
Ethical considerations

This work aims at advancing our understanding of weakly supervised learning. Weakly supervised
learning enrolls in the quest of an automated artificial intelligence, free from the need of human
supervision. Automation, which is at the basis of computer science [51], is known to increase
productivity at a reduced human labor cost, and is associated with several political/societal issues. In
term of concrete applications, reducing the need for annotations is especially useful when humans
reproduce biases when annotating data, or when the lack of output annotation restricts the outreach
of a method (e.g., learning to translate languages by collecting input/output pairs based on books
already translated by humans can hardly be applied to languages with few written resources).

A Extensions: Least-square surrogate and partially supervised learning

In this section, we first show how our work can be extended to generic semi-supervised learning
problem, beyond real-valued regression. This first extension is based on the least-square surrogate
introduced by Ciliberto et al. [13] for structured prediction problems. We later show how our work
can be extended to generic partially-supervised learning. This second extension is based on the work
of Cabannes et al. [7].

A.1 Structured prediction and least-square surrogate

Until now, we have considered the least-square problem with Y ∈ R. Indeed, our work can be
extended easily to a wide class of learning problem. Consider Y an output space, ` : Y × Y → R a
loss function, and keep X ⊂ Rd and ρ ∈ ∆X×Y . Suppose that we want to retrieve

f∗ = arg min
f :X→Y

R(f), with R(f) = E(X,Y )∼ρ [`(f(X), Y )] . (12)

Ciliberto et al. [13] showed that as soon as ` can be decomposed through two mappings ϕ : Y → HY
and ψ : Y → HY with HY a Hilbert space as `(y, z) = 〈ϕ(y), ψ(z)〉HY , it is possible to leverage
the least-square regression by considering the surrogate problem

g∗ ∈ arg min
g:X→HY

E(X,Y )∼ρ

[
‖g(X)− ϕ(Y )‖2HY

]
. (13)

This surrogate problem relates to the original one through the decoding d that relates a surrogate
estimate g : X → HY to an estimate of the original problem f : X → Y as f = d(g) defined
through, for x ∈ supp ρX ,

f(x) = arg min
z∈Y

〈ψ(z), g(x)〉HY . (14)

In the real-valued regression case, presented precedently, our estimates for gn can all be written
as gn(x) =

∑n`

i=1 βi(x)Yi, where βi(x) is a function of the (Xi)i≤n, involving the kernel k and
its derivatives. Those estimates can be cast to vector-valued regression by considering coordinates-
wise regression2, which leads to gn(x) =

∑n`

i=1 βi(x)ϕ(Yi), and to the original estimates, for any
x ∈ supp ρX ,

fn(x) ∈ arg min
z∈Z

n∑̀
i=1

βi(x)`(z, Yi). (15)

The behavior of fn being independent of the decomposition (ϕ,ψ) of ` was referred to as the loss
trick. In particular, Ciliberto et al. [13] showed that convergence rates derived between ‖gn − g∗‖L2

does not change if we consider g : X → R or g : X → HY and that those rates can be cast directly as
convergence rates betweenR(fn) andR(f∗) with fn = d(gn) defined by Eq.(14). Moreover, when
Y is a discrete output space, it is possible to get much better generalization bound onR(fn)−R∗by
introducing geometrical considerations regarding g∗ and decision frontier between classes [9].

2To parameterize functions g fromX toHY , we can parameterized independently each coordinates 〈g, ei〉HY ,
for (ei) a basis ofHY , by the space G – note that it is possible to generalize real-valued kernel to parameterize
coordinates in a joint fashion [10]. The coordinate-wise parameterization corresponds to the tensorization
H′ = HY ⊗ H and to the parametric space G′ = {x→ Θkx |Θ ∈ H′} of functions from X to HY . G′
naturally inherits of the Hilbertian structure ofH′, itself inherited from the structure ofH andHY .
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Example 2 (Binary classification). This framework aims at generalizing well known surrogate
considerations in the case of the binary classification. Binary classification corresponds to Y =
{−1, 1}, ` the 0− 1 loss. In this setting,HY = R, ϕ : Y → R; y → y, and ψ = −ϕ. This definition
verifies `(y, z) = .5 − .5ϕ(y)>ϕ(z) ' ϕ(y)>ψ(z). This corresponds to the usual least-square
surrogate, which isRS(g) = E[‖g(X)− Y ‖2], g(x) = E [Y |X = x] and f = sign g.

Beyond least-squares. Considering a least-square surrogate assumes that retrieving g∗ (13) is
the way to solve the original problem (12) and that the low-density separation hypothesis can be
expressed as Assumption 1 being verified by g∗. We would like to point out that the low-density
separation could be expressed under a much weaker form, which is that there exists g such that
f∗ = d(g) (14) and g verifies Assumption 1. In particular, the cluster assumption [43] could be
understood as assuming that g = ϕ(f∗), the trivial embedding of f∗ inHY , is constant on clusters,
with means that g belongs to the kernel of the Laplacian operator L. Yet, g∗ : x→ E[ϕ(Y )|X = x],
which depends on the labelling noise, could be really non-smooth, even under the cluster assumption.
Those considerations are related to an open problem in machine learning, which is that we do not
know what is the best statistical way (and the best surrogate problem) to solve the fully supervised
binary classification problem [see e.g. 59]. However, many points introduced in the work could be
retaken with other surrogate, could it be SVM (which leads to g∗ = ϕ(f∗), with g∗ minimizing the
Hinge loss), softmax regression (used in deep learning) or others.

A.2 Partially supervised learning

Partial supervision is a popular instance of weak supervision, which generalizes semi-supervised
learning. It has been known under the name of partial labelling [15], superset learning [31], as well
as learning with partial label [23], with partial annotation [32], with candidate labeling set [33] or
with multiple label [26]. It encompasses many problems such as “classification with partial labels”
[38, 15], “multilabelling with missing labels” [57], “ranking with partial ordering” [25], “regression
with censored data” [50], “segmentation with pixel annotation” [53, 39], as well as instances of
“action retrieval”, especially on instructional videos [2, 35].

It consists, for a given input x, in not observing its label y ∈ Y , but observing a set of potential labels
s ∈ 2Y that contains the labels (y ∈ s). Typically, if Y is the space Sm of orderings between m items
(e.g. movies on a streaming website), for a given input x (e.g. some feature vectors characterizing
a user) s might be specified by a partial ordering that the true label y should satisfy (e.g. the user
prefers romantic movies over action movies).

In this setting, it is natural to create consensus between the different sets giving information on (y|x),
which has been formalized mathematically by the infimum loss (z, s) ∈ Y×2Y → infy∈s `(z, y) ∈ R
for ` : Y × Y → R a specified loss on the underlying fully supervised learning problem. This
leads, for τ ∈ ∆X×2Y encoding the distribution generating samples (X,S), to the formulation
f∗ ∈ F = arg minf :X→Y E(X,S)∼τ [infY ∈S `(f(X), Y )] . To study this problem, a non-ambiguity
assumption is usually made [15, 33, 31, 7, 8]. This is a very strong assumption to ensure that F is,
in essence, a singleton. Highly adequate to this setting, the Laplacian regularization allows to relax
this assumption, assuming that F can be big, but that we can discriminate between function in F
by looking for the smoothest one in the sense defined by the Laplacian penalty. Moreover, the loss
trick (15) allows to endow, in a off-the-shelf fashion, the recent work of Cabannes et al. [7, 8] on the
partial supervised learning problem with our considerations on Laplacian regularization.

B Experiments

B.1 Low-rank approximation

Cutting computation cost thanks to low-rank approximation, as we did by going from the naive
exact empirical risk minimizer ĝ Eq. (5) to the smart implementation ĝp Algorithm 1, is associated
with a trade-off between computational versus statistical performance. This trade-off can be studied
theoretically thanks to Theorem 1, which shows that under mild assumptions, considering p =
n1/2 log(n) does not lead to any loss in performance, in the sense that the convergence rates in n, the
number of samples, are only changed by a constant factor. We show on Figure 4 that in the setting of
Figure 3, our low-rank approximation is not associated with a loss in performance. Actually low-rank
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Figure 4: Cut in computation cost are not associated with a loss in performance. The estimate ĝp Algorithm
1 (in blue), based on low-rank approximation that cut computation cuts performs as well as the exact
computation of ĝ Eq. (5). (Left) Classification error in the setting of Figure 3. (Right) Regression error
in the same setting. The fact that the error of the graph-based method stalls around one, is due to the
amplitude of the estimate being very small, which is coherent with behaviors described in [37].
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Figure 5: Setting of Figure 3 with n = 1000. (Left) Training set. We represent a cut of X ⊂ Rd according
to the two first coordinates {(x1, x2) | (x1, x2, · · · , xd) ∈ X}. We have two Gaussians distribution with
unit variance, one centered at x = (0, 0, · · · 0) and the other one centered at x = (3, 0, · · · , 0). One of
the Gaussian distribution is associated to the blue class, the other one with the orange class. We consider
n = 1000 unlabelled points, represented by small points, colored according to their classes, and n` = 100
labelled points, represented in colour with black edges. (Middle) Reconstruction with our kernelized
Laplacian methods. Our method uncovers correctly the structure of the problem, allowing to make a
quite optimal reconstruction. The optimal decision frontier being illustrated by the grey line ∂X . (Right)
Reconstruction with graph-Laplacian. The graph-Laplacian diffuses information too far away from what it
should, leading to many incorrect guesses.

approximation can even be beneficial as it tends to lower the risk for overfitting as discussed by Rudi
et al. [45].

B.2 Comparison with graph-based Laplacian

One the main goal of this paper is to make people drop graph-based Laplacian methods and adopt
our “kernelized” technique. As such, we would like to discuss in more detail our comparison with
graph-based Laplacian. In particular, we will discuss how and why we choose the hyperparameters
and the setting of Figure 3.

