Checklist

- 1. For all authors...
 - (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes]
 - (b) Did you describe the limitations of your work? [Yes]
 - (c) Did you discuss any potential negative societal impacts of your work? [N/A]
 - (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
- 2. If you are including theoretical results...
 - (a) Did you state the full set of assumptions of all theoretical results? [Yes]
 - (b) Did you include complete proofs of all theoretical results? [Yes]
- 3. If you ran experiments...
 - (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [N/A]
 - (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [N/A]
 - (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [N/A]
 - (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [N/A]
- 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 - (a) If your work uses existing assets, did you cite the creators? [N/A]
 - (b) Did you mention the license of the assets? [N/A]
 - (c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
 - (d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A]
 - (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]
- 5. If you used crowdsourcing or conducted research with human subjects...
 - (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 - (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 - (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]

A Deferred proofs: Smoothing preliminaries

Recall the definitions of our smoothing operators.

Let $B_{\eta}(x)$ be the ball of radius η around x. For any function $f : \mathbb{R} \to \mathbb{R}$ and real-valued $\eta > 0$, define the function $S_{\eta}[f] : \mathbb{R}^n \to \mathbb{R}$ as $S_{\eta}[f](x) = \mathbb{E}_{y \in B_{\eta}(x)}[f(y)]$.

Definition 3 (Smoothing). The smoothing operator S on input $f : \mathbb{R}^n \to \mathbb{R}$ outputs the function

$$\mathcal{S}[f] = S_{\beta/2^p}[S_{\beta/2^{p-1}}[\cdots S_{\beta/2^2}[S_{\beta/2^1}[f]]\cdots]].$$
(12)

We claimed the following about S.

Lemma 1. For the smoothing operator S defined above, the following statements hold true.

- 1. For any functions $f, g : \mathbb{R}^n \to \mathbb{R}$ for which $\mathcal{S}[f], \mathcal{S}[g]$ are well-defined, $\mathcal{S}[f + g] = \mathcal{S}[f] + \mathcal{S}[g]$.
- 2. The value S[f](x) only depends on the values of f within a $(1-2^{-p})\beta$ radius of x.
- 3. The gradient and higher order derivatives of S[f] at x depend only on the values of f within $B_{\beta}(x)$.
- 4. If $\nabla^p f$ is L-Lipschitz in a ball of radius β around x, then $\nabla^p S[f]$ is also L-Lipschitz at x.
- 5. Let f be G-Lipschitz in a ball of radius β around x. Then S[f] is p-times differentiable, and for any $i \leq p$, $\nabla^i S[f]$ is L-Lipschitz in a $\beta/2^p$ -ball around x with $L \leq \frac{n^i 2^{i(i+1)/2}}{\beta^i}G$.
- 6. Let f be G-Lipschitz in a ball of radius β around x. Then $|S[f](x) f(x)| \leq \beta G$.
- 7. If f is a convex function, then S[f] is also a convex function.

While most of the above statements are proven below from first principles, a couple of them follow from [AH18, Corollary 2.4]. For these statements, we only detail the main ideas involved in their proofs.

Proof. We prove the above statements in order.

- 1. This is a simple consequence of the linearity of expectation.
- 2. By expanding the expectations in the definition of S, we get that $S[f](x) = \mathbb{E}_{y \sim \mu_x}[f](x)$ where μ_x is a distribution supported in $B_{(1-2^{-p})\beta}(x)$.
- The gradient and higher order derivatives of S[f] at x depend only on the values of S[f] in an open ball around x, say B_{2^{-pβ}}(x). For any y ∈ B_{2^{-pβ}}(x), S[f](y) depends only on values of f in B_{(1-2^{-p})β}(y) ⊆ B_β(x).
- 4. This follows from the proof of [AH18, Corollary 2.4]. It is easy to see that if f is L-Lipschitz then $S_{\eta}[f]$ is also L-Lipschitz. ∇f being L-Lipschitz is equivalent to saying that for any unit vector $v \in \mathbb{R}^n$, $g_v(x) \coloneqq \nabla f(x)[v]$ is an L-Lipschitz function. However by linearity of S_{η} , $S_{\eta}[g_v](x) = \nabla S_{\eta}[f](x)[v]$. Hence $\nabla S_{\eta}[f]$ is L-Lipschitz. A repeated usage of this argument as done in [AH18] proves the statement.
- 5. The proof of this is via a repeated usage of [AH18, Lemma 2.3] as done in [AH18, Corollary 2.4]. They argue via Stoke's theorem that $S_{\eta}[f]$ is differentiable even when f may not be differentiable in a set of measure 0, and that $\nabla S_{\eta}[f]$ is $\frac{n}{\eta}G$ -Lipschitz. They then use directional derivatives to inductively show via the same argument the Lipschitzness of the higher-order derivatives.
- This is a simple consequence of the fact that S[f](x) is a convex combination of the values f(y) for y ∈ B_β(x).
- 7. For $y \in B_{\beta}(\vec{0})$, let f_y be defined as $f_y(x) = f(x+y)$. Since f is convex, it follows that each f_y is convex. Also $\mathcal{S}[f] = \mathbb{E}_{y \in B_{\beta}(\vec{0})}[f_y]$. Since $\mathcal{S}[f]$ is a convex combination of convex functions, it follows that $\mathcal{S}[f]$ is convex. \Box

