm B2W DRR1.0 DRR0.5 B2W DRR1.0 DRR0.5 B2W DRR1.0 DRR0.5

ML (Schroff et al., 2015) 41.20 10.06 8.94 3.90 2.89 2.55 5.12 3.21 2.98
MV (Pan et al., 2018) 72.47 10.37 9.80 24.21 6.23 5.84 7.08 3.29 3.24
OL (Lim et al., 2020) 43.94 12.79 11.44 8.77 5.60 4.86 13.29 7.27 6.53
MWR-G (Shin et al., 2022) 30.42 10.66 9.28 9.99 6.00 5.24 7.84 5.20 4.71

Proposed GOL 292.72 29.40 25.77 53.06 12.59 10.82 70.31 32.09 28.37

(e) GOL(c) ML(a) OL (b) MWR-G (d) MV

Figure 3: Comparison of embedding spaces on Adience: (a) OL (Lim et al., 2020), (b) MWR-G (Shin
et al., 2022), (c) ML (Schroff et al., 2015), (d) MV (Pan et al., 2018), and (e) GOL.

Finally, we use the overall loss function to optimize the encoder parameters and the reference points
ri, which is given by

Ltotal = Lorder + Lmetric + Lcenter. (13)

It is worth pointing out that reference points play essential roles in all three loss terms in (13). They
are used to define forward and backward rank directions in Lorder, so they help to sort instances
directionally according to the ranks. The reference points themselves are also sorted since instances
are clustered around the reference points because of Lcenter. Also, as mentioned before, the reference
points provide proper directional guidance of attraction or repulsion in Lmetric to satisfy the metric
constraint. In other words, GOL uses the reference points to satisfy both order and metric constraints
simultaneously and thus constructs a well-arranged, well-clustered embedding space.

3.3 k-NN Rank Estimation

For rank estimation, we use the simple k-NN rule. Given a test instance x, in the embedding space,
we find a set N of its k NNs among all training instances in X . Then, the rank of x is estimated by

θ̂(x) =
1

k

∑
y∈N

θ(y). (14)

4 Experimental Results

We conduct experiments on embedding space construction and rank estimation. Implementation
details and more results are available in Appendices C and D, respectively.

4.1 Implementation

We initialize an encoder h with VGG16 pre-trained on ILSVRC2012 (Deng et al., 2009) and reference
points with the Glorot normal method (Glorot & Bengio, 2010). The Adam optimizer (Kingma &
Ba, 2015) is used with a batch size of 32 and a weight decay of 5 × 10−4, and the initial learning
rates for the encoder and the reference points are set to 10−4 and 10−3, respectively. We perform the
scheduled learning according to cosine annealing cycles (Huang et al., 2017). For data augmentation,
we do random horizontal flips only.

4.2 Embedding Spaces

The proposed GOL algorithm attempts to design an embedding space in which both order and metric
constraints are satisfied: instances should be well sorted according to their ranks and well separated
if they have big rank differences.
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Table 2: Comparison of facial age estimation results in the four evaluation settings (A, B, C, and D)
of MORPH II. Here, * means that IMDB-WIKI pre-training is performed.

Setting A Setting B Setting C Setting D

Algorithm MAE CS (%) MAE CS (%) MAE CS (%) MAE CS (%)

DRFs (Shen et al., 2018) 2.91 82.9 2.98 - - - 2.17 91.3
MV (Pan et al., 2018)* - - - - 2.79 - 2.16 -
C3AE (Chao et al., 2019)* - - - - - - 2.75 -
BridgeNet (Li et al., 2019)* 2.38 91.0 2.63 86.0 - - - -
AVDL (Wen et al., 2020)* 2.37 - 2.53 - - - 1.94 -
OL (Lim et al., 2020)* 2.41 91.7 2.75 88.2 2.68 88.8 2.22 93.3
DRC-ORID (Lee & Kim, 2021)* 2.26 93.8 2.51 89.7 2.58 89.5 2.16 93.5
MWR-G (Shin et al., 2022)* 2.24 93.5 2.55 90.1 2.61 89.5 2.16 93.0

Proposed GOL 2.17 93.8 2.60 89.3 2.51 90.0 2.09 94.2

To measure the quality of an embedding space for rank estimation, we may adopt the between-class
variance to within-class variance (B2W) criterion in Fisher’s linear discriminant (Duda et al., 2006),

B2W =
(∑
i∈Θ

|Xi|d2
e(ci, c)

)
/
(∑
i∈Θ

∑
x∈Xi

d2
e(hx, ci)

)
(15)

whereXi = {x ∈ X | θ(x) = i}, ci =
∑
x∈Xi

hx/|Xi| is the centroid forXi, and c =
∑
x∈X hx/|X |

is the centroid for all instances inX . A high B2W score indicates that the rank setsXi, 0 ≤ i ≤M−1,
are well separated from one another, while instances in each rank set are compactly distributed.