The setting of Figure 3 is the one of Figure 5, we considered two Gaussians with unit variance
and whose centers are at distance δ = 3 of each other. We chose Gaussians distributions as it is a
well-understood setting. We chose δ = 3 so that there is an mild overlap between the two distributions.
For the bandwidth parameter, we considered σn = Cn−

1
d+4 log(n) as this is known to be the optimal

bandwidth for graph Laplacian [24]. We chose C = 1 as this leads to σn of the order of δ. We
chose λ = 1 to enforce Laplacian regularization and µn = 1/n, as this is a classical regularization
parameter in RKHS. We did not cross-validate parameters in order to be fair with graph-Laplacian
that do not have as much parameters as our kernel method. We compute the error in a transductive
setting, retaking the exact problem and algorithm of Zhu et al. [62]. We choose d = 10, as we know
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Figure 6: Usefulness of Laplacian regularization. We illustrate the reconstruction based on our spectral
filtering techniques based on the sole use of the covariance matrix Σ on the left, and on the sole use of the
Laplacian matrix L on the right. We see that the covariance matrix does not capture the geometry of the
problem, which contrasts with the use of Laplacian regularization.

that this is a good dimension parameter in order to illustrate the curse of dimensionality phenomenon
without needing too much data.3

B.3 Usefulness of Laplacian regularization

It is natural to ask about the relevance of Laplacian regularization. To give convergence results,
we have used Assumptions 1 and 2, which imply that g∗ belongs to the RKHS H, and we got
convergence rates in n1/2l , which is not better than the rates we could get with pure kernel ridge
regression. In particular, our algorithm can be split between an unsupervised part that learn the
penalty

∥∥L1/2g
∥∥2
L2(ρX )

and a supervised part, that solve the problem of estimating gλ from few labels
(Xi, Yi) given the penalty associated to L. But the same method can be used for pure kernel ridge
regression: unsupervised data could be leveraged to learn the covariance matrix Σ (6), and supervised
data could be used to get Ŝ?gρ to converge towards S?gρ. The same analysis would yield the same
type of convergence rates. Yet the parameter σ` appearing in Theorem 1 would not be linked with the
variance of Y (I + λL+ λµK−1)−1δX but with the variance of Y (I + µK−1)−1δX . This is a key
fact, the geometry of the covariance operator Σ is not supposed to be that relevant to the problem,
while the one of L is. We illustrate this fact on Figure 6.

C Central Operators

The paper makes an intensive use of operators. This section aims at providing details and intuitions
on those operators, in order to help the reader. In particular, we discuss on Assumptions 1 and 2 and
we prove the equality in Eq. (6).

C.1 The diffusion operator

In this subsection, we discuss on the diffusion operator, and recall its basic properties.

The diffusion operator is a well-known operator in the realm of partial differential equation. Let us
assume that ρX admit a smooth density ρX (dx) = p(x)dx, say p ∈ C2(Rd), that cancels outside a
domain Ω ⊂ Rd. Then the diffusion operator L can be explicitly written, for g twice differentiable, as

Lg(x) = −∆g(x) +
1

p(x)
〈∇p(x),∇g(x)〉 .

3Note that our consistency result Theorem 1 describes a convergence regime that applies to a vast class
of problems. Such a regime usually takes place after a certain number of data (depending on the value of the
constant C). Before entering this regime, describing the error of our algorithm would require more precise
analysis specific to each problem instance, eventually involving tools from random matrix theory.
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Table 1: Notations

Symbol Description

(Xi)i≤n n samples of input data
(Yi)i≤nl

nl labels
ρ Distribution of (X,Y )
gρ Function to learn (1)
λ, µ Regularization parameters

gλ, gλ,µ Biased estimates (3, 4)
ĝ Empirical estimate (5)
ĝp Empirical estimate with low-rank approximation (Algo. 1)
H Reproducing kernel Hilbert space
k Reproducing kernel
S Embedding ofH in L2

S? Adjoint of S, operating from L2 toH
Σ = S?S Covariance operator onH
K = SS? Equivalent of Σ on L2

L Diffusion operator (a.k.a Laplacian)
L = S?LS Restriction of the diffusion operator toH

g Generic element in L2

θ Generic element inH
λi Generic eigen value
ei Generic eigen vector in L2

This follows from the fact that for f once and g twice differentiable, using Stokes theorem,

〈f,Lg〉L2(ρX ) = 〈∇f,∇g〉L2(ρX ) = 〈∇f, p∇g〉L2(dx)

=

∫
X

div(fp∇g) dx− 〈f, div(p∇g)〉L2(dx) = −〈f, div(p∇g)〉L2(dx)

= −
〈
f, p−1 div(p∇g)

〉
L2(ρX )

= −
〈
f, div∇g + p−1(∇p).∇g

〉
L2(ρX )

.

Note that when the distribution is uniform on Ω, the diffusion operator is exactly the opposite usual
Laplacian operator ∆. As for the Laplacian case, it can be shown that under mild assumption on
p, whose smoothness properties directly translates to the smoothness properties of the boundary of
Ω, that the diffusion operator L has a compact resolvent (that is, for λ /∈ spec(L), (L + λI)−1 is
compact). This is a standard result implied by a standard version of the famous Rellich-Kondrachov
compactness embedding theorem: H2(Ω) is compactly injected in L2(Ω) whenever Ω is a bounded
open with C2-boundaries.

In such a setting, we can consider the eigenvalue decomposition ofL−1, that is, (λi, ei) ∈ (R+×L2)N,
with (ei)i∈N an orthonormal basis of L2 and (ei)i≤dimkerL generating the null space of L, with the
convention λi = M for i ≤ dim kerL, with M an abstraction representing +∞, and (λi) decreasing
towards zero afterwards. This decomposition reads

L−1 =
∑
i∈N

λiei ⊗ ei. (16)

Note that the fact that all the (λi) are positive, is due to the fact that L−1 is the inverse of a positive
self-adjoint operator. As a consequence, the diffusion operator has discrete spectrum, and can be
written as

L =
∑
i∈N

λ−1i ei ⊗ ei. (17)

In such a setting, the kernel-free Tikhonov regularization Eq. (3) reads

gλ =
∑
i∈N

ψ(λi)
〈
gρ, λ

1/2
i ei

〉
L2
λ
1/2
i ei, (18)

with ψ : x→ (x+ λ)−1, and the convention Mψ(M) = 1.
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C.2 Regularity of the eigen vectors of the diffusion operator

In this subsection, we discuss on the regularity assumed in Assumption 2.

Introducing the kernel k and its associated RKHSH is useful when the eigen vectors of L can be well
approximated by functions inH. In applications, people tends to go for kernels that are translation-
invariant, which implied that the RKHS H is made of smooth functions, could it be analytical
functions (for the Gaussian kernel) or functions in Hm (for Sobolev kernels). As a consequence, we
should investigate on the regularity of those eigen vectors. Indeed, if ρ derives from a Gibbs potential,
that is ρ(dx) = e−V (x) dx, the eigen vectors of L can be shown to inherit from the smoothness of
the potential V [41]. For example if V belongs to Hm, and Hm ⊂ H, we expect (ei) to belongs to
H, thus verifying Assumption 2.

Counter-example and beyond Assumption 2. Note that if ρ has several connected components
of non-empty interiors, the null space of L is made of functions that are constants on each connected
components of supp ρX . Those functions are not analytic. In such a setting, the Gaussian kernel is
not sufficient for Assumption 2 to hold, and one should favor kernel associated with richer functional
space such as the Laplace kernel or the neural tangent kernel [12]. However, as illustrated by Figure
2, ei not belonging toH does not mean that ei can not be well approximated byH. Indeed it is well
known that the approximation power of H for ei can be measure in the biggest power p such that
ei ∈ imKp [10], where K = SS∗. Assumption 2 corresponds to p = 1/2, but it should be seen as a
specific instance of more generic approximation conditions.

Handling constants in RKHS. Finally, note also that many RKHS do not contain constant func-
tions, and therefore might not contain the constant function e0 (although we are only looking for
equality in the support of ρX ), however this specific point with e0 can easily be circumvent either
by assuming that gρ has zero mean, either by centering the covariance matrices Σ and Σ̂ [41]. This
relates with the usual technique for SVM consisting in adding a unpenalized bias [49].

C.3 Low-density separation

In this subsection, we discuss on how Assumption 1 relates to the idea of low-density separation.

Low-variation intuition. The low-density separation supposes that the variations of g∗ take place
in region with low-density, so that

∥∥L1/2g∗
∥∥ / ‖g∗‖ is small. As such, using Courant-Fischer

principle, Assumption 1 can be reformulated as g∗ belonging to the space

Span {ei}i≤r = arg min
F⊂L2;
dimF=r

max
g∈F

∥∥L−1/2f∥∥2
L2

‖f‖2L2

.

In other terms, Assumption 1 can be restated as g∗ belonging to a finite dimensionnal space that
minimizes a measure of variation given by the Dirichlet energy.

To tell the story differently, suppose that we are in a classification setting, i.e. Y ∈ {−1, 1}, and that
the supp ρX is connected. Then we know that the null space of L is made of constant functions. Then
the first eigen vector e2 of L is a function that is orthogonal to constants. Hence e2 is a function that
changes its sign and that is “balanced” in the sense that E[e2] = 0 – i.e. if e2(x) = Eµ[Y |X = x]
for some measure µ, we have Eµ[Y ] = 0, meaning that classes are “balanced”. Moreover, in order to
minimize

∥∥L1/2e2
∥∥, the variations of e2 should take place in low-density regions of X .

Diffusion intuition. Finally, as L is a diffusion operator, we also have an interpretation of Assump-
tion 1 is term of diffusion. Consider (λi, ei) the eigen elements of Eq. (17). The diffusion of gρ
according the density ρX can be written as, for t ∈ R,

gt = e−tLgρ =
∑
i∈N

e−tλ
−1
i 〈gρ, ei〉 ei.

This diffusion will cut off the high frequencies of gρ that corresponds to 〈gρ, ei〉 for big i, and big
λ−1i . Indeed, the difference between the diffusion and the original gρ can be measured as

‖gt − gρ‖2L2 =
∑
i∈N

(e−tλ
−1
i − 1)2 〈gρ, ei〉2 =

∑
i∈N

t2λ−2i 〈gρ, ei〉
2

+ o(t2λ−2i ).
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So that assuming that gρ is supported on few of the first eigen vectors of L, can be rephrased as
saying that the diffusion of gρ does not modify it too much.

The variance σ`. Theorem 1 shows that the need for labels depends on the variance parameter σ2
` .

It is natural to wonder on how this parameters relates to the low-density hypothesis. As we discussed,
this parameter is linked to the variance of Z = Y (I + λL)−1δX . We can separate the variability of
this variable due to X and the variability due to Y
Z = ZX +ZY , with ZX = (I+λL)−1gρ(X)δX , ZY = (I+λL)−1(Y −E[Y |X])δX .

As such we see that this variance depends on the structure of the density ρX with the variance of
(I + λL)−1δX , and the labelling noise with the variance of (Y |X). The low-density separation
does not tell us anything about the level of noise in Y or the diffusion structure linked with ρX , but
additional hypothesis could be made to characterize those.

C.4 Kernel operators

In this subsection, we define formally the operators S and Σ.

We now turn towards operators linked with the Hilbert spaceH. Recall that for k : X → X → R a
kernel,H is defined the closure of the span of the elements kx under the scalar product 〈kx, kx′〉 =

k(x, x′). In particular, ‖kx‖2H = k(x, x). H parameterize a vast class of function in RX through the
mapping

S : H → RX
θ → (〈kx, θ〉)x∈X .

Under mild assupmtions, S mapsH to a space of function belongs to L2.
Proposition 2. When x→ k(x, x) belongs to L1(ρX ), S is a continuous mapping fromH to L2(ρX ).
This is particularly the case when ρX has compact support and k is continuous.