Recall the definition of the softmax function.

Definition 4 (Softmax). For a real number ρ , the softmax function $\operatorname{smax}_{\rho} : \mathbb{R}^n \to \mathbb{R}$ is defined as

$$\operatorname{smax}_{\rho}(x) = \rho \ln \left(\sum_{i \in [n]} \exp(x_i/\rho) \right).$$
(13)

Let us also define, for $m \leq n$, smax $_{\rho}^{\leq m} : \mathbb{R}^n \to \mathbb{R}$ as

$$\operatorname{smax}_{\rho}^{\leq m}(x) = \operatorname{smax}_{\rho}(x_{\leq m}), \text{ or equivalently, } \operatorname{smax}_{\rho}^{\leq m}(x) = \rho \ln \left(\sum_{i \in [m]} \exp(x_i/\rho) \right).$$
(14)

We claimed the following about the softmax function.

Lemma 2. The following are true of the function $\operatorname{smax}_{\rho}$ for any $\rho > 0$.

1. The first derivative of smax can be computed as

$$\frac{\partial \operatorname{smax}_{\rho}(x)}{\partial x_{i}} = \frac{\exp(x_{i}/\rho)}{\sum_{i} \exp(x_{i}/\rho)}.$$
(15)

1.1

- 2. $\operatorname{smax}_{\rho}$ is 1-Lipschitz and convex.
- 3. The higher-order derivatives of smax satisfy

$$\|\nabla^{p} \mathrm{smax}_{\rho}(x) - \nabla^{p} \mathrm{smax}_{\rho}(y)\| \le \frac{\left(\frac{p+1}{\ln(p+2)}\right)^{p+1} p!}{\rho^{p}} \|x - y\|.$$
(16)

Proof. We prove the statements in order.

- 1. This is straightforward.
- 2. We can conclude the 1-Lipschitzness by looking at the norm of the gradients.

$$\|\nabla \mathsf{smax}_{\rho}(x)\| = \frac{\|(\exp(x_1/\rho), \dots, \exp(x_n/\rho))\|}{\sum_i \exp(x_i/\rho)} \le \frac{\sum_i |\exp(x_i/\rho)|}{\sum_i \exp(x_i/\rho)} = 1.$$
(34)

The convexity follows from analyzing the Hessian. We get the following as the Hessian.

$$\nabla^{2} \mathrm{smax}_{\rho}(x)_{i,j} = \begin{cases} \frac{1}{\rho} \left(\frac{\exp(x_{i}/\rho)}{\sum_{t \in [n]} \exp(x_{t}/\rho)} - \frac{\exp(2x_{i}/\rho)}{(\sum_{t \in [n]} \exp(x_{t}/\rho))^{2}} \right) & \text{if } i = j \\ \frac{1}{\rho} \left(-\frac{\exp((x_{i} + x_{j})/\rho)}{(\sum_{t \in [n]} \exp(x_{t}/\rho))^{2}} \right) & \text{otherwise} \end{cases}$$

(35) Let $v \in \mathbb{R}^n$ denote the column vector $\nabla \operatorname{smax}_{\rho}(x)$. Then $\nabla^2 \operatorname{smax}_{\rho}(x) = \frac{1}{\rho} (\operatorname{diag}(v) - vv^{\mathsf{T}})$. The convexity of $\operatorname{smax}_{\rho}$ is equivalent to $\nabla^2 \operatorname{smax}_{\rho}(x)$ being positive semidefinite for all x. Since $\rho > 0$, it suffices to prove that $M = \rho \nabla^2 \operatorname{smax}_{\rho}(x)$ is positive semidefinite. To this end, let $y \in \mathbb{R}^n$ be any column vector.

