
A Training procedure of SmoothMix

Algorithm 1 SmoothMix training

Input: Sample (x, y) ∼ P . smoothing factor σ. number of noise samples m. number of steps T .
step size α. regularization strength η > 0.

1: Sample δ1, · · · , δm ∼ N (0, σ2I), and λ ∼ U(
[

0, 1
2

]

)
2: // FIND AN ADVERSARIAL EXAMPLE

3: x̃(0), F̂ (x(0))← x, 1
m

∑m
i=1 F (x+ δi)

4: for t = 0 to T − 1 do
5: J(x̃(t))← − log F̂y(x̃

(t))

6: x̃(t+1) ← x̃(t) + α · ∇xJ(x̃
(t))

‖∇xJ(x̃(t))‖2

7: F̂ (x̃(t+1))← 1
m

∑m
i=1 F (x̃(t+1) + δi)

8: end for
9: if use_single_step then x← x̃(1)

10: // COMPUTE THE SMOOTHMIX LOSS

11: xmix, ymix ← ((1− λ) · x+ λ · x̃(T )), ((1− λ) · F̂ (x) + λ · ✶
C
)

12: for i = 1 to m do
13: Lnat

i , Lmix

i ← L(F (x+ δi), y),L(F (xmix + δi), y
mix)

14: end for
15: L← 1

m

∑

i(L
nat

i + η · Lmix

i )

B Discussion on input-dependent designs of noise scales

In this paper, we aim to develop a new training method to exhibit a better trade-off between accuracy
and (certified) robustness of smoothed classifiers. Meanwhile, there has been recently another
proposal to improve the robustness of smoothed classifiers without a new training scheme, namely by
certifying a given smoothed classifier with input-dependent σ [1, 58, 10]. In this section, however,
we show that if one allows different noise scales σ for each input in attempt to generalize the
current framework of randomized smoothing [11], then the actual robustness guarantee would

rapidly decrease as the input dimension grows. In particular, we consider the following classifier f̃
generalizing (2) with some non-negative function g : Rd → R≥0, defined as follows:

f̃(x) := argmax
c∈Y

Pδ∼N (0,g(x)I)(f(x+ δ) = c),

In other words, we assume that the scaling parameter of the smoothing noise can now be a function

of x. As in the main text, we are interested in the certified radius R(f̃ ;x, y) of f̃ .

One may expect that R(f̃ ;x, y) can be significantly larger than R(f̂ ;x, y) since f̂ is a special case of

f̃ , i.e., constant g(x). However, we show that it may not be true for high-dimensional inputs: even a
small deviation of g(x) can incur very poor certified robustness. Formally, we prove the following
theorem.

Theorem 1. Let ri, i ∈ N be any i.i.d. random variables of zero mean, unit variance, and E[r4i ] <∞.

Let Fd be a collection of all measurable functions from R
d to {0, 1}. Let p ∈ (0.5, 1), σ, τ > 0, and

ε ∈ (0, 1/2] be constants such that σ 6= τ . Then, for δ := (r1, . . . , rd), for any c ∈ {0, 1}, and for
any d ∈ N, the following statements hold:

sup
x,x′∈Rd:‖x−x′‖2≤ε

inf
f∈Fd:P(f(x+σδ)=c)=p

P(f(x′ + τδ) = c) ≤ C/d.

for some constant C > 0 which is a function of other constants p, σ, τ, ε,E[r4i ].

Theorem 1 indicates the curse of dimensionality for the worst classifier under general noises of a
finite kurtosis. In particular, it states that there exists an upper bound on P(f(x+ τδ) = c) inversely
proportional to the input dimension d even though two inputs x, x′ are extremely close. Hence, if we
utilize different noise scales (i.e., σ) for each input, the resulting lower bound on the certified radius
relying on the worst-case bound as in [11, 33, 49] will be small for high-dimensional inputs. Namely,
choosing (almost) constant noise scale for the inputs in the target certification region is necessary.
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B.1 Proof of Theorem 1

We first define z = (z1, . . . , zd) := x′ − x, i.e., ‖z‖2 ≤ ε. Then, the following inequality trivially
holds.

inf
f∈Fd:E[f(x+σδ)]=p

E[f(x′ + τδ)] ≤ inf
U⊂Rd:P(σδ∈U)=p

P (τδ + z ∈ U)

≤ P

(‖τδ + z‖22
d

∈ [σ2 − k, σ2 + k]

)

(12)

where k is a non-negative number satisfying

P

(‖σδ‖22
d
∈ [σ2 − k, σ2 + k]

)

= p.