However, B2W does not consider the ordinal relationships of ranks in Θ since it was formulated for
ordinary classification. Therefore, to assess embedding spaces for rank estimation, we propose the
discriminative ratio for ranking (DRR), given by

DRRβ =

∑
i,j∈Θ:i<j(j − i)βde(ci, cj)/

∑
i,j∈Θ:i<j(j − i)β∑

i∈Θ

∑
x,y∈Xi:x 6=y de(hx, hy)/

∑
i∈Θ

∑
x,y∈Xi:x6=y 1

(16)

which is the ratio of the average pairwise centroid distance to the average pairwise instance distance
in each rank set. Note that, in the numerator, ordinal weights (j − i)β are used to emphasize the
difference between a pair of rank sets with a large rank difference. Here, β is a nonnegative parameter
for controlling the level of emphasis. A high DRR score is obtained when instances are well sorted
and well separated according to their ranks in the embedding space.

Table 1 compares the B2W and DRR scores on the MORPH II (Ricanek & Tesafaye, 2006),
CACD (Chen et al., 2015), and Adience (Levi & Hassner, 2015) train data. To compare the embedding
spaces as fairly as possible, we use the same encoder backbone of VGG16 for all algorithms. GOL
significantly outperforms all conventional algorithms in all tests. In GOL, instances within each rank
set Xi are located compactly around reference point ri by Lcenter in (12), while those in different rank
sets are well separated by Lmetric in (11). Hence, GOL yields outstanding B2W scores. Moreover,
GOL excels with a larger score gap in DRR1.0 than in DRR0.5, which means that it arranges the rank
sets effectively in the embedding space to reflect their ordinal relationships using Lorder in (6).

Figure 3 visualizes the embedding spaces on Adience. As in Figure 1, we add a fully connected layer
with 3 output neurons to each encoder for the visualization. In (a) and (b), instances are sorted but
scattered over the spaces, as the order learning algorithms (Lim et al., 2020; Shin et al., 2022) ignore
the metric relation of ranks. In (c), instances in each rank set are well clustered, but the rank sets are
not sorted because ML (Schroff et al., 2015) neglects the order relation. In (d), MV (Pan et al., 2018),
which is an ordinal regressor, exhibits large within-class scattering, as well as large between-class
scattering. In contrast, in (e), GOL constructs a well-sorted, well-clustered embedding space.

4.3 Rank Estimation

Since GOL constructs high-quality embedding spaces, it provides excellent rank estimation perfor-
mances even with the simple k-NN rule.

Facial age estimation: We use four datasets of MORPH II (Ricanek & Tesafaye, 2006), CACD
(Chen et al., 2015), UTK (Zhang et al., 2017), and Adience (Levi & Hassner, 2015), as detailed in
Appendix D.3.
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Table 3: Comparison in the train and valida-
tion settings of CACD and also on UTK.

Train Validation UTK

Algorithm MAE MAE MAE

dLDLF (Shen et al., 2017) 4.73 6.77 -
AGEn (Tan et al., 2017) 4.68 - -
DRFs (Shen et al., 2018) 4.64 5.77 -
CORAL (Cao et al., 2020) - - 5.47
Gustafsson et al. (2020) - - 4.65
Berg et al. (Berg et al., 2021) - - 4.55
MWR-G (Shin et al., 2022) 4.76 5.75 4.49

Proposed GOL 4.52 5.58 4.35

Table 4: Accuracy (%) and MAE comparison on
the Adience and HCI datasets.

Adience HCI

Algorithm Acc. MAE Acc. MAE

OR-CNN (Niu et al., 2016) 56.7 0.54 38.7 0.95
CNNPOR (Liu et al., 2018) 57.4 0.55 50.1 0.82
GP-DNNOR (Liu et al., 2019) 57.4 0.54 46.6 0.76
SORD (Diaz & Marathe, 2019) 59.6 0.49 - -
DRC-ORID (Lee & Kim, 2021) - - 44.7 0.80
POE (Li et al., 2021) 60.5 0.47 54.7 0.66
MWR-G (Shin et al., 2022) 62.2 0.46 52.2 0.60

Proposed GOL 62.5 0.43 56.2 0.55

Table 5: Accuracy (%) and MAE comparison on the aesthetics dataset.
Nature Animal Urban People Overall