Proof. Consider θ ∈ H, we have

‖Sθ‖2L2 =

∫
X
〈kx, θ〉2 ρX (dx) ≤

∫
X
〈kx, θ〉2H ρX (dx) ≤

∫
X
‖kx‖2H ‖θ‖

2
H ρX (dx)

= ‖θ‖2H
∫
X
k(x, x)ρX (dx) = ‖θ‖2H ‖x→ k(x, x)‖L1 .

Moreover, when ρX has compact support and k is continuous, k is bounded on the support of ρX
therefore x→ k(x, x) belongs to L1.

As a continuous operator from the Hilbert spaceH to the Hilbert space L2, S is naturally associated
with many linear structure. In particular its adjoint S?, but also the self-adjoint operators K = SS?

and Σ = S?S.
Proposition 3. The adjoint of S is defined as

S? : L2 → H
g →

∫
X g(x)kxρX (dx) = EX∼ρX [g(X)kX ].

To S is associated the kernel self-adjoint operator on L2

K := SS? : L2 → L2

g → (x→
∫
X k(x, x′)g(x′)ρX (dx′)),

as well as the (not-centered) covariance onH, Σ := S?S = EX∼ρX [kX ⊗ kX ].

Proof. We shall prove the equality defining those operators. Consider θ ∈ H and g ∈ L2, we have
〈S?g, θ〉H = 〈g, Sθ〉L2 = EX∼ρX [g(X) 〈kX , θ〉H] = 〈EX∼ρX [g(X)kX ], θ〉H .

We also have, for x ∈ X ,
(SS?g)(x) = 〈kx,EX∼ρX [g(X)kX ]〉H = EX∼ρX [g(X) 〈kx, kX〉H] = EX∼ρX [g(X)k(X,x)].

Finally, we have
S?Sθ = EX∼ρX [Sθ(X)kX ] = EX∼ρX [〈θ, kX〉H kX ] = EX∼ρX [kX ⊗ kX ]θ.

This provides the last of all the equalities stated above.
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The functional space H. In the main text, we have written everything in term of θ, highlighting
the parametric nature of kernel methods. This made it easier to dissociate the norm on functions
derived fromH and the one derived from L2 or H1. In literature, people tends to keep everything in
term of functions gθ = Sθ without even mentioning the dependency in θ. Such a setting consists
in considering directly the RKHS H whose scalar product is defined for g, g′ ∈ (kerK)⊥ by
〈g, g′〉H =

〈
g,K−1g′

〉
L2 .

C.5 Derivative operators

In this subsection, we discuss on derivative in RKHS and we define formally the operator L.

As well as evaluation maps can be represented inH, under mild assumptions, derivative evaluation
maps can benefited of such a property. Indeed, for gθ = Sθ, x ∈ X and u ∈ BX (0, 1) a unit vector,
we have

∂ugθ(x) = lim
t→0

gθ(x+ tu)− gθ(x)

t
= lim
t→0

〈θ, kx+tu〉H − 〈g, kx〉H
t

= lim
t→0

〈
θ,
kx+tu − kx

t

〉
H

As a linear combination of elements inH, the difference quotient evaluation map t−1(kx+tu − kx)
belongs toH and has a norm∥∥∥∥kx+tu − kxt

∥∥∥∥2
H

=
k(x+ tu, x+ tu)− 2k(x+ tu, x) + k(x, x)

t2
.

In order for the limit when t goes to zero to belong to H, we see the importance of k to be twice
differentiable. This limit ∂ukx, whose existence is proven formally by Zhou [61], provides a derivative
evaluation map in the sense that

∂ugθ(x) = 〈θ, ∂ukx〉H .

From this equality, we derive that ∂1ik(x, x′) = 〈kx′ , ∂ikx〉, and recursively that 〈∂ikx, ∂jkx′〉 =
∂1i∂2jk(x, x′).

Similarly to the operator S, we can introduce the operators Zi for i ∈ [1, d], defined as

Zi : H → RX
θ → (〈∂ikx, θ〉H)i≤d

.

Once again, under mild assumptions, imZi inherit from an Hilbertian structure.

Proposition 4. When x→ ∂1i∂2ik(x, x) belongs to L1(ρX ), Zi is a continuous mapping fromH to
L2(ρX ). This is particularly the case when ρX has compact support and k is twice differentiable
with continuous derivatives.

Proof. Consider θ ∈ H, similarly to before, we have

‖Zθ‖2L2 =

∫
X
〈∂ikx, θ〉2 ρX (dx) ≤ ‖θ‖2H

∫
X
‖∂ikx‖2H ρX (dx) = ‖θ‖2H ‖x→ ∂1,i∂2,ik(x, x)‖L1 .

Moreover, when ρX has compact support and ∂1,i∂2,ik is continuous, ∂1,i∂2,ik is bounded on the
support of ρX therefore x→ ∂1,i∂2,ik belongs to L1.

Among the linear operator that can be build from Zi, in the theoretical part of this paper, we are
mainly interested in Z?i Zi. In the empirical part however, we might be interested in ZiZ?j as well as
ZiS

? as it might appear in Algorithm 1 (where Zn has to be understood as the empirical version of
Z = [Z1; · · · ;Zd]).

Proposition 5. The energy Dirichlet onH can be represented through the operator

S?LS =

d∑
i=1

Z?i Zi =

d∑
i=1

EX∼ρX [∂ikX ⊗ ∂ikX ].
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Proof. Let θ ∈ H and gθ = Sθ, we have

〈gθ,Lgθ〉L2 = 〈θ, S?LSθ〉H = EX∼ρX
[
‖∇gθ(X)‖2

]
=

d∑
i=1

EX∼ρX
[
(∂igθ(X))2

]
=

d∑
i=1

EX∼ρX
[
〈∂ikX , θ〉2H

]
=

d∑
i=1

‖Ziθ‖2L2 =

〈
θ,

d∑
i=1

Z?i Ziθ

〉
H

=

d∑
i=1

EX∼ρX [〈θ, (∂ikX ⊗ ∂ikX)θ〉H] =

〈
θ,

d∑
i=1

EX∼ρX [∂ikX ⊗ ∂ikX ] θ

〉
H

.

Since the three operators are self-adjoint and they all represent the same quadratic form, they are
equals.

C.6 Relation between Σ and L

In this subsection, we discuss on the relation between Σ and L and show that we can expect the
existence of a ∈ (1− 2/d, 1] and c > 0 such that L � cΣa.

Informal capacity considerations. We want to compare Σ and L, as L � cΣa with the biggest a
possible. This depend on how fast the eigen values are decreasing, which is linked to the entropy
numbers of those two compact operators. Those entropy numbers are linked with the capacity of
the functional spaces

{
g ∈ L2

∣∣ ∥∥K−1/2g∥∥
L2 <∞

}
and

{
g ∈ L2

∣∣ ∥∥K−1/2L−1/2g∥∥
L2 <∞

}
. The

first space is the reproducing kernel Hilbert space linked with k, the second space is, roughly speaking,
a space of function whose integral belongs to the first space. As such, if the first space is Hm, the
second isHm−1, and we can consider a = (m− 1)/m. Because we are considering kernel, we have
m > d/2 (this to make sure that the evaluation functionals LX : f → f(x) are continuous), so that
a > 1− 2/d. Without trying to make those “algebraic” considerations more formal, we will give an
example on the torus.

Translation-invariant kernel and Fourier transform. Consider L2([0, 1]d,dx) the space of pe-
riodic functions in dimension d, square integrable against the Lebesgue measure on [0, 1]d. For
simplicity, we will suppose that ρX is the Lebesgue measure on [0, 1]d. Consider a translation
invariant kernel

k(x, y) = q(x− y) for q : Rd → R that is one periodic.
In this setting, the operator K, operating on L2, is the convolution by q, that is

K : L2 → L2

g → q ∗ g , hence K̂g = q̂ĝ.

Where we have used the fact that convolutions can be represented by a product in Fourier. Note that,
from Böchner theorem, we know that k being positive definite implies that the Fourier transform of q
exists and is not negative. Let us define the Fourier coefficient and the inverse Fourier transform as

∀ω ∈ Zd, ĝ(ω) =

∫
[0,1]d

g(x)e−2iπω
>x dx, and ∀x ∈ [0, 1]d, g(x) =

∑
ω∈Zd

e2iπω
>xĝ(ω).

K being a convolution operator, it is diagonalizable with eigen elements (q̂(ω), x→ e2iπω
>x)ω∈Zd .

From this, we can explicit many of our abstract operators. First of all, using Perceval’s theorem,

‖g‖2H =
〈
g,K−1g

〉
L2 =

∑
ω∈Zd

|ĝ(ω)|2

q̂(ω)
.

Hence we can parametrize H with (θω)ω∈Zd ∈ CZd

and the `2-metric, where θω = ĝ(ω)/
√
q̂(ω)

and
(Sθ)(x) = gθ(x) =

∑
ω∈Zd

e2iπω
>x
√
q̂(ω)θω.

Note that this is not the usual parameterization ofH by elements θ ∈ H as (CZd

, `2) is not a space
of functions. However, such a parametrization ofH does not change any of the precedent algebraic
considerations on the operators S, Σ, K, and L.
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Diffusion operator and Fourier transform. As well as convolution operators are well represented
in Fourier, derivation operators are. Indeed, when g is regular, we have∥∥∥L1/2g

∥∥∥2
L2

= ‖∇g‖2L2 =

d∑
j=1

‖∂jg‖2L2 =

d∑
j=1

∑
ω∈Zd

ω2
j |ĝ(ω)|2 .

As a consequence, using the expression of Sθ, we have

Σθ =
∑
ω∈Zd

q̂(ω)θω, while Lθ =
∑
ω∈Zd

‖ω‖22 q̂(ω)θω, where ‖ω‖22 =

d∑
j=1

ω2
i .

With this parameterization, the eigen elements of Σ are (q̂(ω), δω)ω∈Zd while the one of L are
(‖ω‖22 q̂(ω), δω)ω∈Zd .

Eigen value decay comparison. Hence, having L � cΣa is equivalent to having ‖ω‖22 q̂(ω) ≤
cq̂(ω)a. Now suppose that the decay of q̂ is governed by

c1(1 + σ−1 ‖ω‖22)−m ≤ q̂(ω) ≤ c2(1 + σ−1 ‖ω‖22)−m,

for two constants c1, c2 > 0. In particular, this is verified for Matérn kernels, corresponding to
the fractional Sobolev space Hm, and for the Laplace kernel with m = (d + 1)/2, which reads
k(x, y) = exp(−σ−1 ‖x− y‖). The Gaussian kernel could be seen asm = +∞ as it has exponential
decay. With such a decay we have, assuming without restrictions that we are in one dimension

ω2q̂(ω) ≤ c2ω2(1 + σ−1ω2)−m ≤ c2σ(1 + σ−1ω2)−(m−1) ≤ c
m

m−1

1 c2σq̂(ω)
m−1
m .