The following lemma asserts that the RHS of (12) is bounded by C/d where C is some constant
which is only a function of E[r4i ], σ, τ, ε, p. This completes the proof of Theorem 1.

Lemma 2. There exists C which is a function of E[r4i ], σ, τ, ε, p such that the following statements

hold: for any d ∈ N and for any z ∈ R
d satisfying ‖z‖2 ≤ ε,

P

(‖τδ + z‖22
d

∈ [σ2 − k, σ2 + k]

)

≤ C

d
.

B.2 Proof of Lemma 2

Lemma 2 is a direct consequence of the law of large numbers applied to the i.i.d. random variables

r2i . First, we compute the variance of
‖σδ‖2

2

d
using the following equality: for η :=

√

E[r4i ]− 1,

Var

(‖σδ‖22
d

)

= E

[

(‖σδ‖22
d
− σ2

)2
]

= E





(

σ2

d

d
∑

i=1

(r2i − 1)

)2




=
σ4

d2

d
∑

i=1

E
[

(r2i − 1)2
]

=
σ4

d2

d
∑

i=1

E[r4i ]− 1

=
σ4(E[r4i ]− 1)

d
=

σ4η2

d

where the third equality follows from the independence of ris and the fourth inequality follows from
E[r2i ] = 1. Hence, from the Chebyshev’s inequality, we have

P

(

∣

∣

∣

∣

‖σδ‖22
d
− σ2

∣

∣

∣

∣

<
σ2η

√

d(1− p)

)

≥ 1− (
√

1− p)2 = p, (13)

i.e., k ≤ σ2η√
d(1−p)

.
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Now, we derive a similar concentration inequality for
‖τδ+z‖2

2

d
. To this end, we bound its deviation

from τ2 +
‖z‖2

2

d
as follows:

P

(
∣

∣

∣

∣

‖τδ + z‖22
d

−
(

τ2 +
‖z‖22
d

)
∣

∣

∣

∣

≥ σ2 + τ2

3

)

= 1− P

(
∣

∣

∣

∣

‖τδ + z‖22
d

−
(

τ2 +
‖z‖22
d

)
∣

∣

∣

∣

<
σ2 + τ2

3

)

≤ 1− P

(

∣

∣

∣

∣

‖τδ‖22
d
− τ2

∣

∣

∣

∣

<
σ2 + τ2

6
and

∣

∣

∣

∣

∣

2τ
∑d

i=1 rizi
d

∣

∣

∣

∣

∣

<
σ2 + τ2

6

)

= P

(

∣

∣

∣

∣

‖τδ‖22
d
− τ2

∣

∣

∣

∣

≥ σ2 + τ2

6
or

∣

∣

∣

∣

∣

2τ
∑d

i=1 rizi
d

∣

∣

∣

∣

∣

≥ σ2 + τ2

6

)

≤ P

(
∣

∣

∣

∣

‖τδ‖22
d
− τ2

∣

∣

∣

∣

≥ σ2 + τ2

6

)

+ P

(
∣

∣

∣

∣

∣

2τ
∑d

i=1 rizi
d

∣

∣

∣

∣

∣

≥ σ2 + τ2

6

)

≤ 36τ4η2 + 144τ2ε2

(σ2 + τ2)2d
(14)

where the last inequality is from the variance bounds

Var

(‖τδ‖22
d
− τ2

)

=
τ4η2

d

Var

(

2τ
∑d

i=1 rizi
d

)

=
4τ2‖z‖22

d2
≤ 4τ2ε2

d2

and the Chebyshev’s inequality

P

(∣

∣

∣

∣

‖τδ‖22
d
− τ2

∣

∣

∣

∣

≥ σ2 + τ2

6

)

≤ 36τ4η2

(σ2 + τ2)2d

P

(
∣

∣

∣

∣

∣

2τ
∑d

i=1 rizi
d

∣

∣

∣

∣

∣

≥ σ2 + τ2

6

)

≤ 144τ2ε2

(σ2 + τ2)2d2
.