Algorithm Acc. MAE Acc. MAE Acc. MAE Acc. MAE Acc. MAE

CNNm (Liu et al., 2018) 71.0 0.31 68.0 0.34 68.2 0.36 71.6 0.32 69.5 0.33
CNNPOR (Liu et al., 2018) 71.9 0.29 69.3 0.32 69.1 0.33 69.9 0.32 70.1 0.32
SORD (Diaz & Marathe, 2019) 73.6 0.27 70.3 0.31 73.3 0.28 70.6 0.31 72.0 0.29
POE (Li et al., 2021) 73.6 0.27 71.1 0.30 72.8 0.28 72.2 0.29 72.4 0.29

Proposed GOL 73.8 0.27 72.4 0.28 74.2 0.26 69.6 0.31 72.7 0.28

In Table 2, we compare the performances in the four evaluation settings of MORPH II, which is one
of the most popular datasets in age estimation. We use the mean absolute error (MAE) and cumulative
score (CS) metrics. MAE is the average absolute error between estimated and ground-truth ages (i.e.
ranks), and CS computes the percentage of images whose absolute errors are less than or equal to
a tolerance level l = 5. Note that all algorithms in Table 2 use VGG16 as the encoder backbones,
except for C3AE employing a shallow CNN. As for Shin et al. (2022), the scores of the global
ρ-regressor are compared since their local scheme employs as many as six independent VGG16
encoders recursively. GOL performs the best in 5 out of 8 tests, including setting C, which is the
most challenging task. Furthermore, unlike most conventional algorithms, GOL does not do the
IMDB-WIKI pretraining to boost performances. Even without the pretraining, i.e. by employing only
MORPH II training data, GOL yields outstanding results in Table 2.

Table 3 compares the results on CACD, which is a bigger dataset containing over 100,000 natural
face shots in diverse environments. GOL outperforms the second-best methods with meaningful gaps
of 0.12 and 0.17 in the train and validation settings, respectively, which indicates that it can cope
with large and diverse data effectively as well.

Table 3 also compares the results on UTK. Note that Gustafsson et al. (2020) and Berg et al. (2021)
employ the deep ResNet50 network (He et al., 2016) as their encoders, and MWR-G (Shin et al.,
2022) predicts ranks using a complicated, recursive regressor. In contrast, GOL uses the shallower
VGG16 encoder and performs rank estimation based on the simple k-NN search. Nevertheless, it
yields an excellent result, for its geometric constraints help to construct an effective embedding space.

Table 4 shows the results on Adience, where each image is labeled as one of 8 age groups. Compared
with the second-best MWR-G, GOL improves the accuracy by 0.3% and reduces MAE by 0.03.

HCI classification: The HCI dataset (Palermo et al., 2012) is used for estimating the shooting
decade of a photograph. It contains 1,325 images from five decades 1930s ∼ 1970s. Table 4 lists
the results on HCI. GOL yields the best performances as well, by improving the accuracy by 1.5%
and reducing MAE by 0.05 as compared with the second-best methods. This means that GOL yields
reliable results even for a small dataset, which may be unfavorable for the k-NN estimation.

Aesthetic score regression: The aesthetics dataset (Schifanella et al., 2015) contains 15,687 images
in four categories. Each image is annotated with a 5-scale aesthetic score. In Table 5, we follow the
experimental setting in (Liu et al., 2018). It is challenging to estimate aesthetic scores reliably due to
the subjectivity and ambiguity of aesthetic criteria, but GOL performs the best in 8 out of 10 tests.
Compared with the state-of-the-art POE (Li et al., 2021), GOL improves the accuracy by 0.3% and
reduces MAE by 0.1 overall.
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Table 6: Ablation studies for the loss function in (13) on the MORPH II and CACD datasets.

MORPH II (setting A) CACD (validation split)

Lorder Lmetric Lcenter MAE B2W DRR1.0 DRR0.5 MAE B2W DRR1.0 DRR0.5

I X 8.71 9 · 10−4 0.07 0.06 10.0 0.05 0.42 0.38
II X X 2.71 21.48 8.89 7.69 8.59 5.16 2.66 2.65
III X X 2.43 44.94 10.93 9.63 6.14 12.72 5.79 5.07
IV X X X 2.17 292.7 29.40 25.77 5.58 53.06 12.59 10.82

(a) 𝐿center (b) 𝐿center + 𝐿order (c) 𝐿center + 𝐿metric (d) GOL
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Figure 4: Visualizing the embedding spaces of the ablated methods in Table 6 on the CACD dataset:
(top) reduced 3D spaces and (bottom) t-SNE visualizations of original 512D spaces.