In other terms, we can consider c = c
m

m−1

1 c2σ and a = (m − 1)/m. Assuming that q is square-
integrable, so is q̂, which implies that 2m > d. As a consequence, we do have a > 1−2/d. Note that
this reasoning could be extended to the case where ρX has a density against the Lebesgue measure,
that is bounded above and below away from zero.

D Spectral decomposition

In this section, we recall facts on spectral regularization, before proving Proposition 1 and extending
it to the case µ = 0.

D.1 Generalized singular value with matrices

Generalized singular value decomposition. Let A ∈ Rm1×n and B ∈ Rm2×n be two matrices.
There exists U ∈ Rm1×m1 , V ∈ Rm2×m2 two orthogonal matrices, c ∈ Rm1×r and s ∈ Rm2×r be
two 1-diagonal matrices such that c>c+ s>s = Ir, and H ∈ Rn×r a non-singular matrix such that

A = UcH−1, B = V sH−1.

To be more precise c is such that only entries cii = cos(θi) for i < min(r,m2) are non-zeros
and s such that only entries sm1−i,r−i = sin(θr−i) for i < min(r,m1) are non-zeros, with θi ∈
[−π/2, π/2] an angle. Here, c stands for cosine, s for sinus and r for rank.

Link with generalized eigenvalue problem. As well as the singular value of A is linked with
the eigen value of A>A, the generalized singular value decomposition of [A;B] is linked with the
generalized eigenvalue problem linked with (A>A,B>B). Indeed, we have

A>A = H−>c>cH−1, B>B = H−>s>sH−1.

In particular, with (ei) the canonical basis of Rr, and hi the i-th column of H , we get

H>A>Ahi = cos(θi)
2ei = tan(θi)

−2 sin(θi)
2ei = tan(θi)

−2H>B>Bhi.

From which we deduce that, since imA ∪ imB ⊂ imH>,
A>Ahi = tan(θi)

−2B>Bhi, h>j B
>Bhi = sin(θi)

21i=j .

So if we denote by fi = |sin(θi)|−1 hi and λi = tan(θi)
−2, assuming λi 6= 0 for all i ≤ r (which

corresponds to kerB ⊂ kerA), (λi)i≤r, (fi)i≤r provide the generalized eigenvalue decomposition
of (A>A,B>B) in the sense that

A>Afi = λiB
>Bfi, f>j B

>Bfi = 1i=j , f>j A
>Afi = λi1i=j .
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D.2 Tikhonov regularization

Define the Tikhonov regularization

xλ = arg min
x∈Rn

‖Ax− b‖2 + λ ‖Bx‖2 .

When this problem is well-defined, the solution is defined as

xλ = (A>A+ λB>B)†A>b.

With the generalized singular value decomposition of A and B, we have

A>A+ λB>B = H−>γλH
−1, with γλ = c>c+ λs>s.

Using the fact that A>b = H−>c>U>b, we get

xλ = Hγ−1λ c>U>b =

(
r∑
i=1

cos(θi)

cos(θi)2 + λ sin(θi)2
hi ⊗ ui

)
b.

Now, we would like to replace cii, sii, hi and ui with quantities that depend on λi, fi and A.
To do so recall that AH = Uc, therefore cos(θi)ui = Ahi, and recall that hi = sin(θi)fi and
λi = cos(θi)

2/ sin(θi)
2. Inputting those equality in the last expression of xλ we get

xλ =

(
r∑
i=1

sin(θi)
2

cos(θi)2 + λ sin(θi)2
fi ⊗Afi

)
b =

(
r∑
i=1

1

λi + λ
fi ⊗Afi

)
b.

Finally,

bλ = Axλ =

r∑
i=1

ψ(λi) 〈Afi, b〉Afi, where ψ(x) =
1

x+ λ
.

D.3 Extension to operators

To end the proof of Proposition 1, we should prove that we can apply the generalized eigenvalue
decomposition to operators. We will only prove that it is possible for (Σ, L+ µ) based on simple
considerations.

Proposition 6. When k is continuous and supp ρX is bounded, Σ is a compact operator.

Proof. We have Σ = E[kX ⊗ kX ] and ‖kx‖ = k(x, x). Since k is continuous and supp ρX is
compact, for x ∈ supp ρX , k(x, x) is bounded. Hence Σ is a nuclear operator, hence trace class and
compact.

Proposition 7. When k is twice differentiable with continuous derivative, and supp ρX is compact,
L is a compact operator. As a consequence, L has a compact spectrum, and has a pseudo inverse
that we will denote, with a slight abuse of notation, by L−1.

Proof. The proof is similar to the one showing that Σ is compact, based on the fact that L =∑d
i=1 E[∂ikX ⊗ ∂ikX ], and ‖∂ikX‖2 = ∂1i∂2ik(x, x).

Proposition 8. When Σ is compact, for all µ > 0, (L+µ)−1/2Σ(L+µ)−1/2 is a compact operator.

Proof. The proof is straightforward

Tr((L+µ)−1/2Σ(L+µ)−1/2) = Tr(Σ(L+µ)−1) ≤
∥∥(L+ µ)−1

∥∥
op

Tr(Σ) ≤ µ−1 Tr(Σ) < +∞.

Therefore the operator is trace class, hence compact.

Proposition 9. For any µ > 0, the generalized eigen value decomposition of (Σ, L+ µ) as defined
in Proposition 1 exists.
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Proof. Using the spectral theorem, since (L+ µ)−1/2Σ(L+ µ)−1/2 is positive self-adjoint compact
operator, there exists (ξi) a basis ofH and (λi) ∈ R+ a decreasing sequence (note that ker(L+
mu) = ker Σ = {0}), such that

(L+ µ)−1/2Σ(L+ µ)−1/2 =
∑
i∈N

λiξi ⊗ ξi.

Taking θi = (L + µ)−1/2ξi, we get Σθi = λiLθi. Because (ξi) generates H, and (L + µ)−1/2 is
bijective (since L is compact, (L+ µ)−1 is coercive), ((L+ µ)−1/2ξi) generatesH.

Proposition 1 follows from prior discussion on Tikhonov regularization extended to infinite summa-
tions.

D.4 The case µ = 0

When µ = 0, Eq. (7) should be seen as the rewritting of Eq. (18) based on the RKHS G = imS. This
can only be done when the eigen vectors of L appearing in Eq. (17) belongs to G = imS = imK1/2,
which is exactly what Assumption 2 provides. In such a setting, we can find (θi) ∈ HN to write
λ
1/2
i ei = Sθi as soon as λi 6= 0 (write Mei = Sθi for M an abstraction representing +∞

when λi = 0, handling the potential fact that kerB 6⊂ kerA), we get θiS∗Sθj = λi1i=j , and
Lθi = λ−1i Σθi, and we can extend Proposition 1 to the case µ = 0, with

gλ =
∑
i∈N

ψ(λi) 〈S?gρ, θi〉Sθi, (19)

where we handle the null space of L with the equality Mψ(M) = 1, verified by M our abstraction
representing +∞, so that ψ(M) 〈S?gρ, θi〉Sθi = 〈gρ, ei〉 ei as soon as λi = 0.

Beyond Assumption 2. Assumption 2 could be made generic by considering the biggest
(pi) ∈ RN

+ such that K−piei belongs to L2, and rewriting Eq. (19) under the form gλ =∑
i∈N ψ(λi) 〈(S0K

pi)?gρ, θi〉S0K
piθi, with θi = λ

−1/2
i S−10 K−piθi and S0 = K−1/2S the iso-

morphism betweenH and L2 (assuming that S is dense in L2). Such an assumption would describe
all situations from no assumption (pi = 0 for all i), Assumption 2 (pi = 1/2 for all i) to even more
optimistic assumptions (pi ≥ 1 for all i).

E Consistency analysis

This section is devoted to the proof of Theorem 1. The proof is based on Eqs. (7) and (19), and splits
the error of ‖gρ − ĝp‖2L2 into several components linked with how well we approximate S?gρ, and
how well we approximate the eigenvalue decomposition (λi, θi) of (Σ, L).

E.1 Sketch and understanding of the proof

In this subsection, we explain how work the proofs for consistency theorems such as Theorem 1.

Let us define the mapping G : H×C → L2 with C the set of pairs of self-adjoint operators onH that
admit a generalized eigen value decomposition, as

G(θ, (A,B)) =
∑
i∈N

ψ(λi) 〈θ, θi〉Sθi with (λi, θi) ∈ GEVD(A,B). (20)

G(θ, (A,B)) ∈ L2 corresponds to writing θ ∈ H in the basis associated with the generalized eigen
value decomposition (GEVD) of (A,B).

Proposition 10. Under Assumptions 1 and 2, and with ψ defined in Theorem 1

gλ = G(S?gρ, (Σ, L)), and ĝp = G( ˆS?gρ, (PΣP, P L̂P + µP )),

with P the projection matrix fromH to Span {kXi
}i≤p.
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Proof. This is a direct application of Assumptions 1, 2, Eq. (19) and Algorithm 1.

The main point of the proof is to relate gρ to ĝp. To do so, we will use several functions in L2

generated by G. We detail our steps in Table 2. Table 2 gives a first answer to the two questions
asked in the opening of Section 4. The number of unlabelled data controls the convergence of
the operators (P Σ̂P, P L̂P + µP ) towards (Σ, L + µ). The number of labelled data controls the
convergence of the vector Ŝ?gρ towards S?gρ. Priors on the structure of the problem, such as
source and approximation conditions, control the convergence of the bias estimate gλ,µ towards
gρ. Furthermore, a more precise study reveals that the concentration of operators are related to
efficient dimension [10] and are accelerated by capacity assumptions on the functional space whose
norm is ‖g‖ =

∥∥(L+K−1)1/2g
∥∥
L2 , and that the concentration of the vector Ŝ?gρ is accelerated by

assumptions on moments of the variable Y (I + λL)−1δX (inheriting randomness from (X,Y ) ∼ ρ).

Table 2: Steps in the consistency analysis

Estimate Vector Property of convergence Basis

ĝp Ŝ?gρ (P Σ̂P, P L̂P + µP )

Low-rank approximation [45] ↓

ĝ Ŝ?gρ (Σ̂, L̂+ µ)

Concentration for self-adjoint operators [36] ↓

gn`
Ŝ?gρ (Σ, L+ µ)

Concentration for vector in Hilbert space [58] ↓

gλ,µ S?gρ (Σ, L+ µ)

Bias controlled with source condition [10, 30] ↓

gλ S?gρ (Σ, L)

↓ Bias controlled with source condition [10, 30]

gρ

Control of biases. We begin our study in a downward fashion regarding Table 2. Indeed, for
Tikhonov regularization Eq. (3), we can show that for q ∈ [0, 1],

‖gλ − gρ‖L2 ≤ λq ‖Lqgρ‖L2 .