$$y^{\mathsf{T}}My = \sum_{i \in [n]} y_i^2 v_i - \langle y, v \rangle^2 \tag{36}$$

$$= \left(\sum_{i \in [n]} y_i^2 v_i\right) \left(\sum_{i \in [n]} v_i\right) - \left(\sum_{i \in [n]} y_i v_i\right)^2 \qquad \text{(since } \sum_{i \in [n]} v_i = 1\text{)}$$

$$\ge 0. \qquad (37)$$

The last inequality follows by using the Cauchy-Schwarz inequality on the vectors $(y_i\sqrt{v_i})_{i\in[n]}$ and $(\sqrt{v_i})_{i\in[n]}$. Here we use the fact that each v_i is nonnegative.

3. This is proven in [Bul20, Theorem 7].

Lemma 3. Let $x \in \mathbb{R}^n$ and m < n. If

$$\frac{\operatorname{smax}_{\rho}(x) - \operatorname{smax}_{\rho}^{\leq m}(x)}{\rho} = \delta < 1, \tag{17}$$

Then

$$\|\nabla \mathsf{smax}_{\rho}(x) - \nabla \mathsf{smax}_{\rho}^{\leq m}(x)\| \leq 4\delta.$$
(18)

Proof. $\frac{\operatorname{smax}_{\rho}(x) - \operatorname{smax}_{\rho}^{\leq m}(x)}{\rho} = \delta$ implies that

$$\delta = \ln\left(\frac{\sum_{i=1}^{n} \exp\left(\frac{x_i}{\rho}\right)}{\sum_{i=1}^{m} \exp\left(\frac{x_i}{\rho}\right)}\right) = \ln\left(1 + \frac{\sum_{i=m+1}^{n} \exp\left(\frac{x_i}{\rho}\right)}{\sum_{i=1}^{m} \exp\left(\frac{x_i}{\rho}\right)}\right)$$
(38)

Let $c = \frac{\sum_{i=m+1}^{n} \exp(x_i/\rho)}{\sum_{i=1}^{m} \exp(x_i/\rho)}$. Since $\delta = \ln(1+c) \ge c/2$ for $\delta < 1$, an upper bound of 2c would suffice to prove the lemma.

Using the equation for the gradient of smax from Lemma 2, we get $\|\nabla \operatorname{smax}_{\rho}(x) - \nabla \operatorname{smax}_{\rho}^{\leq m}(x)\|$ to be equal to

$$\frac{\left(\exp\left(\frac{x_{1}}{\rho}\right),\ldots,\exp\left(\frac{x_{n}}{\rho}\right)\right)}{\sum_{i=1}^{n}\exp\left(\frac{x_{i}}{\rho}\right)} - \frac{\left(\exp\left(\frac{x_{1}}{\rho}\right),\ldots,\exp\left(\frac{x_{m}}{\rho}\right),0,\ldots,0\right)}{\sum_{i=1}^{m}\exp\left(\frac{x_{i}}{\rho}\right)}$$
(39)

$$=\frac{\left(\exp\left(\frac{x_1}{\rho}\right),\ldots,\exp\left(\frac{x_n}{\rho}\right)\right)}{\sum_{i=1}^{n}\exp\left(\frac{x_n}{\rho}\right)} - \frac{(1+c)\left(\exp\left(\frac{x_1}{\rho}\right),\ldots,\exp\left(\frac{x_m}{\rho}\right),0,\ldots,0\right)}{(1+c)\sum_{i=1}^{m}\exp\left(\frac{x_i}{\rho}\right)}$$
(40)

$$=\frac{-c(\exp\left(\frac{x_1}{\rho}\right),\ldots,\exp\left(\frac{x_m}{\rho}\right)) + (0,\cdots,0,\exp\left(\frac{x_{m+1}}{\rho}\right),\ldots,\exp\left(\frac{x_n}{\rho}\right),0,\ldots,0)}{(1+c)\sum_{i=1}^{m}\exp\left(\frac{x_i}{\rho}\right)}$$
(41)

