
InfoGCL: Information-Aware Graph Contrastive
Learning

Dongkuan Xu1 Wei Cheng2 Dongsheng Luo1 Haifeng Chen2 Xiang Zhang1
1The Pennsylvania State University

2NEC Labs America
1{dux19,dul262,xzz89}@psu.edu

2{weicheng,haifeng}@nec-labs.com

Abstract

Various graph contrastive learning models have been proposed to improve the per-
formance of learning tasks on graph datasets in recent years. While effective and
prevalent, these models are usually carefully customized. In particular, although
all recent researches create two contrastive views, they differ greatly in view aug-
mentations, architectures, and objectives. It remains an open question how to build
your graph contrastive learning model from scratch for particular graph learning
tasks and datasets. In this work, we aim to fill this gap by studying how graph
information is transformed and transferred during the contrastive learning process
and proposing an information-aware graph contrastive learning framework called
InfoGCL. The key point of this framework is to follow the Information Bottleneck
principle to reduce the mutual information between contrastive parts while keeping
task-relevant information intact at both the levels of the individual module and the
entire framework so that the information loss during graph representation learning
can be minimized. We show for the first time that all recent graph contrastive
learning methods can be unified by our framework. We empirically validate our
theoretical analysis on both node and graph classification benchmark datasets, and
demonstrate that our algorithm significantly outperforms the state-of-the-arts.

1 Introduction

Inspired by their success in the vision and language domains, contrastive learning methods have
been wildly adopted by recent progress in graph learning to improve the performance of a variety
of tasks [42, 13, 22]. In a nutshell, these methods typically learn representations by creating two
augmented views of a graph and maximizing the feature consistency between the two views. Inheriting
the advantages of self-supervised learning, contrastive learning relieves graph representation learning
from its reliance on label information in graph domain, where label information can be very costly or
even impossible to collect while unlabeled/partially labeled data is common, such as chemical graph
data [28]. Graph contrastive learning methods have achieved similar (and even better) performance
as compared to the equivalent methods trained with labels on benchmark graph datasets [42, 13, 6].

Despite being effective and prevalent, existing graph contrastive learning models differ mostly in
augmented view design, encoding architecture, and contrastive objective (refer to Table 1 in Appendix
for more comparisons). For a learning task, it usually requires a substantial degree of domain
expertise to carefully design and customize these modules for the specific dataset. For example, while
both DGI [33] and InfoGraph [28] seek to obtain graph representations by maximizing the mutual
information between patch-level and graph-level representations, they adopt different graph encoders,
GCN [15] and GIN [38] respectively. mvgrl [13] applies graph diffusion convolution to construct the
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Figure 1: Graph contrastive learning approaches consist of three stages: 1) a graph G undergoes
view augmentation, qi(·), qj(·), to obtain two semantically similar views, vi, vj . 2) the two views
are fed into view encoder networks, fi(·), fj(·), to extract latent representations, zi, zj . 3) the
feature consistency between representations is maximized to optimize the objective function based on
contrastive mode (ci(·), cj(·)), where ci(·), cj(·) are aggregation operations applied to representations.

augmented view, while GCC [22] and GRACE [45] adopt subgraph sampling and graph perturbation,
respectively.

The main question this paper attempts to answer is: how to perform contrastive learning for your
learning tasks on specific graph datasets? However, answering this question is challenging. First,
contrastive learning consists of multiple components, such as view augmentation and information
encoding. For each of them, there are various choices. Numerous variations make it difficult to
design models that are both robust and efficient. Existing graph contrastive learning approaches are
carefully designed for different learning tasks on different datasets, however, none of them studies
the guiding principles for choosing the best components. Second, graph data has unique properties
that distinguish it from other types of data, such as rich structural information and highly diverse
distribution [33, 28, 11, 10]. Thus, it is desirable to design the contrastive learning model that fits
your graph data properties, even without any domain knowledge of the data.

