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1 Comparison of Graph Contrastive Learning Approaches

We summarize the published approaches of graph contrastive learning in Table 1. Specifically, the
tasks include graph-level and node-level tasks. The GNNs are used to encode the graph data and
they are quite flexible. A typical augmented view is the graph itself, but it focuses on different
structure-level of the graph. The two views adopted by mvgrl are the graph itself and the diffused
graph, respectively. The four views used by GraphCL are discussed in the text. GCA applies edges
removing and attribute masking to generate two views. In CSSLs, edge deletion/insertion and node
deletion/insertion are used to generate different views. Similar to GCA, SelfTask also applies edges
removing and attribute masking to generate views. The contrastive modes are discussed in the text,
which include global-global, local-global, local-local, multi-scale mode, and hybrid modes. mvgrl
studies the effect of various contrastive modes. SelfTask uses both local-local and global-global.
The additional comparison of sampling strategies and objective functions between published graph
contrastive learning approaches is shown in Table-2.

Approach Task GNN Augmented Views Contrastive Mode

DGI [6] Node GCN Graph itself Global-local
InfoGraph [4] Both GIN Graph itself Multi-scale
mvgrl [1] Both GCN Two views Various
GCC [3] Both GIN Graph itself Local-local
GRACE [9] Node GCN, GraphSAGE Graph itself Local-local
GraphCL [7] Both GCN, GIN, GAT Four views Global-global
GCA [10] Node GCN Two views Local-local
CSSLs [8] Graph HGP-SL Four views Global-global
SelfTask [2] Node GCN Two views Two modes

Table 1: A comparison of published approaches for graph contrastive learning.

Approach Sampling Strategy Obj. Function

DGI [6] Randomly sampled graphs (or a graph transformation) JSD
InfoGraph [4] Global and local patch across all graph instances in a batch JSD
mvgrl [1] Joint distribution for positive, product of marginals for negative JSD, InfoNCE
GCC [3] Randomly sampled graphs InfoNCE
GRACE [9] Negative samples are all other nodes in the two views NT-xent
GraphCL [7] N-1 augmented graphs within the same minibatch NT-xent
GCA [10] Negative samples are all other nodes in the two views InfoNCE
CSSLs [8] Randomly sampled graphs NT-xent
SelfTask [2] Randomly sampled edges/attributes Cross Entropy

Table 2: Different sampling strategies and objective functions of published approaches for graph
contrastive learning.
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Figure 1: Illustration of optimal views.

2 Proofs of Corollaries

Basically, we follow the proofs in [5] to provide the proofs of our corollaries. The main differences
are two-fold: 1) the input is graph G for our framework, and 2) the concept of optimal contrastive
mode is unique for graph contrastive learning.

Corollary 1. (Optimal Augmented Views) For a downstream task T whose goal is to predict a
semantic label y, the optimal views, v∗

i , v∗
j , generated from the input graph G are the solutions to the

following optimization problem :
(v∗

i ,v
∗
j ) = argmin

vi,vj

I(vi;vj) (1)

s.t. I(vi; y) = I(vj ; y) (2)
I(vi; y) = I(G; y) (3)

Proof. Because Equation (3) holds and vi, vj are functions of G, it is natural to know I(G; y)
= I(vi,vj ; y) holds. Because I(vi,vj ; y) = I(vi; y) + I(vj ; y|vi) and Equation (3) holds, we
know I(vi,vj ; y) = I(G; y) + I(vj ; y|vi). Because I(G; y) = I(vi,vj ; y) already holds and the
nonnegativity of mutual information, we know

I(vj ; y|vi) = 0. (4)
Thus, we know I(vi;vj) = I(vi;vj) + I(vj ; y|vi) = I(vi, y;vj). In addition, we know I(vi, y;vj)
= I(vj ; y) + I(vi;vj |y). Thus, I(vi;vj) = I(vj ; y) + I(vi;vj |y) > I(vj ; y) = I(G; y). Therefore,
I(vi;vj) can reach the minimum, which is I(G; y) And when I(vi;vj) can reach the minimum, the
optimal views are conditionally independent, which is described as

I(v∗
i ;v

∗
j |y) = 0. (5)

It is noticed that: 1) when Equation (4) holds, the area of B in Figure 1 becomes null. 2) when
Equation (5) holds, the area of C in Figure 1 becomes null.