Then, for all d ≥ max
{

4σ4η2

(τ2−σ2)2(1−p) ,
6ε2

σ2+τ2

}

, i.e., σ2η√
d(1−p)

≤ |τ2−σ2|
2 and ε2

d
≤ σ2+τ2

6 , it holds

that

P

(‖τδ + z‖22
d

∈ [σ2 − k, σ2 + k]

)

≤ P

(‖τδ + z‖22
d

∈
[

σ2 − |τ
2 − σ2|
2

, σ2 +
|τ2 − σ2|

2

])

≤ P

(
∣

∣

∣

∣

‖τδ + z‖22
d

−
(

τ2 +
‖z‖22
d

)
∣

∣

∣

∣

≥ σ2 + τ2

3

)

≤ 36τ4η2 + 144τ2ε2

(σ2 + τ2)2d

by using (14). Hence, choosing

C := max

{

4σ4η2

(τ2 − σ2)2(1− p)
,

6ε2

σ2 + τ2
,
36τ4η2 + 144τ2ε2

(σ2 + τ2)2

}

completes the proof of Lemma 2.
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C Experimental details

Throughout our experiments, we follow the same training details of prior works [11, 49, 65, 23] for a
fair comparison: more specifically, we use LeNet [32] for MNIST, ResNet-110 [20] for CIFAR-10,
and ResNet-50 [20] for ImageNet. We train every model via stochastic gradient descent using
Nesterov momentum of weight 0.9 without dampening. We set a weight decay of 10−4 for all the
models. We consider three different noise levels σ ∈ {0.25, 0.5, 1.0} for smoothing classifiers for
MNIST and CIFAR-10 models, and σ ∈ {0.5, 1.0} in the case of ImageNet. We used up to 4 NVIDIA
TITAN Xp GPUs to run each configurations considered in our experiments, both for training and
certification: more specifically, we used a single GPU to run every experimenet on MNIST and
CIFAR-10, and four GPUs to run ImageNet models.

C.1 Datasets

MNIST dataset [32] consists 70,000 gray-scale hand-written digit images of size 28×28, 60,000 for
training and 10,000 for testing. Each of the images is labeled from 0 to 9, i.e., there are 10 classes.
We do not perform any pre-processing except for normalizing the range of each pixel from 0-255 to
0-1. When MNIST is used for training, we use LeNet [32] for 90 epochs and use the initial learning
rate of 0.01. The learning rate is decayed by 0.1 at 30-th and 60-th epoch.

CIFAR-10 dataset [29] consist of 60,000 RGB images of size 32×32 pixels, 50,000 for training and
10,000 for testing. Each of the images is labeled to one of 10 classes, and the number of data per
class is set evenly, i.e., 6,000 images per each class. We use the standard data-augmentation scheme
of random horizontal flip and random translation up to 4 pixels, as also used by other baselines
[11, 49, 65, 23]. We also normalize the images in pixel-wise by the mean and the standard deviation
calculated from the training set. When CIFAR-10 is used for training, we train ResNet-110 [20]
models for 150 epochs with initial learning rate of 0.1. The learning rate if decated by 0.1 at 50-th
and 100-th epoch.

ImageNet classification dataset [48] consists of 1.2 million training images and 50,000 validation
images, which are labeled by one of 1,000 classes. For data-augmentation, we perform 224×224
random cropping with random resizing and horizontal flipping to the training images. At test time,
on the other hand, 224×224 center cropping is performed after re-scaling the images into 256×256.
When ImageNet is used for training, we train ResNet-50 [20] models for 90 epochs with initial
learning rate of 0.1. The learning rate if decated by 0.1 at 30-th and 60-th epoch.