We propose to address these challenges via Information Bottleneck (IB) [31], which provides a crucial
principle for representation learning. Specifically, IB encourages the representations to be maximally
informative about the target in the downstream task, which helps keep task-relevant information.
Concurrently, IB discourages the representation learning from acquiring the task-irrelevant informa-
tion from the input data, which is related to the idea of minimal sufficient statistics [27]. However,
different from the typical representation learning, there are two information flows involved in the two
augmented views in contrastive learning. Therefore, we extend the previous IB work [37, 43] and
propose InfoGCL, an information-aware contrastive learning framework for graph data.

To study how information is transformed and transferred, we decouple a typical graph contrastive
learning model into three sequential modules (as shown in Figure 1): view augmentation, view
encoding, and representation contrasting. We further formalize how to find the optimal of the three
modules into three optimization problems. To build the optimal graph contrastive learning model for
the particular dataset and task, we argue that it is necessary and sufficient to minimize the mutual
information between contrastive representations while maximizing task-relevant information at the
levels of both individual module and entire framework. Our work is also motivated by the InfoMin
theory [30], which suggests that a good set of views for contrastive learning in the vision domain
should share the minimal information necessary to perform well at the downstream task. Beyond
view selection, our work extends InfoMin to suggest principles of selecting view encodings and
contrastive modes for graph learning considering the unique properties of graph data.

We suggest practically feasible principles to find the optimal modules in graph contrastive learning
and show that all recent graph contrastive learning methods can be unified by these principles: i) the
augmented views should contain as much task-relevant information as possible, while they should
share as little information as possible; ii) the view encoder should be task-relevant and simple as
much as possible; iii) the contrastive mode should keep task-relevant information as much as possible
after contrasting. Besides, we also investigate the role of negative samples in graph contrastive
learning and argue that negative samples are not necessarily required, especially when graph data
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is not extremely sparse. Our proposed method, InfoGCL, is validated on a rich set of benchmark
datasets for both node-level and graph-level tasks, where we analyze its ability to capture the unique
structural properties of the graph data. The results demonstrate that our algorithm achieves highly
competitive performance with up to 5.2% relative improvement in accuracy on graph classification
task and competitive results on node classification task over the state-of-the-art unsupervised methods.

2 Related Work

Graph Contrastive Learning. Some recent research efforts in graph domain have been attracted
by the success of contrastive learning in vision and language domains [3, 8, 4]. A number of graph
contrastive learning approaches have been proposed [28, 22, 42, 13]. Despite all of them creating two
views and targeting at maximizing the feature disagreement between the two views, these methods
are carefully designed and differ in various aspects. Deep graph Infomax (DGI) [33] applied the
InfoMax principle [18] to graph data by contrasting the representations of node-level and graph-level
for node classification tasks. Different from DGI, InfoGraph [28] aims at node classification tasks
and it contrasts the representations of graph-level and substructure-level of different granularity. In
addition, DGI and InfoGraph use different graph encoders to extract latent representations. mvgrl [13]
studies both node and graph classification tasks. It transforms the adjacency matrix to a diffusion
matrix and treat the two matrices as two congruent views. However, in GCC [22] and GRACE [45],
subgraph sampling and graph perturbation are used to create the augmented views. GraphCL [42]
explores the view augmentations approaches for graph contrastive learning. Specifically, it studies the
approaches of node dropping, edge perturbation, attribute masking, and subgraph sampling. A recent
work [44] also studies graph data augmentations. However, it focuses on graph neural networks for
node classification and does not study the contrastive learning framework. Our method differs from
them. We aim to answer the question how to perform contrastive learning for your graph data and
tasks. Instead of carefully designing the architectures, we decouple typical graph contrastive learning
into three stages and provide our InfoGCL principles to analyze the optimality theoretically and
practically.