Corollary 2. (Optimal View Encoder) Given the optimal views, v∗
i , v∗

j , for a downstream task T
whose goal is to predict a semantic label y, the optimal view encoder for view v∗

i is the solution to
the following optimization problem :

f∗
i = argmin

fi

I(fi(v
∗
i );v

∗
i ) (6)

s.t. I(fi(v
∗
i );v

∗
j ) = I(v∗

i ;v
∗
j ) (7)

We can follow the basic idea of Proposition A.2 and Proposition A.3 in Appendix of [5] to get the
proof of Corollary 2. The main difference is that we focus on the optimal view encoders, however,
[5] focuses on the optimal representations.

Corollary 3. (Optimal Contrastive Mode) Given the latent representations, z∗i , z∗j , extracted by the
optimal view encoders, i.e., z∗i = f∗

i (v
∗
i ), z

∗
j = f∗

j (v
∗
j ) , and a downstream task T with label y, the

optimal contrastive mode is the solution to the following optimization problem, where ci, cj are the
aggregation operations applied to the latent representations:

(c∗i , c
∗
j ) = argmin

(ci,cj)

−I(ci(z∗i ); cj(z∗j )). (8)
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Proof. Recall the objective function of graph contrastive learning is to minimize the contrastive loss,
e.g., LNCE . Minimizing the loss equivalently maximizes the mutual information between latent
representations based on contrastive modes. For example, minimizing LNCE equivalently maximizes
I(zi, zj), which is because I(zi, zj) > log(N) - LNCE . Thus, we just need to iterate through all the
modes and choose the mode with the largest mutual information value.

3 Experimental Settings

The algorithm of InfoGCL for both graph and node classification is described in Algorithm 1. The
view augmentation methods include node dropping, edge perturbation, attribute masking, subgraph
sampling, and graph diffusion. The GNN backbones of view encoders include GCN, GAT, and GIN.
The aggregation operations include identical transformation and taking average, which construct the
global-global, local-global, local-local, multi-scale mode, and hybrid modes. It is noticed that the
two views share the same view encoder (Proposition 2), which is because the domains of the two
views are the same.

Algorithm 1: Training algorithm of InfoGCL for both graph and node classification
1: Input: The input graph G, a task T with label y, a bunch of graph view augmentation methods,
{q1(·), q2(·), · · · }, a set of view encoders, {f1(·), f2(·), · · · }, a set of aggregation operations,
{c1(·), c2(·), · · · }.

2: Output: The recommended augmentation methods, q∗i (·), q∗j (·), the recommended view
encoder, f∗(·), the recommended contrastive mode, (c∗i (·), c∗j (·)).

3: # Proposition 1: optimal view augmentations
4: La← []
5: for view augmentation qi(·) ∈ {q1(·), q2(·), · · · } do
6: for view augmentation qj(·) ∈ {q1(·), q2(·), · · · } do
7: vi ← qi(G)
8: vj ← qj(G)
9: a← I(vi; y) + I(vj ; y) - I(vi;vj).

10: Add a to La.
11: end for
12: end for
13: Choose the augmentations with the maximum value in La as q∗i (·) and q∗j (·), respectively.
14: # Proposition 2: optimal view encoder
15: Lb← []
16: for view encoder f(·) ∈ {f1(·), f2(·), · · · } do
17: zi ← f(vi)
18: zj ← f(vj)
19: b← I(vi; zi; y) + I(vj ; zj ; y).
20: Add b to Lb.
21: end for
22: Choose the encoder with the maximum value in Lb as f∗(·).
23: # Proposition 3: optimal contrastive mode
24: Lc ← []
25: for aggregation operation ci(·) ∈ {c1(·), c2(·), · · · } do
26: for aggregation operation cj(·) ∈ {c1(·), c2(·), · · · } do
27: c← I(ci(zi); cj(zj); y).
28: Add c to Lc.
29: end for
30: end for
31: Choose the operations with the maximum value in Lc as c∗i (·) and c∗j (·), respectively.
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4 Quantitative Evaluation of Proposition

To test the validity of our proposed propositions, we conduct the ablation studies on the Cora and
Citeseer datasets. Specifically, we use the GraphCL [7] as the backbone and test it on Proposition 1.