C.2 Detailed hyperparameters for baselines

Stability training [38] uses a single hyperparameter λ > 0 to control the relative strength of the
stability regularization compared to the standard cross-entropy loss. In our experiments, we use
λ = 2 by default for this method, but except for the “σ = 1.0” model on CIFAR-10: in this case, we
had to reduce it to λ = 1 for a stable training.

SmoothAdv [49] mainly controls three hyperparameters those are for performing projected gradient
descent (PGD) to find adversarial examples in the training: namely, it uses m: the number of noise
samples, T : the number of PGD steps, and ε: an ℓ2-norm restriction on adversarial perturbations.
For SmoothAdv models, we fix T = 10 and ε = 1.0 throughout the experiments. In case of m, and
use m = 4 for MNIST models, and m = 8 for CIFAR-10. Following Salman et al. [49], we also
adopt the warm-up strategy on ε, i.e., it is initially set to zero, and gradually increased for the first 10
epochs up to the original value of ε.

MACER [65] adds four hyperparameters to the training: namely, it uses m: the number of noise
samples, λ: the relative strength of regularization, β: a temperature scaling factor, and γ: a margin gap.
We follow the configurations reported by Zhai et al. [65] to reproduce the MNIST results: namely,
we use m = 16, β = 16.0, γ = 8.0 and λ = 16.0. We use λ = 6.0 in case of σ = 1.0 on MNIST,
however, for a better training stability. We use the pre-trained models released by the authors for
evaluations on CIFAR-10, which can be downloaded at https://github.com/RuntianZ/macer.
These CIFAR-10 models are reported to be trained with m = 16, β = 16.0, γ = 8.0, and λ = 12.0
and 4.0 for σ = 0.25 and 0.5, respectively. For σ = 1.0, λ is initially set to 0, and changed to
λ = 12.0 after the first learning rate decay.
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Consistency [23] controls two hyperparameters, namely λ and η, each for the relative strength of the
consistency term and the entropy term, respectively. We obtain results from the best hyperparameters
those reported by Jeong and Shin [23] when the consistency regularization is applied to the Gaussian
training baseline, both in MNIST and CIFAR-10 datasets. More concretely, we fix η = 0.5 for every
model, and use λ = 5 for MNIST and λ = 10 for CIFAR-10 models by default. In case of σ = 0.25,
λ is doubled in both datasets, i.e., λ = 10 and λ = 20 for MNIST and CIFAR-10, respectively, as it
is shown to achieve better ACRs.

D Related work

Certified adversarial robustness. We focus on improving adversarial robustness of randomized
smoothing [11] based classifiers, which is currently one of prominent ways to obtain a classifier
with a robustness certification. In general, there have been many attempts other than randomized
smoothing to provide a robustness certification of deep neural networks [16, 59, 42, 61, 18, 68], and
correspondingly with attempts to further improve the robustness with respect to those certification
protocols [13, 12, 4]. Nevertheless, randomized smoothing has attracted particular attention as the
first approach that could successfully scaled up to the ImageNet dataset [48]. A more complete
taxonomy on the literature can be found in Li et al. [39].

Confidence-calibrated training. Overconfident predictions of deep neural networks [45] have been
considered as problematic in many scenarios, e.g., uncertainty estimation of in-distribution samples
[19, 24, 30], those of out-of-distribution samples [21, 36, 41], and ensemble learning [35], just to
name a few. In the context of adversarial training, Stutz et al. [52] have shown that regularizing
confidence on adversarial examples to be uniform can improve detection of adversarial examples
from unseen threat models. In this paper, we address the overconfidence at adversarial examples
particularly focusing on smoothed classifiers, observing that a simple approach of directly fixing the
problem could significantly improve the certified robustness.

Mixup-based training. Originally, mixup [67] has proposed as a simple yet effective data aug-
mentation scheme to improve generalization and robustness (against small adversarial attacks) of
deep neural networks, and there have been significant follow-up works to further improve this form
[57, 63, 27, 28]. Recently, Zhang et al. [70] have also explored on theoretical justifications behind
how could such an augmentation improves generalization and robustness. Although our method uses
a similar linear interpolation scheme of mixup, there is still an essential difference between ours
and this line of works: namely, we do not rely on the prior of interpolating two (or more) indepen-
dent samples, but rather aims to directly calibrate predictions between a clean and its (unrestricted)
adversarial example, i.e., we consider a new form of self-mixup training.