Information Bottleneck. Our method is related to the Information Bottleneck (IB) theory [31],
which aims to find the best trade-off between accuracy and complexity when summarizing a random
variable. IB has been recently used to study the deep learning approaches [26, 37, 43]. Specifically,
IB expresses the trade-off between the mutual information measures I(D, Z) and I(Z, y) as

max IBβ = −I(D;Z) + βI(Z;y), (1)

where D, Z, y are the input, the latent representation and the task label, respectively. θ is a
hyperparameter. In other words, IB aims to learn representation Z that is maximally expressive
about y, while being minimally expressive about D. More recently, there are some efforts applying
the IB theory to graph representation learning. [37] aims to generate both expressive and robust
graph representations, while [43] studies the subgraph recognition problem. In contrast, our work
focuses on graph contrastive learning, where the two augmented views make the optimization
objective (information trade-off) different. Our work is also related to the idea of minimal sufficient
statistics [27], which has been recently studied in the vision domain [30], claiming that a good set of
image views should share the minimal information necessary to perform well at the downstream task.
Different from [30], we focus on the graph domain and propose three stages considering the unique
properties of graph data.

3 Preliminaries and Notations

Graph Representation Learning. A graph is denoted by G = (A, X). A ∈ Rn×n is the adjacency
matrix. X ∈ Rn×d is the node attribute matrix, where d is the attribute dimension. In this work, we
focus on both node-level and graph-level tasks. For node-level task, given graph G and the labels of a
subset of nodes, denoted by Yv , the goal is to learn the latent representation zv for each node v such
that zv preserves both network structures and node attributes, which can be further used to predict
Yv. For graph-level task, given a set of graphs G = {G1, G2, · · · } and the labels of some graphs,
denoted by Yg, the goal is to learn the latent representation zg for each graph such that zg can be
used to predict Yg. Typically, the graph data is fed into graph neural networks (GNNs) to generate
the representations, such as zg = GNNs(G).
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Figure 2: Illustration of optimal views. (Left) The relationships between graph G, two views, vi,
vj , and task y in terms of information entropy. A, B, C, D, E are overlapping areas. Two views
are contained by graph because views are functions of graph. (Middle) A, B, E become null when
Eqs. (4)-(5) hold, which indicates the views and graph share the same amount of task-relevant
information. (Right) C further becomes null when Eq. (3) holds, which indicates all the shared
information between views is task-relevant, i.e., the views are optimal.

Graph Contrastive Learning. Given an input graph, graph contrastive learning aims to learn
the representations of graph or nodes (for graph-level or node-level tasks respectively) through
maximizing the feature consistency between two augmented views of the input graph via contrastive
loss in the latent space. We decouple a typical graph contrastive learning model into three sequential
modules.

(i) View augmentation. Graph G undergoes data augmentation q(·) to obtain two views vi, vj , i.e.,
vi ∼ qi(G) and vj ∼ qj(G). A view is represented as graph data, such as vi = (Avi , Xvi), where
Avi ∈ Rn×n and Xvi ∈ Rn×d. In practice, view augmentation approaches include node dropping,
edge perturbation, subgraph sampling, etc.

(ii) View encoding. Graph-level or node-level latent representation is extracted from views vi, vj by
using the view encoder networks f(·) (a GNN backbone plus a projection MLP), i.e., zi ∼ fi(vi)
and zj ∼ fj(vj). The two encoders might or might not share parameters depending on whether they
are from the same domain.

(iii) Representation contrasting. Given the latent representations, a contrastive loss is optimized
to score the positive pairs zi, zj higher compared to other negative pairs. Typically, the negative
pairs are constructed from the augmented views of other graphs in the same minibatch. The InfoNCE
loss [21] has been adopted as one of popular contrastive losses, which is defined as:

LNCE = −E

[
log

exp(h(zi,n, zj,n))∑N
n′=1 exp(h(zi,n, zj,n′))

]
, (2)

where h(·) is a contrasting operation to score the agreement between two representations. Theoreti-
cally, minimizing the InfoNCE loss equivalently maximizes a lower bound on the mutual information
between the views of positive pairs. In other words, I(zi, zj)> log(N) -LNCE , where I(·) measures
the mutual information.

4 Information-Aware Graph Contrastive Learning

In this paper, we study how to perform contrastive learning for specific graph tasks and datasets. In
particular, we attempt to answer the following questions for graph contrastive learning: (i) What
is the optimal augmented views? (ii) What is the optimal view encoder? (iii) What is the optimal
contrastive mode?