Proposition 1. For a task T with label y, given a bunch of graph view augmentation methods, {q1(·),
q2(·), · · · }, that create two views vi, vj , the recommended augmentation methods are the ones, qi(·),
qj(·), that maximize I(vi; y) + I(vj ; y) - I(vi;vj), i.e., the area of A+B+D in Figure 1.

Augmented Views
Classification Accuracy I(vi; y) + I(vj ; y) - I(vi;vj)

Cora Citeseer Cora Citeseer

EdgePert vs. Identical 82.5 ± 0.1 72.2 ± 0.2 4.5671 ± 0.1 812.5062 ± 0.6
EdgePert vs. EdgePert 82.3 ± 0.2 73.1 ± 0.2 4.1921 ± 0.4 821.3120 ± 1.0

Table 3: The comparison between classification accuracy and I(vi; y)+I(vj ; y)-I(vi;vj) for differ-
ent augmented views. I(vi; y) + I(vj ; y) - I(vi;vj) is approximated by - (CEi+CEj-(CE

′

i+CE
′

j)).

To calculate I(vi; y) + I(vj ; y) - I(vi;vj), we use cross-entropy to approximate the mutual informa-
tion. Specifically, we feed vi into GNNs and the outputs are further fed into a MLP to generate logits.
We calculate the cross-entropy, CEi, based on the logits and y. Similarly, we are able to calculate the
cross-entropy, CEj , based on vj and y. To approximate I(vi;vj), we first feed vi, vj into another
GNNs and MLP. Then, we use the outputs of vi as logits and the outputs of vj as labels to get CE

′

i.
Symmetrically, we are able to get CE

′

j . Thus, we use - (CEi + CEj - (CE
′

i + CE
′

j)) to approximate
I(vi; y) + I(vj ; y) - I(vi;vj). We use two-layer GCNs as the GNNs and CEi + CEj - (CE

′

i + CE
′

j)
as the loss function. We adopt the default settings and train the model until it converges. The results
are reported in Table 3. It is observed that, on the Cora dataset, the view pair of edge perturbation
and the graph itself shows a little higher performance than the pair of edge perturbation and edge
perturbation. According to the right part of Table 3, we see the view pair of edge perturbation and the
graph itself has a greater value of I(vi; y) + I(vj ; y) - I(vi;vj) than the pair of edge perturbation
and edge perturbation. Similar observations can be observed on the Citeseer dataset. Thus, the
validity of Proposition 1 is verified.

Proposition 2. Given a task T with label y and a set of view encoders, {f1
i (·), f2

i (·), · · · }, that
generate representation zi via taking view vi as input, the recommended view encoder is the one that
maximizes the mutual information between vi, zi and y. Symmetrically the same for view vj .

GNN Backbone
Classification Accuracy Mutual Information

Cora Citeseer Cora Citeseer

GCN 82.5 ± 0.1 72.2 ± 0.2 30.8579 ± 1.1 52.6575 ± 0.9
GAT 83.1 ± 0.4 73.1 ± 0.5 30.9037 ± 0.5 56.0916 ± 0.6

Table 4: The comparison between classification accuracy and the mutual information (I(vi; zi; y)
+ I(vj ; zj ; y)) for different GNN backbones. I(vi; zi; y) is approximated by I(vi; zi) + I(vi; y) +
I(zi; y). Similarly for I(vj ; zj ; y).

We follow a similar way to approximate the mutual information. Specifically, I(vi; zi; y) is approxi-
mated by I(vi; zi) + I(vi; y) + I(zi; y) and I(vj ; zj ; y) is approximated by I(vj ; zj) + I(vj ; y) +
I(zj ; y), which is because these views are approximate optimal views generated by Proposition 1.
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