The norm of this is at most

$$\frac{\|-c(\exp\left(\frac{x_1}{\rho}\right),\ldots,\exp\left(\frac{x_m}{\rho}\right))\|+\|(\exp\left(\frac{x_{m+1}}{\rho}\right),\ldots,\exp\left(\frac{x_n}{\rho}\right))\|}{(1+c)\sum_{i=1}^m\exp\left(\frac{x_i}{\rho}\right)}$$
(42)

$$\leq \frac{c}{1+c} \frac{\sum_{i=1}^{m} \left| \exp\left(\frac{x_i}{\rho}\right) \right|}{\sum_{i=1}^{m} \exp\left(\frac{x_i}{\rho}\right)} + \frac{1}{1+c} \frac{\sum_{i=m+1}^{n} \left| \exp\left(\frac{x_i}{\rho}\right) \right|}{\sum_{i=1}^{m} \exp\left(\frac{x_i}{\rho}\right)}$$
(43)

$$\leq \frac{c}{1+c} + \frac{c}{1+c} < 2c.$$

B Deferred proofs: Function construction and properties

Here we prove Lemmas 5 and 6.

Lemma 5. Fix any $t \in [0, ..., k-1]$. Let V be distributed Haar randomly. Conditioned on any fixing of $\{v_i\}_{i \leq t}$, any query x in the unit ball will satisfy $Q_g(x) = Q_{g_{t+1}}(x)$ with probability at least $1 - 1/n^{10}$.

Lemma 6. Let V be distributed Haar randomly. Conditioned on any fixing of $\{v_i\}_{i \le k-1}$, any point x in the unit ball will be ϵ -optimal for g with probability at most $1/n^{10}$.

The proofs of both of these use the following lemma.

Lemma 7. Fix any $t \in [0, ..., k-1]$. Conditioned on any fixing of $\{v_i\}_{i \leq t}$, any query x in the unit ball will, with probability $1 - 1/n^{10}$, satisfy $\forall i > t \ |\langle v_i, x \rangle| \leq 10\sqrt{\frac{\ln n}{n}}$.

Proof. Note that for i > t, v_i is distributed uniformly at random from a unit sphere in \mathbb{R}^{n-t} . The following useful concentration statement about random unit vectors follows from [Bal97, Lemma 2.2].

Proposition 3. Let $x \in B(\vec{0}, 1)$. Then for a random unit vector v, and all c > 0,

$$\Pr_{v}(|\langle x, v \rangle| \ge c) \le 2e^{-nc^{2}/2}.$$
(44)

Using Proposition 3 and the fact that n - t > n/2 we have that for any x in the unit ball,

$$\Pr\left[|\langle v_i, x \rangle| \ge 10\sqrt{\frac{\ln n}{n}}\right] \le 2e^{-n/2\left(10\sqrt{\frac{\ln n}{n}}\right)^2/2}$$
$$\le 2e^{-25\ln n} \le n^{-24}.$$

Applying a union bound for each of the vectors v_{t+1}, \ldots, v_k , we have that with probability at least $1-1/n^{23}, \forall i > t \ |\langle v_i, x \rangle| \le 10\sqrt{\frac{\ln n}{n}}$. (We use the constant 10 in the lemma statement only because it is a nicer constant than 23.)

Proof of Lemma 5. To show that $g(x) = g_{t+1}(x)$, we will show that for all $y \in B_{\beta}(x)$, $h(y) = h_{t+1}(y)$. Let E_x be the event that x satisfies $\forall i > t |\langle v_i, x \rangle| \leq 10\sqrt{\frac{\ln n}{n}}$. We will show that $E_x \implies g(x) = g_{t+1}(x)$. Hence let us assume E_x holds.

We know that x satisfies $\langle v_j, x \rangle - \langle v_{t+1}, x \rangle \leq 20\sqrt{\frac{\ln n}{n}}$ for all j > t+1. Hence for any $y \in B_\beta(x)$, $\langle v_j, y \rangle - \langle v_{t+1}, y \rangle \leq 20\sqrt{\frac{\ln n}{n}} + 2\beta$. To show that $h(y) = h_{t+1}(y)$, it is sufficient to show that $f_{t+1}(y) \geq f_j(y)$ for all j > t+1.