4.1 View Augmentation

The goal of view augmentation is to create realistically rational data via the transformation approaches
that do not affect the semantic label. Compared to the augmentation in other domains, graph view
augmentation needs to consider the structural information of graph data, such as the node, the edge,
and the subgraph. There are various graph view augmentation methods proposed recently. We follow
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a similar definition used in [42] to categorize four kinds of view augmentation approaches for graph
data. Node dropping discards a certain part of nodes along with their edges in the input graph
to create a new graph view. Edge perturbation perturbs the connectivity in the graph via adding
or dropping partial edges. Attribute masking masks part of node attributes and assumes that the
missing attributes can be well predicted by the remaining ones. Subgraph sampling samples a
subgraph from the input graph. The rationale behind these approaches is that the semantic meaning
of graph has certain robustness to graph perturbation.

The augmented views generated in the graph contrastive framework are typically used in a separate
downstream task. To characterize what views are optimal for a downstream task, we define the
optimality of views. The main motivation is: the optimal augmented views should contain the most
task-relevant information, and the information shared between views should only be task-relevant.

Corollary 1. (Optimal Augmented Views) For a downstream task T whose goal is to predict a
semantic label y, the optimal views, v∗

i , v∗
j , generated from the input graph G are the solutions to the

following optimization problem :

(v∗
i ,v

∗
j ) = argmin

vi,vj

I(vi;vj) (3)

s.t. I(vi; y) = I(vj ; y) (4)
I(vi; y) = I(G; y) (5)

This says that for the optimal graph views, the amount of information shared between them is
minimized (Eq. (3)), while the two views contain the same amount of information with respect to
y (Eq. (4)), which is also the amount of information that the input gprah contains about the task
(Eq. (5)). The illustration of the optimal views is shown in Figure 2 and the proof is in the Appendix.

4.2 View Encoding

View encoding aims to extract the latent representations of nodes or graphs via feeding the data of
two views into view encoder networks such that the generated representations preserve both structure
and attribute information in the views. The view encoders are quite flexible in graph contrastive
learning and typically they are GCN [15], GAT [32], or GIN [38], etc.

The representations extracted via view encoding are further utilized to optimize the objective function
of contrastive learning. After well trained, the view encoders are used to generate the graph/node
representations for a downstream task. To characterize what encoders are optimal, we define the
optimality of view encoders for graph contrastive learning. The main motivation is: the representation
generated by the optimal encoder for a view should keep all the shared information by the two
contrastive views, meanwhile the kept information is all task-relevant.

Corollary 2. (Optimal View Encoder) Given the optimal views, v∗
i , v∗

j , for a downstream task T
whose goal is to predict a semantic label y, the optimal view encoder for view v∗

i is the solution to
the following optimization problem :

f∗i = argmin
fi

I(fi(v
∗
i );v

∗
i ) (6)

s.t. I(fi(v
∗
i );v

∗
j ) = I(v∗

i ;v
∗
j ) (7)

It indicates that for the optimal view encoder, the amount of information shared between the optimal
view and the extracted representation is minimized (Eq. (6)), while the information shared between
the two optimal views is kept after the encoding process of one view (Eq. (7)). The illustration of the
optimal encoder is shown in Figure 3 and the proof is illustrated in the Appendix.

4.3 Representation Contrasting

To allow flexible contrasting for graph data, we consider contrastive modes similar to [13]. A
contrastive mode is denoted by (ci(·), cj(·)), where ci(·), cj(·) are the aggregation operations applied
to the representations extracted by view encoders, The contrastive modes are unique to graph data
because of the structural information inside a graph. Specifically, we consider five contrastive modes.
In global-global mode, the graph representations from two views are contrasted. Thus, ci(·), cj(·)
are averaging aggregation operations in this mode. In local-global mode, we contrast the node
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Figure 3: Illustration of optimal view encoding. (Left) The relationships between two (optimal) views,
v∗
i , v∗

j , task y, and representation zi in terms of information entropy. A, B, C are null because the two
views are optimal here. zi is contained by view v∗

i because representations are functions of views.
(Middle) zi covers D when Eq. (7) holds, which indicates the shared information between views
is kept after encoding. (Right) View zi further exactly covers D and the view encoding becomes
optimal, i.e., z∗i , which indicates all the information shared between view v∗

i and representation z∗i is
task-relevant.