There have been also attempts to employ mixup particularly for improving adversarial robustness:
Lamb et al. [31] have shown that an additional mixup loss between adversarial examples upon the
standard mixup training achieves a comparable robustness to adversarial training (AT) [40], while not
compromising the clean accuracy as much as AT; Lee et al. [37] have proposed Adversarial Vertex
Mixup to improve AT, by extrapolating predictions along the direction of adversarial perturbation
up to few times of its norm via mixup training. Our proposed method can be differentiated to these
approaches, in a sense that we employ mixup not to directly improve the robustness of a given
neural network, but of its smoothed counterpart. It is also our unique perspective that we consider
unrestricted adversarial examples to be interpolated.

E Variance of results over multiple runs

In our experiments, we report single-run results for ACR and certified robust accuracy as also done
by [11, 49, 38, 65, 23], considering that ACR is fairly a robust metric to network initialization: e.g.,
in Table 5, we report the mean and standard deviation of ACRs across 5 seeds for the MNIST results
reported in Table 2. Overall, we confirm that ACR generally shows low variance over multiple runs
across a wide range of training methods, including ours.
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Table 4: Comparison of certified test accuracy for various training methods on MNIST. The reported
values are the mean and standard deviation across 5 seeds. We set our result bold-faced whenever the
value improves the Gaussian baseline, and the underlined are best-performing model per σ.

σ Models (MNIST) 0.00 0.50 1.00 1.50 2.00 2.50

0.25

Gaussian [11] 99.25 ± 0.04 96.75 ± 0.11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Stability training [38] 99.34 ± 0.04 97.12 ± 0.12 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
SmoothAdv [49] 99.39 ± 0.01 98.17 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
MACER [65] 99.33 ± 0.03 97.35 ± 0.08 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Consistency [23] 99.43 ± 0.03 97.92 ± 0.09 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

SmoothMix (η = 1.0) 99.43 ± 0.03 98.10 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
+ One-Step adversary 99.39 ± 0.02 98.17 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
SmoothMix (η = 5.0) 99.45 ± 0.03 98.17 ± 0.07 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
+ One-Step adversary 99.37 ± 0.02 98.20 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

0.50

Gaussian [11] 99.15 ± 0.03 96.90 ± 0.06 89.83 ± 0.06 67.80 ± 0.16 0.00 ± 0.00 0.00 ± 0.00
Stability training [38] 99.26 ± 0.02 97.27 ± 0.09 90.75 ± 0.11 69.15 ± 0.38 0.00 ± 0.00 0.00 ± 0.00
SmoothAdv [49] 99.03 ± 0.03 97.36 ± 0.06 92.94 ± 0.08 81.06 ± 0.12 0.00 ± 0.00 0.00 ± 0.00
MACER [65] 98.69 ± 0.09 96.28 ± 0.17 90.14 ± 0.20 72.12 ± 0.75 0.00 ± 0.00 0.00 ± 0.00
Consistency [23] 99.15 ± 0.03 97.51 ± 0.07 92.89 ± 0.10 78.26 ± 0.23 0.00 ± 0.00 0.00 ± 0.00

SmoothMix (η = 1.0) 99.10 ± 0.02 97.51 ± 0.07 92.91 ± 0.08 80.15 ± 0.05 0.00 ± 0.00 0.00 ± 0.00
+ One-Step adversary 98.74 ± 0.04 97.09 ± 0.06 92.67 ± 0.05 81.70 ± 0.05 0.00 ± 0.00 0.00 ± 0.00
SmoothMix (η = 5.0) 98.64 ± 0.04 96.98 ± 0.02 92.63 ± 0.07 81.85 ± 0.10 0.00 ± 0.00 0.00 ± 0.00
+ One-Step adversary 98.21 ± 0.02 96.34 ± 0.04 91.46 ± 0.03 81.20 ± 0.15 0.00 ± 0.00 0.00 ± 0.00