Note that $f_{t+1}(y) \ge f_j(y)$ if and only if

$$(j-t-1)n^{-\alpha} \ge \ln\left(\frac{\sum_{\ell=1}^{j} \exp\left(\frac{\langle y, v_{\ell} \rangle + (k-\ell)\gamma}{\rho}\right)}{\sum_{\ell=1}^{t+1} \exp\left(\frac{\langle y, v_{\ell} \rangle + (k-\ell)\gamma}{\rho}\right)}\right)$$
$$= \ln\left(1 + \frac{\sum_{\ell=t+2}^{j} \exp\left(\frac{\langle y, v_{\ell} \rangle + (k-\ell)\gamma}{\rho}\right)}{\sum_{\ell=1}^{t+1} \exp\left(\frac{\langle y, v_{\ell} \rangle + (k-\ell)\gamma}{\rho}\right)}\right)$$

Since $c \ge \ln(1+c)$, the following statement which we will show is in fact stronger.

$$n^{-\alpha} \ge \frac{k \max_{t+2 \le \ell \le j} \exp\left(\frac{\langle y, v_\ell \rangle + (k-t-2)\gamma}{\rho}\right)}{\exp\left(\frac{\langle y, v_{t+1} \rangle + (k-t-1)\gamma}{\rho}\right)}$$

This can be rewritten as $-\rho \alpha \ln n \ge \rho \ln k + \max_{t+2 \le \ell \le j} \langle y, v_\ell \rangle - \langle y, v_{t+1} \rangle - \gamma$, or $\gamma \ge \rho (\ln k + \alpha \ln n) + \max_{t+2 \le \ell \le j} \langle y, v_\ell \rangle - \langle y, v_{t+1} \rangle$.

We know this last statement is true because the RHS is at most $\rho(1+\alpha) \ln n + 20\sqrt{\frac{\ln n}{n}} + 2\beta$ which is smaller than γ , which is $40\sqrt{\frac{\ln n}{n}}$ (recall that $\beta = \gamma/\ln n$ and $\rho = \gamma/100\alpha \ln n$).

Since E_x is true with probability $1 - 1/n^{10}$ Lemma 7, the lemma follows.

Proof of Lemma 6. Again, let E_x be the event that x satisfies $\forall i > t |\langle v_i, x \rangle| \le 10\sqrt{\frac{\ln n}{n}}$. Let us assume E_x holds.

The value of g(x) can be lower bound as follows. Since $\langle x, v_k \rangle \ge -10\sqrt{\frac{\ln n}{n}}, h(x) \ge f_k(x) \ge \rho \ln \exp\left(\frac{-10\sqrt{\frac{\ln n}{n}}}{\rho}\right) = -10\sqrt{\frac{\ln n}{n}}$. Since h is 1-Lipschitz, $g(x) \ge -10\sqrt{\frac{\ln n}{n}} - 2\beta \ge -11\sqrt{\frac{\ln n}{n}}$. (because $\beta < 40/\sqrt{n \ln n}$).

For $x^* = \frac{1}{\sqrt{k}} \sum -v_i$, we know each $f_i(x^*)$ is at most $\rho \ln \left(k \exp\left(\frac{-1/\sqrt{k}+k\gamma}{\rho}\right)\right) + kn^{-\alpha}$. This is at most

$$\rho \ln k - \frac{1}{\sqrt{k}} + k\gamma + kn^{-\alpha}.$$

This in turn is at most $-0.8/\sqrt{k}$ since $k\gamma \leq 0.1/\sqrt{k}$, $n \geq \Omega(k^3)$, $\alpha > 1$ and $\rho < 1/k$. So $g(x^*) \leq -0.8/\sqrt{k} + 2\beta < -0.7/\sqrt{k}$.

Since
$$\sqrt{\frac{\ln n}{n}} \ll 1/\sqrt{k}$$
, $g(x) > g(x^*) + 0.1/\sqrt{k}$ and so x does not optimize g.

Since E_x holds with probability $1 - 1/n^{10}$, the lemma follows.

C Parallel Randomized and Quantum Lower Bounds

Our randomized lower bound follows from two important properties satisfied by our hard class of functions. We abstract out these properties and define a generic class of hard functions. A class of functions \mathscr{F} is an information-hiding class of functions if there is a sequence of 'partially-informed' functions that reveal very little new information, with \mathscr{F} containing the 'fully-informed' functions.

An example the reader may want to keep in mind is the following 'Guess the numbers' problem. For a sequence of numbers $A = (a_1, \ldots, a_m) \in [N]^m$, consider the function f_A that takes as input a sequence $B \in [N]^m$ and returns the sequence $A_{\leq i}0^{m-i}$ where $i \in [m]$ is the maximum number such that $A_{< i} = B_{< i}$. The task is to learn A. An example 'partially-informed' function would be $f_{A_{\leq i}0^{m-i}}$. This hides information in the sense that if one doesn't know $A_{\leq i}$ (say A is chosen uniformly at random), then for most inputs the output of f_A would be the same as the output of $f_{A_{\leq i}0^{m-i}}$, and of course, for no input does the output of $f_{A_{\leq i}0^{m-i}}$ reveal any more information than $A_{< i}$.