representations from one view with the graph representations from the other view. Thus, ci(·), cj(·)
are the identical transformation and averaging aggregation operations, respectively. In local-local
mode, the node representations from two views are contrasted. In multi-scale mode, we contrast
graph representation of one view with the intermediate representation from the other. In hybrid
mode, both global-global and local-global are applied.

To characterize which mode is optimal, we define the optimality of contrastive mode for graph
contrastive learning. The main motivation is: the optimal contrastive mode keeps the most task-
relevant information after the representations are aggregated. The proof is included in the Appendix.

Corollary 3. (Optimal Contrastive Mode) Given the latent representations, z∗i , z∗j , extracted by the
optimal view encoders, i.e., z∗i = f∗i (v

∗
i ), z

∗
j = f∗j (v

∗
j ) , and a downstream task T with label y, the

optimal contrastive mode is the solution to the following optimization problem, where ci, cj are the
aggregation operations applied to the latent representations:

(c∗i , c
∗
j ) = argmin

(ci,cj)

−I(ci(z∗i ); cj(z∗j )). (8)

4.4 InfoGCL Principle

According to our proposed corollaries, we can theoretically design the optimal contrastive learning
approach for our specific graph data and task. However, in real-world scenarios, the conditions to
meet the exact optimality of contrastive learning is hard or even not practically possible to reach
because of data noise and limited model capability. Therefore, we propose to achieve the optimal
for each stage independently and practically, which is an approximation to achieve the original
optimality. Specifically, we make the following propositions to address the questions of the optimal
views, optimal view encoder, and optimal contrastive mode.

Proposition 1. For a task T with label y, given a bunch of graph view augmentation methods, {q1(·),
q2(·), · · · }, that create two views vi, vj , the recommended augmentation methods are the ones, qi(·),
qj(·), that maximize I(vi; y) + I(vj ; y) - I(vi;vj), i.e., the area of A+B+D in Figure 2.

Proposition 2. Given a task T with label y and a set of view encoders, {f1i (·), f2i (·), · · · }, that
generate representation zi via taking view vi as input, the recommended view encoder is the one that
maximizes the mutual information between vi, zi and y. Symmetrically the same for view vj .

Proposition 3. Given a task T with label y, the extracted representations, zi, zj , and a set of
aggregation operations, {c1(·), c2(·), · · · }, the recommended contrastive mode is the one, (ci, cj),
that has the largest amount of mutual information between ci(zi), cj(zj) and y.

The qualitative and quantitative evaluation of these propositions are shown in Section 5.3.

4.5 Role of Negative Samples

Current graph contrastive learning approaches heavily depend on negative samples. However, recent
progresses of contrastive learning in vision domain indicate that negative samples are not necessarily
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Graph Task Datasets Node Task Datasets
MUTAG PTC-MR IMDB-B IMDB-M NCI1 COLLAB Cora Citeseer Pubmed

# Graphs 188 344 1000 1500 4110 5000 1 1 1
# Nodes 17.9 14.3 19.8 13.0 29.9 74.5 3327 2708 19717
# Edges 19.8 14.7 193.1 65.9 1.1 33.0 4732 5429 44338
# Classes 2 2 2 2 2 3 6 7 3

Table 1: Dataset statistics.

required [8, 4], of which the main benefit is to avoid careful treatment to retrieve the negative pairs.
To study the influence of negative samples on graph contrastive learning, we follow the framework
of SimSiam [4] to revise the loss function as Eq.(9). A very recent work [29] also studies graph
contrastive learning without negative samples. Different from it, we focus on both node and graph
classification tasks.