1.00

Gaussian [11] 96.34 ± 0.03 91.39 ± 0.05 79.86 ± 0.08 59.49 ± 0.10 32.46 ± 0.20 10.93 ± 0.12
Stability training [38] 96.43 ± 0.05 91.63 ± 0.05 80.45 ± 0.16 60.53 ± 0.07 33.35 ± 0.13 11.05 ± 0.13
SmoothAdv [49] 95.76 ± 0.03 90.72 ± 0.07 80.81 ± 0.14 64.44 ± 0.14 43.25 ± 0.14 22.58 ± 0.40
MACER [65] 91.59 ± 0.20 83.44 ± 0.35 71.10 ± 0.45 55.67 ± 0.27 38.67 ± 0.33 20.09 ± 0.64
Consistency [23] 94.96 ± 0.02 89.75 ± 0.07 79.70 ± 0.09 63.54 ± 0.12 41.74 ± 0.13 20.22 ± 0.25

SmoothMix (η = 1.0) 95.52 ± 0.08 90.50 ± 0.07 80.55 ± 0.09 64.09 ± 0.15 43.16 ± 0.05 23.94 ± 0.19
+ One-Step adversary 94.72 ± 0.07 89.40 ± 0.09 79.46 ± 0.08 64.04 ± 0.08 44.82 ± 0.09 27.35 ± 0.15
SmoothMix (η = 5.0) 93.71 ± 0.04 88.00 ± 0.05 77.95 ± 0.13 62.78 ± 0.08 44.87 ± 0.14 28.88 ± 0.16
+ One-Step adversary 93.11 ± 0.05 87.24 ± 0.07 77.22 ± 0.10 62.48 ± 0.15 44.85 ± 0.05 29.66 ± 0.15

Table 5: Comparison of ACR for various training methods on MNIST. The reported values are
the mean and standard deviation across 5 seeds. We set our result bold-faced whenever the value
improves the Gaussian baseline, and the underlined are best-performing model per σ.

ACR (MNIST) σ = 0.25 σ = 0.50 σ = 1.00

Gaussian [11] 0.9108±0.0003 1.5581±0.0016 1.6184±0.0021

Stability [38] 0.9152±0.0007 1.5719±0.0028 1.6341±0.0018

SmoothAdv [49] 0.9322±0.0005 1.6872±0.0007 1.7786±0.0017

MACER [65] 0.9201±0.0006 1.5899±0.0069 1.5950±0.0051

Consistency [23] 0.9279±0.0003 1.6549±0.0011 1.7376±0.0017

SmoothMix (η = 1.0) 0.9296±0.0003 1.6776±0.0007 1.7867±0.0020

+ One-Step adversary 0.9330±0.0004 1.6932±0.0009 1.8169±0.0011

SmoothMix (η = 5.0) 0.9317±0.0002 1.6932±0.0007 1.8185±0.0016

+ One-Step adversary 0.9332±0.0002 1.6851±0.0003 1.8212±0.0013

F Additional results on CIFAR-10

In this section, we report additional experimental results on CIFAR-10 [29], namely with σ = 1.0 (see
Table 3 for the results for σ ∈ {0.25, 0.5}). We follow the same experimental details as specified in
Section 4.2 and Appendix C, including the common hyperparameter choice of η = 5.0 for SmoothMix
for other experiments as well. Again, we compare our method with various existing robust training
methods for smoothed classifiers [11, 38, 49, 65, 23], and Table 6 summarizes the results. Overall,
we still observe a similar trend to Section 4.2 that (a) “SmoothMix” offers a significant improvement
of robust accuracy without compromising the clean accuracy much, and (b) incorporating the one-
step adversary thus can further complementarily boost ACR to outperform other state-of-the-art
baseline training methods: e.g., it is notable that “SmoothMix + One-step adversary” achieves fairly
comparable or better robust accuracy than MACER while maintaining much higher clean accuracy,
i.e., the certified test accuracy at r = 0.0, namely 41.4→ 45.1. This confirms that our proposed
SmoothMix can offer a better trade-off between accuracy and certified robustness during training.
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Table 6: Comparison of approximate certified test accuracy (%) and ACR on CIFAR-10. All the
models are trained and evaluated with the same smoothing factor specified by σ. Each value except
ACR indicates the fraction of test samples those have ℓ2 certified radius larger than the threshold
specified at the top row. We set our results bold-faced whenever the value improves the Gaussian
baseline, and underlined whenever the value achieves the best among the considered baselines.
∗ indicates that the results are evaluated from the official pre-trained models released by authors.