Meaning that if we have the source condition gρ ∈ imLq (which is a condition on how fast
(〈gρ, ei〉)i∈N decreases compared to (λi)i∈N for (λi, ei) the eigen value decomposition of L−1), the
rates of convergence of this term when n goes to infinity is controlled by the regularization scheme
λqn.

In a similar fashion to the kernel-free bias above, for (qi) ∈ (0, 1)N, we can have

‖gλ,µ − gλ‖2L2 ≤ 2
∑
i∈N

λ2qiµ2qi

(
λi

λ+ λi

)2

|〈ei, gρ〉|2
∥∥K−qiei∥∥2L2 .

This shows explicitly the usefulness of controlling at the same time how gρ is supported on the eigen
spaces of L and how the eigen vectors are well approximated by the RKHSH, which can be read in
the value of (qi) such that all ei ∈ imKqi .
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Vector concentration. Let us now switch to concentration of Ŝ?gρ = n−1`
∑n`

i=1 YikXi towards
S?gρ = E(X,Y )∼ρ [Y kX ], it will allow to control ‖gn`

− gλ,µ‖2L2 with the notations appearing in
Table 2. Note how this convergence should be measured in term of the reconstruction error∥∥∥∥∥∑

i∈N
ψ(λi,µ)

〈
S?gρ − Ŝ?gρ, θi,µ

〉
Sθi,µ

∥∥∥∥∥
L2

.

This error might behave in a must better fashion than the L2 error between SS?gρ and SŜ?gρ. In
particular, on Figure 1, we can consider ψ(λi,µ) = 0 for i > 4, and we might have 〈Y kX , θi,µ〉 =
Y 1x∈Ci , for i ≤ 4 and (X,Y ) ∈ X × Y , where Ci is the i-th innermost circle. In this setting,
when all four (Y |X ∈ Ci) are deterministic, we only need one labelled point per circle to clear
the reconstruction error. Based on concentration results in Hilbert space, when |Y | is bounded by a
constant cY , and x → k(x, x) by a constant κ2, we have, with Dn`

∼ ρ⊗n` the dataset generating
the labelled data

EDn`

[
‖gn`

− gλ,µ‖2L2

]
≤ 2σ2

` (µλn`)
−1 +

4

9
c2Yκ

2(µλn2`)
−1.

where σ2
` ≤ c2Y Tr(Σ) is a variance parameter to relate to the variance of Y (I + λL)−1δX (where

the randomness is inherited from (X,Y ) ∼ ρ). The fact that the need for labelled data depends on
the variance of (X,Y ) after being diffused through L is coherent with the results obtained by Lelarge
and Miolane [29] in the specific case of a mixture of two Gaussians.

Basis concentration. We are left with the comparison of gn`
, which is the filtering of Ŝ?gρ with

the operators (Σ, L + µ), and ĝp, which is the filtering of the same vector with the operators
(P Σ̂P, P L̂P + µP ). As the number of samples grows towards infinity, we know that (P Σ̂P, P L̂P +
µP ) will converge in operator norm towards (Σ, L + µ). Yet, how to leverage this property to
quantify the convergence of ĝp towards gn`

? Let us write (λi, θi) = GEVD(Σ, L + µ), and
(λ′i, θ

′
i) = GEVD(P Σ̂P, P L̂P + µP ), we have

‖ĝp − gn`
‖L2 =

∥∥∥∥∥∑
i∈N

ψ(λi)
〈
θi, θ̂ρ

〉
Sθi − ψ(λ′i)

〈
θ′i, θ̂ρ

〉
Sθ′i

∥∥∥∥∥ with θ̂ρ = Ŝ?gρ.

The generic study of this quantity requires to control eigenspaces one by one. Note that
we expect convergence of eigenspaces to depend on gaps between eigenvalues. However,
when considering Tikhonov regularization, this quantity can be written under a simpler
form. In particular, the concentration of operators is controlled, up to few leftovers, through
the quantity

∥∥∥(Σ + λL+ µλ)−1/2((Σ− Σ̂) + λ(L− L̂))(Σ + λL+ µλ)−1/2
∥∥∥
op

where ‖·‖op de-

signs the operator norm. In this setting, the low-rank approximation is controlled through∥∥(Σ + λL)1/2(I − P )
∥∥
op

, and when L � cΣα, this term can be controlled by
∥∥Σ1/2(I − P )

∥∥
op

+

λ1/2
∥∥Σ1/2(I − P )

∥∥α
op

which can be controlled based on the work of Rudi et al. [45].

E.2 Risk decomposition

In this subsection, we decompose the risk appearing in Theorem 1.

E.2.1 Control of biases

We begin by splitting the error ‖gρ − ĝp‖L2 between a bias term due to the regularization parameters
and a variance term due to the data. With the notation of Table 2,

‖gρ − ĝp‖L2 ≤ ‖gρ − gλ‖L2 + ‖gλ − gλ,µ‖L2 + ‖gλ,µ − ĝp‖L2 . (21)

We will control the first two terms here, and the last term in the following subsections.

Proposition 11 (Bias in λ). Under Assumption 1

‖gλ − gρ‖L2 ≤ λ ‖Lgρ‖L2 . (22)
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Proof. Based on the definition of gλ = (I + λL)−1gρ, we have

gλ − gρ = ((I + λL)−1 − I)gρ = −λLgρ.

Because gρ is supported on the first eigen vectors of the Laplacian (Assumption 1), we have gρ =∑r
i=1 〈gρ, ei〉 ei, with ei the eigen vector of L appearing in Eq. (17), and

‖Lgρ‖2L2 =

∥∥∥∥∥
r∑
i=1

λ−1i 〈gρ, ei〉 ei

∥∥∥∥∥
2

L2

=

r∑
i=1

λ−2i 〈gρ, ei〉
2 ≤ λ−2r ‖gρ‖

2
L2 < +∞.

This ends the proof of this proposition.

Proposition 12 (Bias in µ). Under Assumptions 1 and 2, we have

‖gλ,µ − gλ‖2L2 ≤ λµc2a ‖gρ‖
2
L2 , with c2a =

r∑
i=1

∥∥∥K−1/2ei∥∥∥2
L2

=

r∑
i=1

‖ei‖2H . (23)

Proof. Before diving into the proof, recall that the RKHS norm penalization can be written as
‖g‖H =

∥∥K−1/2g∥∥
L2 . Using the fact that A−1 −B−1 = A−1(B −A)B−1, we have

gλ,µ − gλ = ((I + λL+ µλK−1)−1 − (I + λL)−1)gρ

= −(I + λL+ µλK−1)−1λµK−1(I + λL)−1gρ

= −(λµ)1/2(I + λL+ µλK−1)−1/2(I + λL+ µλK−1)−1/2

· · · × (λµK−1)1/2K−1/2(I + λL)−1gρ.

As a consequence,

‖gλ,µ − gλ‖2L2 ≤ λµ
∥∥∥K−1/2(I + λL)−1gρ

∥∥∥2
L2
,

where we used the fact that I + λL+ µλK−1 � I , so that
∥∥(I + λL+ µλK−1)−1/2

∥∥
op
≤ 1 (with

‖·‖op the operator norm), and that∥∥∥(I + λL+ µλK−1)−1/2(λµK−1)1/2
∥∥∥2
op

= λµ
∥∥∥K−1/2(I + λL+ µλK−1)−1K−1/2

∥∥∥
op

= λµ
∥∥∥(K + λK1/2LK1/2 + µλ)−1

∥∥∥
op
≤ 1.

We continue the proof with∥∥∥K−1/2(I + λL)−1gρ

∥∥∥ =

∥∥∥∥∥
r∑
i=1

λi
λ+ λi

〈gρ, ei〉K−1/2ei

∥∥∥∥∥ ≤
r∑
i=1

λi
λ+ λi

|〈gρ, ei〉|
∥∥∥K−1/2ei∥∥∥

≤
r∑
i=1

|〈gρ, ei〉|
∥∥∥K−1/2ei∥∥∥

L2
≤ ‖gρ‖L2

∑
i≤r

∥∥∥K−1/2ei∥∥∥2
L2

1/2

.

Putting all the pieces together ends the proof.

E.2.2 Vector concentration

We are left with the study of the variance ‖ĝp − gλ,µ‖. To ease derivations, we denote C = Σ + λL,
Ĉ = Σ̂ + λL̂, θρ = S?gρ, θ̂ρ = Ŝ?gρ and P the projection fromH to Span {kXi

}i≤p. We have, for
Tikhonov regularization

‖ĝp − gλ,µ‖L2 =
∥∥∥S (P (PĈP + λµ)−1P θ̂ρ − (C + λµ)−1θρ

)∥∥∥
L2

=
∥∥∥Σ1/2

(
P (PĈP + λµ)−1P θ̂ρ − (C + λµ)−1θρ

)∥∥∥
H
.
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We begin by isolating the dependency to labelled data

‖ĝp − gλ,µ‖L2 ≤
∥∥∥Σ1/2P (PĈP + λµ)−1(θ̂ρ − θρ)

∥∥∥
H

· · ·+
∥∥∥Σ1/2

(
P (PĈP + λµ)−1θρ − (C + λµ)−1θρ

)∥∥∥
H
.

(24)

We will control the first term here, and the second term in the following subsection.

Lemma 13 (Vector term). When
∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1/2

∥∥∥
op
≤ 1/2, we have∥∥∥Σ1/2P (PĈP + λµ)−1P (θ̂ρ − θρ)

∥∥∥
H
≤ 2

∥∥∥(C + λµ)−1/2(θ̂ρ − θρ)
∥∥∥
H
. (25)

Proof. We begin with the splitting∥∥∥Σ1/2P (PĈP + λµ)−1P (θ̂ρ − θρ)
∥∥∥
H
≤
∥∥∥Σ1/2P (PĈP + λµ)−1P (C + λµ)1/2

∥∥∥
op

· · · ×
∥∥∥(C + λµ)−1/2(θ̂ρ − θρ)

∥∥∥
H
.

The first term will concentrate towards a matrix smaller than identity, while the second term concen-
trates towards zero. We can make those considerations more formal. Following basic properties with
the Löwner order on operators, we have

(C + λµ)−1/2(C − Ĉ)(C + λµ)−1/2 � t
⇒ Ĉ � (1− t)C − tλµ
⇒ PĈP � (1− t)PCP − tλµP � (1− t)PCP − tλµ
⇒ PĈP + λµ � (1− t)(PCP + λµ)

⇒ (PĈP + λµ)−1 � (1− t)−1(PCP + λµ)−1

⇒ (C + λµ)1/2P (PĈP + λµ)−1P (C + λµ)1/2

� (1− t)−1(C + λµ)1/2P (PCP + λµ)−1P (C + λµ)1/2 � (1− t)−1,

where we have used the fact that the last operator is a projection. As a consequence, for any t ∈ (0, 1),
we have ∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1/2

∥∥∥
op
≤ t

⇒
∥∥∥(C + λµ)1/2P (PĈP + λµ)−1(C + λµ)1/2

∥∥∥
op
≤ (1− t)−1.