L = − 1

N

N∑
n=1

zi,n
‖zi,n‖

· zj,n
‖zj,n‖

, (9)

5 Experiments

In this section, we evaluate our InfoGCL with a number of experiments. We first describe datasets,
evaluation protocol, and experimental setup. Then, we present the experimental results on both node
and graph classification. Last, we analyze our proposed principles via ablation study.

5.1 Setup

We use both graph classification and node classification benchmark datasets that are widely used
in the existing graph contrastive learning approaches. The graph classification datasets include
MUTAG [17], PTC-MR [17], IMDB-B [40], IMDB-M [40], NCI1 [34], and COLLAB [40]. MUTAG
is a collection of nitroaromatic compounds represented as graphs, where vertices stand for atoms and
edges represent bonds between atoms. PTC-MR is a collection of 344 chemical compounds which
report the carcinogenicity for rats. IMDB-B and IMDB-M are two movie collaboration datasets,
where nodes represent actors/actress and there is an edge between them if they appear in the same
movie. In NCI1, graphs are the representation of chemical compounds, where vertices stand for atoms
and edges represent bonds between atoms. COLLAB is a collaboration dataset, where researchers
are nodes and an edge indicates collaboration between two researchers. The node classification
datasets include Citeseer, Cora, and Pubmed [23]. All of them are citation networks, where nodes are
documents and edges are citation links. These datasets are summarized in Table 1.

We closely follow the evaluation protocol of previous state-of-the-art graph contrastive learning
approaches. For graph classification, we report the mean 10-fold cross validation accuracy after 5
runs followed by a linear SVM. The linear SVM is trained by applying cross validation on training
data folds and the best mean accuracy is reported. For node classification, we report the mean accuracy
on test set after 50 runs of training followed by a linear neural network model. To make comparison
fair, we adopt the basic setting of InfoGraph for graph classification. We conduct experiment with
the values of the number of GNN layers, the number of epochs, batch size, the parameter C of SVM
in the sets {2, 4, 8, 12}, {10, 20, 40, 100}, {32, 64, 128, 256} and {10−3, 10−2, ..., 102, 103 },
respectively. We adopt the basic setting of DGI for node classification. Specifically, we set the
number of GNN layers to 1 and experiment with the batch size in the set {2, 4, 8}. The hidden
dimension of representations is set to 512. We also apply the early stopping strategy.

5.2 Experimental Results

To evaluate our method InfoGCL on graph classification, we use thhree categories of baselines.
The kernel approaches include shortest path kernel (SP) [2], Graphlet kernel (GK) [25], Weisfeiler-
Lehman sub-tree kernel (WL) [24], deep graph kernels (DGK) [39], and multi-scale Laplacian kernel
(MLG) [16]. The supervised baselines include GraphSAGE [12], GCN [15], GIN [38], GAT [32].
We also compare with the unsupervised approaches, including RandomWalk [7], node2vec [9],
sub2vec [14], graph2vec [20], InfoGraph [28], GraphCL [42], and mvgrl [13]. Table 2 shows the
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Method MUTAG PTC-MR IMDB-B IMDB-M NCI1 COLLAB

Kernel Approaches
SP 85.2 ± 2.4 58.2 ± 2.4 55.6 ± 0.2 38.0 ± 0.3 73.5 ± 0.1 -
GK 81.7 ± 2.1 57.3 ± 1.4 65.9 ± 1.0 43.9 ± 0.4 66.0 ± 0.1 72.8 ± 0.3
WL 80.7 ± 3.0 58.0 ± 0.5 72.3 ± 3.4 47.0 ± 0.5 80.0 ± 0.5 78.9 ± 1.9
DGK 87.4 ± 2.7 60.1 ± 2.6 67.0 ± 0.6 44.6 ± 0.5 80.3 ± 0.5 73.1 ± 0.3
MLG 87.9 ± 1.6 63.3 ± 1.5 66.6 ± 0.3 41.2 ± 0.0 80.8 ± 1.3 -