Definition 6 (Information-Hiding Class of Functions). Let $\mathcal{R} = (\mathcal{R}_1, \ldots, \mathcal{R}_m)$ be a random variable defining a sequence of functions f_1, \ldots, f_m in the sense that setting a value of $\mathcal{R}_{\leq i}$ fixes the function f_i . The class of functions $\{f_m\}$ obtained by ranging over the various values of \mathcal{R} is an m-step (δ_1, δ_2) -information-hiding class of functions (under the distribution \mathcal{R}) if the sequence satisfies the following properties.

1. For all $1 \leq i < m$ and any setting of $\mathcal{R}_{<i}$,

$$\forall x \in \mathbb{R}^n : \Pr_{\mathcal{R}_{>i} | \mathcal{R}_{$$

where $O_f(x)$ is the information about f that the model allows us to query at x (for example the function value, gradient and perhaps higher order derivatives if our queries provide them).

2. For any setting of $\mathcal{R}_{\leq m}$,

$$\forall x \in \mathbb{R}^n : \Pr_{\mathcal{R}_m | \mathcal{R}_{< m}} (x \text{ is a correct output for } f_m) \le \delta_2.$$

As a corollary of Lemmas 5 and 6, we see that our class of hard functions were indeed informationhiding functions.

Corollary 1. Let $V = (v_1, \ldots, v_k)$ be the random variable that is distributed Haar randomly from the possible choices of k orthonormal vectors from \mathbb{R}^n . The sequence of functions g_1, \ldots, g_k is a k-step (n^{-10}, n^{-10}) -information-hiding class of functions when the allowed queries are function values and derivatives up to the pth order derivative.

We now prove the hardness of information-hiding classes of functions. We start with the setting of parallel randomized algorithms.

Theorem 4. Let \mathscr{F} be an *m*-step (δ_1, δ_2) -information-hiding class of functions under the distribution \mathcal{R} . Then for any parallel query algorithm \mathcal{A} making K queries per round and using less than m rounds, the probability that the algorithm outputs a correct output for f distributed according to \mathcal{R} is at most $\delta_2 + mK\delta_1$.

Proof. Let the success probability of A be p_{succ} when V is distributed Haar randomly. We can fix the randomness of \mathcal{A} to get a deterministic algorithm \mathcal{B} with success probability at least p_{succ} on the same distribution.

Let us denote the transcript of \mathcal{B} as $T = (S_1, S_2, \dots, S_{m-1}, x_{out})$ where S_i is the set of queries made in the *i*th round and x_{out} is the output of the algorithm. Note that these are random variables that depend only on \mathcal{R} . We now create hybrid transcripts $T^{(i)}$ for $0 \leq i \leq m-1$. The hybrid transcript $T^{(i)} = (S_1^{(i)}, \dots, S_{m-1}^{(i)}, x_{out}^{(i)})$ is defined as the transcript of \mathcal{B} when, for all $j \leq i$, the oracles calls in round j (which are supposed to be to Q_{f_m}) are replaced with oracle calls to Q_{f_j} . Note that

- For any $V, T = T^{(0)}$.
- $T^{(m-1)}$ is a function of $\mathcal{R}_{\leq m-1}$.
- For any V, if the answers of Q_{f_m} on $S_i^{(i-1)}$ are the same as the answers of Q_{f_i} on $S_i^{(i)}$ then $T^{(i-1)} = T^{(i)}$. This is because they have queried the same oracles in their first i - 1 calls, given the same inputs in the *i*th call and gotten the same output, and have been querying the same oracles thereafter.

We start with the observation that

$$\Pr_{\mathcal{R}}[x_{\text{out}}^{(m-1)} \text{ is } \epsilon\text{-optimal}] = \mathop{\mathbb{E}}_{\mathcal{R}_{(45)
$$\leq \delta_{2}.$$
(by property 2 in Definition 6)$$

(by property 2 in Definition 6)

Next we show that $\Pr_{\mathcal{R}}[x_{\text{out}}^{(m-1)} = x_{\text{out}}] \ge 1 - mK\delta_1$ which will complete the proof.