⇒
∥∥∥Σ1/2P (PĈP + λµ)−1P (C + λµ)1/2

∥∥∥
op
≤ (1− t)−1.

Where the last implication follows from the fact that C + λµ = Σ + λL+ λµ � Σ.

E.2.3 Basis concentration

We are left with the study of the basis concentration with the number of unlabelled data.

Lemma 14 (Basis term). When
∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1/2

∥∥∥
op
≤ 1/2, we have∥∥∥Σ1/2(P (PĈP + λµ)−1 − (C + λµ)−1)θρ

∥∥∥
H

≤ 3
∥∥∥C1/2(I − P )

∥∥∥
op
‖gλ‖H + 2

∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1θρ

∥∥∥
H
.

(26)

Notice that Assumptions 1 and 2 imply ‖gλ‖H ≤ ca ‖gρ‖L2 < +∞.
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Proof. First of all, using that A−1 −B−1 = A−1(B −A)B−1, notice that∥∥∥Σ1/2(P (PĈP + λµ)−1 − (C + λµ)−1)θρ

∥∥∥
H

=
∥∥∥Σ1/2P (PĈP + λµ)−1P (C − ĈP )(C + λµ)−1θρ − Σ1/2(I − P )(C + λµ)−1θρ

∥∥∥
H

≤
∥∥∥Σ1/2P (PĈP + λµ)−1P (ĈP − C)(C + λµ)−1θρ

∥∥∥
H

+
∥∥∥Σ1/2(I − P )(C + λµ)−1θρ

∥∥∥
H

≤
∥∥∥Σ1/2P (PĈP + λµ)−1P (C + λµ)1/2

∥∥∥
op

∥∥∥(C + λµ)−1/2P (ĈP − C)(C + λµ)−1θρ

∥∥∥
H

· · ·+
∥∥∥Σ1/2(I − P )

∥∥∥
op

∥∥(C + λµ)−1θρ
∥∥
H .

Because Σ � Σ + λL = C, we have
∥∥Σ1/2(I − P )

∥∥
op
≤
∥∥C1/2(I − P )

∥∥
op

, and we also have∥∥(C + λµ)−1θρ
∥∥
H ≤

∥∥C−1θρ∥∥H =
∥∥∥K−1/2SC−1θρ∥∥∥

H
=
∥∥∥K−1/2gλ∥∥∥

L2
= ‖gλ‖H .

Recall, that, for any t ∈ (0, 1), we have already shown that∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1/2
∥∥∥
op
≤ t

⇒
∥∥∥Σ1/2P (PĈP + λµ)−1P (C + λµ)1/2

∥∥∥
op
≤ (1− t)−1.

We are left with one last term to work on∥∥∥(C + λµ)−1/2P (ĈP − C)(C + λµ)−1θρ

∥∥∥
H
≤
∥∥∥(C + λµ)−1/2P (Ĉ − C)P (C + λµ)−1θρ

∥∥∥
H

· · ·+
∥∥∥(C + λµ)−1/2C(I − P )(C + λµ)−1θρ

∥∥∥
H
.

We control the first term with the fact for A,B,C three self-adjoint operators and x a vector we have

‖APBPCx‖ = ‖APBPCx⊗ xCPBPA‖1/2op ,

and that

PCx⊗ xCP � Cx⊗ xC
⇒ PBPCx⊗ xCPBP � BPCx⊗ xCPB � BCx⊗ xCB
⇒ APBPCx⊗ xCPBPA � ABCx⊗ xCBA,

so that∥∥∥(C + λµ)−1/2P (Ĉ − C)P (C + λµ)−1θρ

∥∥∥
H
≤
∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1θρ

∥∥∥
H
.

We control the second term with∥∥∥(C + λµ)−1/2C(I − P )(C + λµ)−1θρ

∥∥∥
≤
∥∥∥(C + λµ)−1/2C1/2

∥∥∥∥∥∥C1/2(I − P )
∥∥∥∥∥(C + λµ)−1θρ

∥∥ .
Using that (C + λµ)−1/2C1/2 � I, we can add up everything to get the lemma.

For the part concerning ‖gλ‖H, notice that

‖gλ‖H =
∥∥∥K−1/2gλ∥∥∥

L2
=

∥∥∥∥∥
r∑
i=1

λi
λi + λ

〈gρ, ei〉K−1/2ei

∥∥∥∥∥
L2

≤
r∑
i=1

|gρ| ei
∥∥∥K−1/2ei∥∥∥

≤ ‖gρ‖L2

(
d∑
i=1

∥∥∥K−1/2ei∥∥∥2
L2

)1/2

= ca ‖gρ‖L2 ,

with ca defined as before.
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E.2.4 Conclusion

Based on the last subsections, we have proved the following proposition.
Proposition 15 (Risk decomposition). Under the Assumptions 1 and 2, when∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1/2

∥∥∥ ≤ 1/2,

‖ĝp − gρ‖2L2 ≤ 4λ2 ‖Lgρ‖2L2 + 4λµc2a ‖gρ‖
2
L2 + 8

∥∥∥(C + λµ)−1/2(θ̂ρ − θρ)
∥∥∥2
H

· · ·+ 12c2a

∥∥∥C1/2(I − P )
∥∥∥2
op
‖gρ‖2L2 + 8

∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1θρ

∥∥∥2
H
.

(27)

We are left with the quantification of the different convergences when the number of labelled and
unlabelled data grows towards infinity. We will quantify those convergences based on concentration
inequalities.

E.3 Probabilistic inequalities

In this subsection, we bound each term appearing in Eq. (27) based on concentration inequalities.

E.3.1 Vector concentration

The concentration of θ̂ρ = Ŝ?gρ towards θρ = S?gρ is controlled through Bernstein inequality.
Theorem 2 (Concentration in Hilbert space [58]). Let denote by A a Hilbert space and by (ξi) a
sequence of independent random vectors in A such that E[ξi] = 0, that are bounded by a constant
M , with finite variance σ2 = E[

∑n
i=1 ‖ξi‖

2
]. For any t > 0,

P(

∥∥∥∥∥
n∑
i=1

ξi

∥∥∥∥∥ ≥ t) ≤ 2 exp

(
− t2

2σ2 + 2tM/3

)
.

Proposition 16 (Vector concentration). When |Y | is bounded by a constant cY , and x→ k(x, x) by
a constant κ2, we have, with Dn`

∼ ρ⊗n` the dataset generating the labelled data

PDn`

(∥∥∥(C + λµ)−1/2(θ̂ρ − θρ)
∥∥∥
H
≥ t
)
≤ 2 exp

(
− n`t

2

2σ2
` (µλ)−1 + 2tcY(µλ)−1/2κ/3

)
, (28)

where σ2
` ≤ c2Y Tr(Σ) is a variance parameter to relate with the variance of Y (I +λL)−1δX (where

the randomness is inherited from (X,Y ) ∼ ρ).

Proof. Recall that

(C + λµ)−1/2(θ̂ρ − θρ) = (Σ + λL+ λµ)−1/2(n−1`

n∑̀
i=1

YikXi
− Eρ[Y kX ])

We want to apply Bernstein inequality to the vector ξi = (Σ + λL+ µλ)−1/2YikXi
, after centering

it. Let us denote by cY a bound on |Y |, cY ∈ R exists since we have supposed ρ of compact support.
We have

σ2 = E[

n∑̀
i=1

‖ξi − E[ξi]‖2] = n` E[‖ξ − E[ξi]‖2] ≤ n` E[‖ξ‖2]

= n` E(X,Y )∼ρ
[
Y 2
〈
kX , (Σ + λL+ µλ)−1kX

〉]
≤ n`c2Y EX∼ρX

[〈
kX , (Σ + λL+ µλ)−1kX

〉]
= n`c

2
Y Tr

(
(Σ + λL+ µλ)−1Σ

)
≤ n`c2Y Tr(Σ)

∥∥(Σ + λL+ µλ)−1
∥∥
op
≤ n`c2Y Tr(Σ)(µλ)−1.

Note that we have proceed with a generic upper bound, but we expect this variance, which is related
to the variance of Y (I +λL+λµK−1)−1δX to be potentially much smaller – if we remove the term
in P the vector concentration is the concentration of the vector S(S∗S + λS?LS + λµ)−1Y kX '
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K1/2(K + λK1/2LK1/2 + λµ)−1K1/2S−?Y kX = (I + λL+ λµK−1)−1Y S−?kX ' (I + λL+
λµK−1)−1Y δX . To capture this fact, we will write σ2 ≤ n`σ

2
` (µλ)−1, with σ` = cY Tr(Σ)1/2 in

our analysis, but potentially much smaller under refined hypothesis and in practice. Similarly to the
bound on the variance, we have

‖ξ − E[ξ]‖ ≤ ‖ξ‖ =
∥∥∥(Σ + λL+ µλ)−1/2YikXi

∥∥∥ ≤ (µλ)−1/2cYκ,

with κ an upper bound on k(x, x)1/2 for x ∈ supp ρX . As a consequence, applying Bernstein
concentration inequality, we get, for any t > 0,

PDn`
(

∥∥∥∥∥n−1`
n∑̀
i=1

ξi − E[ξi]

∥∥∥∥∥ ≥ t) ≤ 2 exp

(
− n`t

2

2σ2
` (µλ)−1 + 2tcY(µλ)−1/2κ/3

)
.

This ends the proof.

E.3.2 Operator concentration

The convergence of Ĉ towards C is controlled with Bernstein inequality for self-adjoint operators.

Theorem 3 (Bernstein inequality for self-adjoint [36]). Let A be a separable Hilbert space, and
(ξi) a sequence of independent random self-adjoint operators operators on A Assume that (ξi) are
bounded by M ∈ R, in the sense that, almost everywhere, ‖ξ‖op < M , and have a finite variance
σ2 =

∥∥∑n
i=1 E[ξ2i ]

∥∥
op

. For any t > 0,

P

∥∥∥∥∥
n∑
i=1

(ξi − E[ξi])

∥∥∥∥∥
op

> t


≤ 2

(
1 + 6

σ2 +Mt/3

t2

)
Tr
(∑n

i=1 E[ξ2i ]
)

‖
∑n
i=1 E[ξ2i ]‖

op

exp

(
− t2

2σ2 + 2tM/3

)
.