Supervised Approaches
GraphSAGE 85.1 ± 7.6 63.9 ± 7.7 72.3 ± 5.3 50.9 ± 2.2 77.7 ± 1.5 68.3 ± 4.2
GCN 85.6 ± 5.8 64.2 ± 4.3 74.0 ± 3.4 51.9 ± 3.8 80.2 ± 2.0 79.0 ± 1.8
GIN-0 89.4 ± 5.6 64.6 ± 7.0 75.1 ± 5.1 52.3 ± 2.8 82.7 ± 1.7 80.2 ± 1.9
GIN-e 89.0 ± 6.0 63.7 ± 8.2 74.3 ± 5.1 52.1 ± 3.6 82.7 ± 1.6 80.1 ± 1.9
GAT 89.4 ± 6.1 66.7 ± 5.1 70.5 ± 2.3 47.8 ± 3.1 66.6 ± 2.2 67.4 ± 2.9

Unsupervised Approaches
RandomWalk 83.7 ± 1.5 57.9 ± 1.3 50.7 ± 0.3 34.7 ± 0.2 64.3 ± 0.3 -
node2vec 72.6 ± 10.2 58.6 ± 8.0 50.2 ± 0.9 36.0 ± 0.7 54.9 ± 1.6 56.1 ± 0.2
sub2vec 61.1 ± 15.8 60.0 ± 6.4 55.3 ± 1.5 36.7 ± 0.8 52.8 ± 1.5 -
graph2vec 83.2 ± 9.6 60.2 ± 6.9 71.1 ± 0.5 50.4 ± 0.9 75.4 ± 1.2 -
InfoGraph 89.0 ± 1.1 61.7 ± 1.4 73.0 ± 0.9 49.7 ± 0.5 76.2 ± 1.4 70.7 ± 1.1
GraphCL 86.8 ± 1.3 61.3 ± 2.1 71.1 ± 0.4 49.2 ± 0.6 77.9 ± 0.4 71.4 ± 1.2
mvgrl 89.7 ± 1.1 62.5 ± 1.7 74.2 ± 0.7 51.2 ± 0.5 77.0 ± 0.8 76.0 ± 1.2
InfoGCL 91.2 ± 1.3 63.5 ± 1.5 75.1 ± 0.9 51.4 ± 0.8 80.2 ± 0.6 80.0 ± 1.3

Table 2: Graph classification results (%).

Method Cora Citeseer Pubmed

Supervised Approaches
MLP 55.1 46.5 71.4
ICA 75.1 69.1 73.9
LP 68.0 45.3 63.0
ManiReg 59.5 60.1 70.7
SemiEmb 59.0 59.6 71.7
Planetoid 75.7 64.7 77.2
Chebyshev 81.2 69.8 74.4
GCN 81.5 70.3 79.0
JKNet 82.7 ± 0.4 73.0 ± 0.5 77.9 ± 0.4
GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

Unsupervised Approaches
Linear 47.9 ± 0.4 49.3 ± 0.2 69.1 ± 0.3
DeepWalk 70.7 ± 0.6 51.4 ± 0.5 74.3 ± 0.9
GAE 71.5 ± 0.4 65.8 ± 0.4 72.1 ± 0.5
VERSE 72.5 ± 0.3 55.5 ± 0.4 -
DGI 83.8 ± 0.5 72.0 ± 0.6 77.9 ± 0.3
GraphCL 82.5 ± 0.1 73.1 ± 0.2 -
mvgrl 86.8 ± 0.5 73.3 ± 0.5 80.1 ± 0.7
InfoGCL 83.5 ± 0.3 73.5 ± 0.4 79.1 ± 0.2

Table 3: Node classification results (%).

graph classification results. We observe that our approach achieves the best results compared to other
unsupervised approaches. Our approach also outperforms or matches the best kernel approaches
across the datasets. Even compared with the supervised ones, our approach achieves the best in 2 out
of 6 datasets and the results of our approach on other 4 dataset are among the top.

For node classification tasks, we compare InfoGCL with some supervised approaches and unsu-
pervised approaches. The supervised baselines include a simple MLP model, iterative classifi-
cation algorithm (ICA) [19], manifold regularization (ManiReg) [1], semi-supervised embedding
(SemiEmb) [35], Planetoid [41], Chebyshev [5], GCN, JKNet [36], GAT. Table 3 shows the node
classification results. It is observed that our approach achieves the state-of-the-art results and com-
petes the best one with respect to the existing unsupervised approaches. Compared to supervised
baselines, our approach outperforms all the baselines.