$$\Pr_{\mathcal{R}}[x_{\text{out}} \neq x_{\text{out}}^{(m-1)}] \le \sum_{i \in [m-1]} \Pr_{\mathcal{R}}[x_{\text{out}}^{(i-1)} \neq x_{\text{out}}^{i}]$$
(46)

$$\leq \sum_{i \in [m-1]} \Pr_{\mathcal{R}}[T^{(i-1)} \neq T^{(i)}]$$
(47)

$$\leq \sum_{i \in [m-1]} \Pr_{\mathcal{R}} [\mathsf{Q}_{f_m}(S_i^{(i-1)}) = \mathsf{Q}_{f_i}(S_i^{(i)})]$$
(48)

$$\leq \sum_{i \in [m-1]} \mathbb{E}_{\mathcal{R}_{\leq i}} \left[\Pr_{\mathcal{R}_{\geq i} \mid \mathcal{R}_{< i}} [\mathsf{Q}_{f_m}(S_i^{(i-1)}) = \mathsf{Q}_{f_i}(S_i^{(i)})] \right]$$
(49)

$$\leq mK\delta_1,$$
 (50)

since $S_i^{(i-1)} = S_i^{(i)}$, and using property 1 in Definition 6 with a union bound over the inputs in each S_i . \square

We now turn to quantum query algorithms. In our quantum query model a t-query quantum query algorithm is a quantum circuit that uses a query oracle t times. The query oracle is implemented by a unitary so that it supports queries in superposition. We allow arbitrarily high precision for the real numbers involved, and our lower bound is independent of the algorithm maker's choice of number of bits of precision. This is the same model used by and described in more detail in [GKNS21, Section 4.3].

We show that an information-hiding class of functions would be hard even for quantum query algorithms to compute. We can't use the above proof since we can't use a union bound on all queried points; a single quantum query may query exponentially many points in superposition. However, we know that a large fraction of this superposition is on points that don't reveal much information. The small fraction of points that do reveal information will not be noticeable to the quantum query algorithm since they are only a small fraction of the superpositioned points. We can then use the hybrid argument again to give a quantum query lower bound analogous to the classical one proved above.

Theorem 5. Let \mathscr{F} be an *m*-step (δ_1, δ_2) -information-hiding class of functions under the distribution \mathcal{R} . Then for any quantum query algorithm making less than *m* queries, the probability that the algorithm outputs a correct output for *f* distributed according to \mathcal{R} is at most $\delta_2 + 4m\sqrt{\delta_1}$.

The proof of this goes via what is commonly called the hybrid argument. Fix any quantum algorithm A making at most m-1 queries, specified by the unitaries $U_{m-1}O_{f_m}U_{m-2}O_{f_m}\cdots U_1O_{f_m}U_0$. Now we define a sequence of unitaries starting with $A_0 = A$ as follows:

$$A_{0} \coloneqq U_{m-1}O_{f_{m}}U_{m-2}O_{f_{m}}\cdots O_{f_{m}}U_{1}O_{f_{m}}U_{0}$$

$$A_{1} \coloneqq U_{m-1}O_{f_{m}}U_{m-2}O_{f_{m}}\cdots O_{f_{m}}U_{1}O_{f_{1}}U_{0}$$

$$A_{2} \coloneqq U_{m-1}O_{f_{m}}U_{m-2}O_{f_{m}}\cdots O_{f_{2}}U_{1}O_{f_{1}}U_{0}$$

$$\vdots$$

$$A_{m-1} \coloneqq U_{m-1}O_{f_{m-1}}U_{m-2}O_{f_{m-2}}\cdots O_{f_{2}}U_{1}O_{f_{1}}U_{0}$$
(51)

Property 1 provides us with the following lemma.

Lemma 8 (A_t and A_{t-1} have similar outputs). Let A be a m-1 query algorithm and let A_t for $t \in [m-1]$ be the unitaries defined in eq. (51). Then

$$\mathbb{E}_{\mathcal{R}}(\|A_t|0\rangle - A_{t-1}|0\rangle\|^2) \le 4\delta_1.$$
(52)