σ Models (CIFAR-10) ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

1.00

Gaussian [11] 0.542 47.2 39.2 34.0 27.8 21.6 17.4 14.0 11.8 10.0 7.6
Stability training [38] 0.526 43.5 38.9 32.8 27.0 23.1 19.1 15.4 11.3 7.8 5.7
SmoothAdv∗ [49] 0.660 50.8 44.9 39.0 33.6 28.5 23.7 19.4 15.4 12.0 8.7
MACER∗ [65] 0.744 41.4 38.5 35.2 32.3 29.3 26.4 23.4 20.2 17.4 14.5
Consistency [23] 0.756 46.3 42.2 38.1 34.3 30.0 26.3 22.9 19.7 16.6 13.8

SmoothMix (Ours) 0.725 47.1 42.5 37.5 32.9 28.7 24.9 21.3 18.3 15.5 12.6
+ One-step adversary 0.773 45.1 41.5 37.5 33.8 30.2 26.7 23.4 20.2 17.2 14.7

G Results on ImageNet

We also compare our method on ImageNet [48] classification dataset, to verify the scalability of the
method on large-scale datasets. In this experiment, we perform our evaluation on the sub-sampled
validation dataset of ImageNet with 500 samples following the previous works [11, 49, 23]. When
SmoothMix is used, we simply set T = 1 and m = 1 mainly in order to reduce the overall training
cost, and we fix α = 8.0 for both cases of σ = 0.5, 1.0: this choice leads larger α · T when σ = 0.5
compared to the MNIST and CIFAR-10 experiments, but we empirically observe that ImageNet is
less sensitive to α · T , possibly due to that ImageNet consists of higher-resolution inputs, i.e., higher
input dimension accordingly, than the others. We use the one-step adversary (Section 3.2) by default
here, but we make sure that each adversarial example (found with a large α) is further projected in a
ℓ2-ball of ǫ = 1.0 before it replaces the clean sample, which can be done without adding significant
computational overhead. Table 7 summarizes the results, and we still observe the effectiveness of
SmoothMix compared to the baseline methods, both in terms of ACR and certified test accuracy.

Table 7: Comparison of approximate certified test accuracy (%) on ImageNet. We set our results
bold-faced whenever the value improves the Gaussian baseline, and underlined whenever the value
achieves the best among the considered baselines.

σ Models (ImageNet) ACR 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.50

Gaussian [11] 0.733 57 46 37 29 0 0 0 0
Consistency [23] 0.822 55 50 44 34 0 0 0 0
SmoothAdv [49] 0.825 54 49 43 37 0 0 0 0

SmoothMix (Ours) 0.846 55 50 43 38 0 0 0 0

1.00

Gaussian [11] 0.875 44 38 33 26 19 15 12 9
Consistency [23] 0.982 41 37 32 28 24 21 17 14
SmoothAdv [49] 1.040 40 37 34 30 27 25 20 15

SmoothMix (Ours) 1.047 40 37 34 30 26 24 20 17

H Detailed results on ablation study

In this section, we report the detailed numerical results and more discussions on the ablation study
presented in Section 4.3. Here, Table 8, 9, 10 and 11 presented in what follow are the detailed results
for Figure 6, 7(a), 7(b) and 7(c), respectively.
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Table 8: Comparison of ACR and approximate certified test accuracy on MNIST for varying η.
We assume σ = 1.0 in this experiment. “Gaussian” indicates the baseline training with Gaussian
augmentation. We set the results bold-faced whenever the value improves “Gaussian”.