Proposition 17 (Operator concentration). When x → k(x, x) is bounded by κ2 a nd x →
∂1,j∂2,jk(x, x) is bounded by κ2j , we have

PDn

(∥∥∥(C + µλ)−
1
2 (C − Ĉ)(C + µλ)−

1
2

∥∥∥
op
> 1/2

)
≤

(
2 + 56

κ2 + λ
∑d
i=1 κ

2
j

λµn

)

· · · × (1 + λµ ‖C‖−1op )
κ2 + λ

∑d
j=1 κ

2
j

λµ
exp

− λµn

10
(
κ2 + λ

∑d
j=1 κ

2
j

)
 .

(29)

Proof. We want to apply the precedent concentration inequality to

ξi = (Σ + λL+ λµ)−1/2(kXi ⊗ kXi + λ

d∑
j=1

∂jkXi ⊗ ∂jkXi)(Σ + λL+ λµ)−1/2,

since we have, based on the fact thatC = Σ+λL and that Σ = E[kX⊗kX ] andL = E[
∑n
j=1 ∂jkX⊗

∂jkX ], ∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1/2
∥∥∥
op

= n−1

∥∥∥∥∥
n∑
i=1

ξi − E[ξi]

∥∥∥∥∥
op

.
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We bound ξ with

‖ξ‖op =

∥∥∥∥∥∥(C + µλ)−
1
2

kX ⊗ kX + λ

d∑
j=1

∂jkX ⊗ ∂jkX

 (C + µλ)−
1
2

∥∥∥∥∥∥
op

≤ Tr

(C + µλ)−
1
2

kX ⊗ kX + λ

d∑
j=1

∂jkX ⊗ ∂jkX

 (C + µλ)−
1
2


= Tr

(
(C + µλ)−

1
2 kX ⊗ kX(C + µλ)−

1
2

)
· · ·+ λ

d∑
j=1

Tr
(

(C + µλ)−
1
2 ∂jkX ⊗ ∂jkX(C + µλ)−

1
2

)

=
∥∥∥(C + µλ)−

1
2 kX

∥∥∥2
H

+ λ

d∑
j=1

∥∥∥(C + µλ)−
1
2 ∂jkX

∥∥∥2
H
≤ (λµ)−1

κ2 + λ

d∑
j=1

κ2j

 .

With κ2 an upper bound on the kernel k and κ2j an upper bound on ∂1,j∂2,jk. For the variance we
have, using Löwner order,

E[ξ2] � sup
X∈X

‖ξ(X)‖op E[ξ] � (λµ)−1

κ2 + λ

d∑
j=1

κ2j

E[ξ]

= (λµ)−1

κ2 + λ

d∑
j=1

κ2j

 (C + λ)−1C � (λµ)−1

κ2 + λ

d∑
j=1

κ2j

 .

Therefore, we get for any t > 0,

PDn

(∥∥∥(C + µλ)−
1
2 (C − Ĉ)(C + µλ)−

1
2

∥∥∥
op
> t

)
≤ 2

(
1 + 6

(κ2 + λ
∑d
i=1 κ

2
j )(1 + t/3)

λµnt2

)
‖C‖op + λµ

‖C‖op
Tr
(
(C + λ)−1C

)
· · · × exp

− nt2

2(λµ)−1
(
κ2 + λ

∑d
j=1 κ

2
j

)
(1 + t/3)

 .

Remark that

Tr
(
(C + µλ)−1C

)
≤
∥∥(C + µλ)−1

∥∥
op

Tr(C) ≤ (λµ)−1(κ2 + λ

d∑
j=1

κ2j ).

Taking t = 1/2 ends the lemma.

E.3.3 Basis concentration

Similarly we could control
∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1θρ

∥∥∥
H

by using concentration of
self-adjoint, yet this will lead to laxer bounds, than using concentration on vectors.
Proposition 18 (Basis concentration). When x→ k(x, x) is bounded by κ2, x→ ∂1,j∂2,jk(x, x) is
bounded by κ2j , with Assumptions 1 and 2, we have

PDn

(∥∥∥(C + µλ)−
1
2 (C − Ĉ)(C + µλ)−1θρ

∥∥∥
H
> t
)
≤ 2 exp

(
− µλnt2

2c1(c1 + λ1/2µ1/2t/3)

)
.

(30)
with c1 = (κ2 + λ

∑d
i=1 κ

2
j )ca ‖gρ‖L2 .
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Proof. We want to apply Bernstein concentration inequality to the vectors

ξi = (C + µλ)−1/2

kXi ⊗ kXi + λ

d∑
j=1

∂jkXi ⊗ ∂jkXi

 (C + λµ)−1θρ,

since ∥∥∥(C + µλ)−
1
2 (C − Ĉ)(C + µλ)−1θρ

∥∥∥
H

= n−1

∥∥∥∥∥
n∑
i=1

ξi − E[ξi]

∥∥∥∥∥
H

.

We bound ξ, reusing prior derivations, with

‖ξi‖H =

∥∥∥∥∥∥(C + µλ)−1/2

kXi
⊗ kXi

+ λ

d∑
j=1

∂jkXi
⊗ ∂jkXi

 (C + λµ)−1θρ

∥∥∥∥∥∥
H

≤
∥∥∥(C + µλ)−1/2

∥∥∥
op

∥∥∥∥∥∥
kXi

⊗ kXi
+ λ

d∑
j=1

∂jkXi
⊗ ∂jkXi

∥∥∥∥∥∥
op

∥∥(C + µλ)−1θρ
∥∥
H .

≤ (µλ)−1/2(κ2 + λ

d∑
i=1

κ2j )ca ‖gρ‖L2 .

For the variance, we have, similarly to prior derivations,

E[‖ξ‖2] ≤ sup
X∈X

∥∥∥∥∥∥kX ⊗ kX + λ

d∑
j=1

∂jkX ⊗ ∂jkX

∥∥∥∥∥∥
op

∥∥(C + λµ)−1θρ
∥∥2

· · · × E

∥∥∥∥∥∥(C + µλ)−1

kX ⊗ kX + λ

d∑
j=1

∂jkXi ⊗ ∂jkX


op

∥∥∥∥∥∥


≤

(
κ2 + λ

d∑
i=1

κ2i

)
c2a ‖gρ‖

2
L2

· · ·E

∥∥(C + µλ)−1kX ⊗ kX
∥∥
op

+ λ

d∑
j=1

∥∥(C + µλ)−1∂jkXi
⊗ ∂jkX

∥∥
op


=

(
κ2 + λ

d∑
i=1

κ2i

)
c2a ‖gρ‖

2
L2 Tr

(
(C + µλ)−1C

)
≤ (λµ)−1

(
κ2 + λ

d∑
i=1

κ2i

)2

c2a ‖gρ‖
2
L2 .

As a consequence, using Bernstein inequality,

P

(
n−1

∥∥∥∥∥
n∑
i=1

ξi − E[ξi]

∥∥∥∥∥ > t

)
≤ 2 exp

(
− µλnt2

2c1(c1 + λ1/2µ1/2t/3)
,

)
with c1 = (κ2 + λ

∑d
i=1 κ

2
j )ca ‖gρ‖L2 . Note that we have bound naively the variable ξ and its

variance, but we have shown how appears supX∈X
∥∥(C + λµ)−1kX

∥∥+λ
∑d
i=1

∥∥(C + λµ)−1∂ikX
∥∥

and Tr((C + λµ)−1C), which under interpolation and capacity assumptions but be controlled in a
better fashion.

E.3.4 Low-rank approximation

We now switch to Nyström approximation.
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Proposition 19 (Low-rank approximation). When x→ k(x, x) is bounded by κ2, for any p ∈ N and
t > 0, we have

PDp

(∥∥∥(I − P )Σ1/2
∥∥∥2 > t

)
≤
(

2 +
116κ2

tp

)
(2 + t ‖Σ‖−1op )

κ2

t
exp

(
− pt

10κ2

)
,

Proof. Reusing Proposition 3 of Rudi et al. [45], for any γ > 0, we have, with P the projection on
Span {kXi

}i≤p and Σ̂ = p−1
∑p
i=1 kXi

⊗ kXi
,∥∥∥(I − P )Σ1/2

∥∥∥2 ≤ γ ∥∥∥(Σ̂ + γ)−1/2Σ1/2
∥∥∥2
op
≤ γ

∥∥∥Σ1/2(Σ̂ + γ)−1Σ1/2
∥∥∥
op
.

As a consequence, skipping derivations that can be retaken from our precedent proofs,

PDp

(∥∥∥(I − P )Σ1/2
∥∥∥2 > t

)
≤ inf
γ>0

PDp

(
γ
∥∥∥Σ1/2(Σ̂ + γ)−1Σ1/2

∥∥∥
op
> t

)
≤ inf
γ>0

PDp

(∥∥∥(Σ + γ)−1/2(Σ̂− Σ)(Σ + γ)−1/2
∥∥∥
op
> (1− γt−1)

)
≤ inf
γ>0

(
2 + 56

κ2

γp

)
(1 + γ ‖Σ‖−1op )

κ2

γ
exp

(
− pγu2

2κ2(1 + u/3)

)
,

with u = (1− γt−1). Taking γ = t/2, this term is simplified as

PDp

(∥∥∥(I − P )Σ1/2
∥∥∥2 > t

)
≤
(

2 + 116
κ2

tp

)
(2 + t ‖Σ‖−1op )

κ2

t
exp

(
− pt

10κ2

)
,

which is the object of this proposition.

Lemma 20. When L ≤ cdΣa, we have∥∥∥(I − P )C1/2
∥∥∥2
op
≤
∥∥∥(I − P )Σ1/2

∥∥∥2
op

+ cdλ
∥∥∥(I − P )Σ1/2

∥∥∥2a
op
. (31)

Proof. This follows from the fact that∥∥∥C1/2(I − P )
∥∥∥2
op

= ‖(I − P )C(I − P )‖op = ‖(I − P )(Σ + λL)(I − P )‖op
≤ ‖(I − P )Σ(I − P )‖op + λ ‖(I − P )L(I − P )‖op
≤ ‖(I − P )Σ(I − P )‖op + λcd ‖(I − P )Σa(I − P )‖op

=
∥∥∥(I − P )Σ1/2

∥∥∥2
op

+ λcd

∥∥∥(I − P )Σa/2
∥∥∥2
op

=
∥∥∥(I − P )Σ1/2

∥∥∥2
op

+ λcd

∥∥∥(I − P )aΣa/2
∥∥∥2
op

≤
∥∥∥(I − P )Σ1/2

∥∥∥2
op

+ λcd

∥∥∥(I − P )Σ1/2
∥∥∥2a
op
,

where we used the fact that (I − P )a = (I − P ) and that ‖AsBs‖ ≤ ‖AB‖s for s ∈ [0, 1] and A,B
positive self-adjoint.