Table 7: MAE comparison of alternative choices for Lx≺y in (10) on MORPH and CACD.
Method Alternative to Lx≺y MORPH (setting A) CACD

I max(γ − de(hx, hy), 0) 2.35 5.77
II max(de(rθ(x), hx)− de(rθ(x), hy) + γ, 0) + max(de(rθ(y), hy)− de(rθ(y), hx) + γ, 0) 2.34 5.75
III (10) 2.17 5.58

4.4 Analysis

Ablation study: Table 6 compares ablated methods for the loss function in (13). Method I employs
Lcenter only. In II and III, Lmetric and Lorder are excluded, respectively. Compared with IV (GOL),
method I degrades the performances severely, since the center loss alone cannot construct a meaningful
embedding space; a trivial solution to minimize Lcenter can be obtained by merging all instances
and all reference points into a single point. Also, from II and IV, we see that the metric constraint
significantly improves the performances by separating instances with different ranks from each other.
From III and IV, we see that the order constraint also improves the results by arranging instances
directionally according to their ranks. To summarize, both order and metric constraints improve the
results and are complementary to each other.

Figure 4 (a)∼(d) show the embedding spaces for the ablated methods I∼IV in Table 6, respectively.
The top row visualizes the reduced 3D embedding spaces, as described in Appendix C.2, while the
bottom row does the original 512D embedding spaces via t-SNE (Maaten & Hinton, 2008). In (a),
only Lcenter is used, so the 3D embedding space almost collapses to a single point. In (b), instances
are directionally aligned, but adjacent rank sets overlap one another. In (c) and (d), the 3D embedding
spaces seem similar. However, GOL yields more clearly ordered instances in the t-SNE visualization
of the original embedding space than ‘Lcenter + Lmetric’ does.

Alternatives to Lx≺y: Table 7 compares alternative loss terms for Lx≺y in (10). Method I directly
increases de(hx, hy) to make it larger than γ. Method II uses only two reference points rθ(x) and rθ(y).
In other words, unlike method III (i.e. GOL), it does not employ reference points ri, 0 ≤ i < θ(x),
and θ(y) < rj ≤M − 1. For each method, Lx�y is also modified accordingly. Method I degrades
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Figure 5: The transition of an embedding space for the Adience dataset during the GOL training.

Table 8: Comparison with order learning algorithms in terms of testing time and network complexity.

Algorithm Time (ms) # parameters (M)

OL (Lim et al., 2020) 11.18 15.51
DRC-ORID (Lee & Kim, 2021) 4.93 45.86
MWR-G (Shin et al., 2022) 1.61 15.77

Proposed GOL 0.07 14.75

the performances badly, as hx and hy move in arbitrary directions. Also, GOL performs better than
II because attraction and repulsion with many reference points facilitate the positioning of instances
in the embedding space, as well as the reference points themselves.

Embedding space transition: Figure 5 visualizes the transition of an embedding space for Adience.
As the GOL training step goes on, we see that instances are gradually sorted and separated according
to their ranks to satisfy the geometric constraints. After the convergence, for each rank, the reference
point ri and the centroid ci are close to each other, indicating that instances are clustered around their
reference points. Moreover, those reference points are well sorted as well.

Comparison with order learning: The conventional order learning algorithms (Lim et al., 2020;
Lee & Kim, 2021; Shin et al., 2022) provide competitive ranking performances, but they require
relatively heavy computations. Table 8 lists the testing times. To estimate the rank of a test instance,
OL uses five references for each of the M ranks; e.g., 300 comparisons should be made if M = 60 as
in typical age estimation. Moreover, OL and DRC-ORID need additional processes, such as MAP
estimation, to estimate a rank based on ordering relationships. Also, MWR-G estimates the rank by
comparing a test instance with multiple reference pairs recursively. In contrast, GOL simply performs
the k-NN estimation, which can be done efficiently in a parallel manner, and thus is about 160 and 23
times faster than OL and MWR-G, respectively.

Furthermore, the order learning algorithms should select references among a training set X through
a complicated optimization process; e.g., OL compares all possible pairs of training instances with
O(|X |2) complexity to select the most reliable references, and DRC-ORID (Lee & Kim, 2021)
performs joint network training and clustering for reference selection. On the contrary, GOL requires
no such process. Also, in Table 8, the proposed algorithm demands the fewest parameters because it
directly estimates the rank of an instance in the embedding space through the k-NN search, whereas
the order learning algorithms should adopt comparators or regressors tailored for each task.

5 Conclusions

The GOL algorithm for rank estimation was proposed in this work. First, we construct an embedding
space based on the two geometric constraints, which enforce the direction and distance between
instances to represent the order and metric relations between their ranks. Then, we perform the
simple k-NN search in the embedding space for rank estimation. Extensive experiments on various
rank estimation tasks demonstrated that GOL constructs high-quality embedding spaces and yields
excellent rank estimation results.
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