Setups ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Gaussian 1.620 96.4 94.4 91.4 87.0 79.9 71.0 59.6 46.2 32.6 19.7 10.8

η = 1 1.789 95.5 93.6 90.5 86.2 80.7 73.7 64.1 53.9 43.1 33.5 24.1
η = 2 1.810 94.9 92.7 89.7 85.1 79.6 72.6 63.8 54.0 44.4 35.4 26.6
η = 4 1.820 94.0 91.8 88.4 83.9 78.3 71.4 63.0 53.6 44.9 36.8 28.7
η = 8 1.817 93.4 91.0 87.5 82.7 77.3 70.2 62.4 53.0 44.8 37.0 29.3
η = 16 1.812 92.9 90.3 86.7 82.1 76.6 69.7 61.8 52.6 44.5 36.9 29.6

Table 9: Comparison of ACR and approximate certified test accuracy on MNIST for varying α and T
under control of α · T = 8. We assume σ = 1.0 in this experiment. “Gaussian” indicates the baseline
training with Gaussian augmentation. We set the results bold-faced whenever the value improves
“Gaussian”.

Setups ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Gaussian 1.620 96.4 94.4 91.4 87.0 79.9 71.0 59.6 46.2 32.6 19.7 10.8

(α, T ) = (8.0, 1) 1.785 95.5 93.5 90.5 86.0 80.5 73.1 63.9 53.5 43.3 33.2 24.0
(α, T ) = (4.0, 2) 1.788 95.4 93.4 90.4 85.9 80.5 73.5 63.9 53.5 43.1 33.4 24.4
(α, T ) = (2.0, 4) 1.790 95.5 93.5 90.7 86.2 80.7 73.7 64.3 53.9 43.2 33.4 23.8
(α, T ) = (1.0, 8) 1.789 95.5 93.6 90.5 86.2 80.7 73.7 64.1 53.9 43.1 33.5 24.1

Table 10: Comparison of ACR and approximate certified test accuracy on MNIST for varying ε,
the hard limit on ℓ2-norm of adversarial perturbations. We assume σ = 1.0 in this experiment.
“Gaussian” indicates the baseline training with Gaussian augmentation. “ε =∞” denotes our original
setup of unrestricted adversarial attacks. We set the results bold-faced whenever the value improves
“Gaussian”.

Setups ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Gaussian 1.620 96.4 94.4 91.4 87.0 79.9 71.0 59.6 46.2 32.6 19.7 10.8

ε = 2.0 1.723 96.1 94.3 91.4 87.1 81.2 73.6 63.7 52.1 39.8 28.2 16.6
ε = 4.0 1.751 95.9 94.0 91.1 86.8 81.0 73.7 64.3 53.1 41.4 30.6 19.8
ε = 6.0 1.778 95.6 93.7 90.6 86.5 80.8 73.7 64.4 53.8 42.8 32.6 22.9
ε = 8.0 1.788 95.5 93.5 90.4 86.1 80.5 73.5 64.2 53.8 43.2 33.5 24.1

ε =∞ (Ours) 1.789 95.5 93.6 90.5 86.2 80.7 73.7 64.1 53.9 43.1 33.5 24.1

Table 11: Comparison of ACR and approximate certified test accuracy on MNIST for varying m,
the number of noise samples used for estimating smoothed predictions. We assume σ = 1.0 in this
experiment. “Gaussian” indicates the baseline training with Gaussian augmentation. We set the
results bold-faced whenever the value improves “Gaussian”.

Setups ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Gaussian 1.620 96.4 94.4 91.4 87.0 79.9 71.0 59.6 46.2 32.6 19.7 10.8

m = 1 1.744 94.5 92.2 88.9 84.1 78.1 70.9 61.9 51.7 41.7 31.9 23.2
m = 2 1.776 95.3 93.0 89.8 85.4 79.8 72.7 63.5 53.1 42.6 33.0 24.0
m = 4 1.789 95.5 93.6 90.5 86.2 80.7 73.7 64.1 53.9 43.1 33.5 24.1
m = 8 1.788 95.9 93.9 91.0 86.7 81.0 73.9 64.6 54.1 43.2 33.1 23.3
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