8



Method MUTAG IMDB-B COLLAB Cora Citeseer Pubmed

InfoGCL (w/o neg) 91.0 ± 1.4 75.1 ± 0.5 80.2 ± 1.0 78.6 ± 0.4 70.4 ± 0.6 77.4 ± 0.7
InfoGCL (w/ neg) 91.2 ± 1.3 75.1 ± 0.9 80.0 ± 1.3 83.5 ± 0.3 73.5 ± 0.4 79.1 ± 0.2

Table 4: Comparison between InfoGCL with negative samples and without negative samples.

5.3 Evaluation of InfoGCL Principle

We can unify the existing graph contrastive learning methods through the perspective of InfoGCL
principle: all recent graph contrastive learning methods can be decoupled into three stages that
implicitly follow the InfoGCL principle, though being different in model architecture design and
optimization strategies. Below, we analyze some observations from several recent work. Because of
the limited space, please refer to the Appendix for more results of the quantitative analysis.

Obs. i. Composing a graph and its augmentation benefits downstream performance [42]. Compared
to composing a graph and the graph itself, augmentation leads to smaller I(vi;vj) (Proposition 1).

Obs. ii. Composing different augmentations benefits more [42]. Compared to composing a graph
and its augmentations, two augmentations further decrease I(vi;vj) (Proposition 1).

Obs. iii. Node dropping and subgraph sampling are generally beneficial across datasets [42]. When
compared to attribute masking and edge perturbation, they change the semantic meaning of the graph
relatively slightly, which leads to higher I(vi; y), I(vj ; y) (Proposition 1).

Obs. iv. Edge perturbation benefits social networks but hurts some biochemical molecules [42]. The
semantic meaning of social networks are robust to edge perturbation. However, the semantic meaning
of some biochemical molecules are determined by local connection pattern, where edge perturbation
decreases I(vi; y) (Proposition 1).

Obs. v. Contrasting node and graph representations consistently performs better than other contrastive
modes across benchmarks [13]. Compared to other contrastive modes, node-graph (i.e., local-global)
mode generally extracts more graph structure information, which benefits predicting task label y
(Proposition 3).

5.4 Effect of Negative Samples

To study the effect of negative samples on graph contrastive learning, we follow SimSiam [4] and
design the objective as Eq. (9). We conduct experiments on three graph task and three node task
datasets. The results are reported in Table 4. It is observed that the negative samples show little
influence on the three graph task datasets, while performance drops on the three node task datasets,
especially the Cora dataset.

According to the dataset statistics summarized in Table 1, we see the networks of Cora, Citeseer,
Pubmed are much sparser (in terms of network topology). Furthermore, we know the node features of
these three datasets are also much sparser (one-hot encoding with high dimensionality). We speculate
this because the contrastive learning models tends to collapse easier if negative samples are not used,
especially when data is too sparse. Therefore,we make the hypothesis: negative samples benefit graph
modeling, especially when i) network topology, and ii) node features are extremely sparse.

6 Conclusion and Limitations

We propose InfoGCL, an information-aware graph contrastive learning framework for graph con-
trastive learning. Existing graph contrastive learning approaches are usually carefully designed. We
aim to answer how to perform contrastive learning for your learning tasks on specific graph data.
Our method decouples the typical contrastive learning approaches into three sequential modules and
provides the theoretical analysis for reaching the optimality. To address the questions of optimality
in a practical way, we propose the InfoGCL principle, which is implicitly followed by all recent
graph contrastive learning approaches. In addition, we explore the role of negative samples in graph
contrastive learning and find negative samples are not necessarily required. Experiments on both
node and graph benchmark datasets demonstrate the effectiveness of our method. Note that our
method is not without limitations. We can further improve our method by designing better practical
approximations to the theoretical optimality of graph contrastive learning.
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