E.4 Averaged excess of risk - Ending the proof

Based on the precedent excess of risk decomposition, and precedent concentration inequalities, we
have all the elements to derive convergence rates of our algorithm. We will enunciate this convergence
in term of the averaged excess of risk of EDn

∥∥∥‖ĝp − gρ‖2L2

∥∥∥.
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Lemma 21. Under Assumptions 1 and 2,

EDn

[
‖ĝp − gρ‖2L2

]
≤ 4c2Y P

(∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1/2
∥∥∥ ≤ 1/2

)
· · ·+ 4λ2 ‖Lgρ‖2L2 + 4λµc2a ‖gρ‖

2
L2

· · ·+ 8EDn

[∥∥∥(C + λµ)−1/2(θ̂ρ − θρ)
∥∥∥2
H

]
+ 12c2a ‖gρ‖

2
L2 EDn

[∥∥∥C1/2(I − P )
∥∥∥2
op

]
· · ·+ 8EDn

[∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1θρ

∥∥∥2
H

]
.

(32)

Proof. We proceed using the fact that E[X] = E[X | cA]P(cA) + E[X |A]P(A) ≤ supX P(cA) +

E[X |A]P(A), with A =
{
Dn
∣∣∣ ∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1/2

∥∥∥ ≤ 1/2
}

,

EDn

[
‖ĝp − gρ‖2L2

]
≤ sup
Dn

‖ĝp − gρ‖2 P (cA) + EDn

[
‖ĝp − gρ‖2

∣∣∣A]P(A).

When Y is bounded by cY , because gρ is a convex combination of Y , we know that ‖gρ‖L2 ≤ cY ,
as a consequence, we can clip ĝp to [−cY , cY ], which will only improve the estimation of gρ, as a
consequence, we can consider the clipping estimate for which we have supDn

‖ĝp − gρ‖2L2 ≤
4c2Y . Regarding the second part, we have already decomposed the risk under the event A ={
Dn
∣∣∣ ∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1/2

∥∥∥ ≤ 1/2
}

. As a consequence, we have

EDn

[
‖ĝp − gρ‖2L2

]
≤ 4c2Y P(cA) + 4λ2 ‖Lgρ‖2L2 P(A) + 4λµc2a ‖gρ‖

2
L2 P(A)

· · ·+ 8EDn

[∥∥∥(C + λµ)−1/2(θ̂ρ − θρ)
∥∥∥2
H

∣∣∣∣A]P(A)

· · ·+ 12c2a ‖gρ‖
2
L2 EDn

[∥∥∥C1/2(I − P )
∥∥∥2
op

∣∣∣∣A]P(A)

· · ·+ 8EDn

[∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1θρ

∥∥∥2
H

∣∣∣∣A]P(A).

To control the conditional expectation, we use that, when X is positive

E [X |A]P (A) = E[X]− E [X | cA]P(cA) ≤ E[X].

This ends the proof.

Based on deviation inequalities, we can control expectations based on the equality, for X positive,
E[X] =

∫ +∞
0

P(X > t) dt.

Lemma 22. In the setting of the paper,

EDn

[∥∥∥(C + λµ)−1/2(θ̂ρ − θρ)
∥∥∥2
H

]
≤ 8σ2

` (n`µλ)−1 + 8c2Yκ
2(n2`µλ)−1. (33)

Proof. First, recall that

P
(∥∥∥(C + λµ)−1/2(θ̂ρ − θρ)

∥∥∥
H
> t
)
≤ 2 exp

(
− n`t

2

2σ2
` (µλ)−1 + 2tcY(λµ)−1/2κ/3

)
≤ 2 exp

(
− n`t

2

2 max
(
2σ2

` (µλ)−1, 2tcY(λµ)−1/2κ/3
))

≤ 2 exp

(
−n`µλt

2

4σ2
`

)
+ 2 exp

(
−3n`µ

1/2λ1/2t

4cYκ

)
.
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As a consequence

E
[∥∥∥(C + λµ)−1/2(θ̂ρ − θρ)

∥∥∥2
H

]
=

∫ +∞

0

P
(∥∥∥(C + λµ)−1/2(θ̂ρ − θρ)

∥∥∥2
H
> t

)
dt

≤ 2

∫
exp

(
−n`µλt

4σ2
`

)
dt+ 2

∫
exp

(
−3n`µ

1/2λ1/2t1/2

4cYκ

)
dt.

= 8σ2
` (n`µλ)−1 +

64c2Yκ
2

9
(n2`µλ)−1.

This is the result stated in the lemma.

Lemma 23. In the setting of the paper,

EDn

[∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1θρ

∥∥∥2
H

]
≤ 8(κ2 + λ∂κ2)2c2a ‖gρ‖

2
L2

· · · ×
(
(µλn)−1 + (µλn2)−1

)
,

(34)

with ∂κ2 =
∑d
i=1 κ

2
i .

Proof. Let us denote by A the quantity
∥∥∥(C + λµ)−1/2(Ĉ − C)(C + λµ)−1θρ

∥∥∥
H

, and ∂κ2 =∑d
i=1 κ

2
j . Recall that

P (A > t) ≤ 2 exp

(
− µλnt2

2c1(c1 + λ1/2µ1/2t/3)

)
≤ 2 exp

(
−µλnt

2

4c21

)
+ 2 exp

(
−3(µλ)1/2nt

4c1

)
.

We conclude the proof similarly to the precedent lemma.

Lemma 24. Under Assumption 3,

EDn

[∥∥∥C1/2(I − P )
∥∥∥2
op

]
≤
(

10κ2 log(p)

p
+

10aκ2acdλ log(p)a

pa

)
· · · ×

(
1 +

2κ2

‖Σ‖op log(p)

(
1 +

6

log(p)

)(
1

p
+

1

5 log(p)

))
.
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Proof. Once again, this result comes from integration of the tail bound obtained on
∥∥C1/2(I − P )

∥∥2
op

through the one we have on
∥∥Σ1/2(I − P )

∥∥2
op

and the fact that
∥∥C1/2(I − P )

∥∥2
op
≤∥∥Σ1/2(I − P )

∥∥2
op

+ cdλ
∥∥Σ1/2(I − P )

∥∥2a
op

. For any a, b > 0, we have

EDn

[∥∥∥Σ1/2(I − P )
∥∥∥2
op

]
=

∫ ∞
0

PDn

(∥∥∥Σ1/2(I − P )
∥∥∥2
op
> t

)
dt

≤
∫ ∞
0

min

{
1, 2κ2 ‖Σ‖−1op

(
1 +

58κ2

tp

)(
1 +

2κ2

t

)
exp

(
− pt

10κ2

)}
dt

=
10κ2a

p

∫ ∞
0

min

{
1, 2κ2 ‖Σ‖−1op

(
1 +

58

10au

)(
1 +

p

5au

)
exp (−au)

}
du

≤ 10κ2a

p

(
b+

∫ ∞
b

2κ2 ‖Σ‖−1op

(
1 +

6

au

)(
1 +

p

5au

)
exp (−au) du

)
≤ 10κ2

p

(
ab+ 2κ2 ‖Σ‖−1op

(
1 +

6

ab

)(
1 +

p

5ab

)
exp (−ab)

)
.
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This last quantity is optimized for ab = log(p), which leads to the first part of lemma. Similarly

EDn

[∥∥∥Σ1/2(I − P )
∥∥∥2a
op

]
=

∫ ∞
0

PDn

(∥∥∥Σ1/2(I − P )
∥∥∥2a
op
> t

)
dt

=

∫ ∞
0

PDn

(∥∥∥Σ1/2(I − P )
∥∥∥2
op
> t1/a

)
dt

≤
∫ ∞
0

min

{
1, 2κ2 ‖Σ‖−1op

(
1 +

58κ2

t1/ap

)(
1 +

2κ2

t1/a

)
exp

(
−pt

1/a

10κ2

)}
dt

=
10aκ2aaca

pa

∫ ∞
0

min

{
ua−1, 2κ2 ‖Σ‖−1op

(
1 +

58

10cu

)(
1 +

p

5cu

) 1

u1−a
exp (−cu)

}
du

≤ 10aκ2aaca

pa

(
ba

a
+

∫ ∞
b

2κ2 ‖Σ‖−1op

(
1 +

6

cu

)(
1 +

p

5cu

) 1

u1−a
exp (−cu) du

)
≤ 10aκ2a

pa

(
(cb)a + 2κ2 ‖Σ‖−1op

(
1 +

6

cb

)(
1 +

p

5cb

) 1

(cb)1−a
exp (−cb)

)
.

Once again this is optimized for cb = log(p).

Remark 25 (Leverage scores). Out of simplicity, we only present low rank approximation with
random subsampling. Yet, we can improve the result by considering subsampling based on leverage
scores. If we consider the Gaussian kernel, Skx ∈ L2 can be thought as a function that is a little
bump around x ∈ X . In essence, subsampling based on leverage scores, consists in representing the
solution on a subsampled sequence (kXi)i∈I where the Xi are far from one another so that the bump
functions (SkXi) can approximate a maximum of functions. [45] shows that with leverage scores, we
can take p = (µλ)γ log(n), with γ linked with the capacity of the RKHS linked with the kernel k.

If we add all derivations, we have derived the following theorem.
Theorem 4. Under Assumptions 1, 2 and 3,

EDn

[
‖ĝ − gρ‖2L2

]
≤ 8c2Y

(
1 + 28

κ2 + λ∂κ2

λµn

)
(1 + λµ ‖C‖−1op )

κ2 + λ∂κ2

λµ
exp

(
− λµn

10 (κ2 + λ∂κ2)

)
· · ·+ 4λ2 ‖Lgρ‖2L2 + 4λµc2a ‖gρ‖

2
L2 + 64σ2

` (n`µλ)−1 + 57c2Yκ
2(n2`µλ)−1

· · ·+ 64(κ2 + λ∂κ2)2c2a ‖gρ‖
2
L2 (µλn)−1 + 57(κ2 + λ∂κ2)2c2a ‖gρ‖

2
L2 (µλn2)−1

· · ·+ 12c2a ‖gρ‖
2
L2

(
10κ2 log(p)

p
+

10aκ2acdλ log(p)a

pa

)
· · · ×

(
1 +

2κ2

‖Σ‖op log(p)

(
1 +

6

log(p)

)(
1

p
+

1

5 log(p)

))
.
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where cY is an upper bound on Y , κ2 is an upper bound on x→ k(x, x), ∂κ2 =
∑d
i=1 κ

2
i with κ2i a

bound on x→ ∂1i∂2i∂kxi
, cd and a the constants appearing in Assumption 3, ca a constant such that

‖g‖H ≤ ca ‖g‖L2 and σ2
` ≤ c2Yκ2 a variance parameter linked with the variance of Y (I+λL)−1δX .

Theorem 1 is a corollary of this theorem.
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