Proof. From the definition of the unitaries in eq. (51) and the unitary invariance of the spectral norm, we see that $||A_t|0\rangle - A_{t-1}|0\rangle|| = ||(O_{f_t} - O_{f_m})U_{t-1}O_{f_{t-1}}\cdots O_{f_1}U_0|0\rangle||$. Let us prove the claim for any fixed choice of vectors $\mathcal{R}_{\leq t-1}$, which will imply the claim for any distribution over those vectors. Once we have fixed these vectors, the state $U_{t-1}O_{f_{t-1}}\cdots O_{f_1}U_0|0\rangle$ is a fixed state, which we can call $|\psi\rangle$. Thus our problem reduces to showing for all quantum states $|\psi\rangle$,

$$\mathbb{E}_{\geq t|\mathcal{R}_{
(53)$$

Now we can write an arbitrary quantum state as $|\psi\rangle = \sum_x \alpha_x |x\rangle |\phi_x\rangle$, where x is the query made to the oracle, and $\sum_x |\alpha_x|^2 = 1$. Thus the LHS of eq. (53) is equal to

$$\mathbb{E}_{\mathcal{R}_{\geq t}|\mathcal{R}_{
(54)$$

Since $|\alpha_x|^2$ defines a probability distribution over x, we can again upper bound the right hand side for any x instead. Since O_{f_t} and O_{f_m} behave identically for some inputs x, the only nonzero terms are those where the oracles respond differently, which can only happen if $O_{f_t}(x) \neq O_{f_m}(x)$. When the response is different, we can upper bound $||(O_{f_t} - O_{f_m})|x\rangle |\phi_x\rangle||^2$ by 4 using the triangle inequality. Thus for any $x \in \mathbb{R}^n$, we have

$$\mathbb{E}_{\mathcal{R}_{\geq t}|\mathcal{R}_{$$

where the last inequality follows from Property 1.

And Property 2 provides us with the following.

Lemma 9 (A_{m-1} does not solve the problem). Let A be a m-1 query algorithm and let A_{m-1} be defined as above. Let p_R be the probability distribution over $x \in B(\vec{0}, 1)$ obtained by measuring the output state $A_{m-1}|0\rangle$ when the randomness \mathcal{R} is fixed to R. Then $\Pr_{R \sim \mathcal{R}, x \sim p_R}(x \text{ is a correct output}) \leq \delta_2$.

Proof. Let us establish the claim for any fixed choice of $\mathcal{R}_{< m}$, since if the claim holds for any fixed choice of these vectors, then it also holds for any probability distribution over them. For a fixed choice of vectors, this claim is just $\Pr_{\mathcal{R}_m, x \sim p_R}(x \text{ is a correct output}) \leq \delta_2$. Now since the algorithm A_{m-1} only has oracles O_{f_i} for i < m, the probability distribution p_R only depends on $R_{< m}$. Since these

are fixed, this is just a fixed distribution p. So we can instead establish our claim for all $x \in B(\vec{0}, 1)$, which will also establish it for any distribution.

So what we need to establish is that for any $x \in \mathbb{R}^n$, $\Pr_{\mathcal{R}_m}(x \text{ is a correct output}) \leq \delta_2$ which is what Property 2 gives us.

Finally we can put these two lemmas together to prove our lower bound.

Lemma 10 (A does not solve the problem). Let A be an m-1 query algorithm. Let p_R be the probability distribution over $x \in B(\vec{0}, 1)$ obtained by measuring the output state $A|0\rangle$ when the randomness \mathcal{R} is fixed to R. Then $\Pr_{R \sim \mathcal{R}, x \sim p_R}(x \text{ is a correct output}) \leq \delta_2 + 4m\sqrt{\delta_1}$.

Proof. Let P_R be the projection operator that projects a quantum state $|\psi\rangle$ onto the space spanned by vectors $|x\rangle$ for x such that x is a correct output when $\mathcal{R} = R$. Then $||P_R A |0\rangle ||^2 = \Pr_{x \sim p_R}(x \text{ is a correct output})$. We know from Lemma 9 that $\mathbb{E}_{R \sim \mathcal{R}}(||P_R A_{m-1} |0\rangle||^2) \leq \delta_2$. We prove our upper bound on the probability by showing that it is approximately the same as $\mathbb{E}_{R \sim \mathcal{R}}(||P_R A_{m-1} |0\rangle||^2)$.

Lemma 8 states that for all $1 \le t < m$, $\mathbb{E}_{\mathcal{R}}(||A_t|0\rangle - A_{t-1}|0\rangle||^2) \le 4\delta_1$. Using telescoping sums and the Cauchy-Schwarz inequality, we see that

$$\mathbb{E}_{\mathcal{R}}(\|A_{m-1}|0\rangle - A|0\rangle\|^{2}) \leq \mathbb{E}_{\mathcal{R}}\left(\left(\sum_{t\in[m-1]}\|A_{t}|0\rangle - A_{t-1}|0\rangle\|\right)^{2}\right)$$

$$\leq \mathbb{E}_{\mathcal{R}}\left(\sum_{t\in[m-1]}\|A_{t}|0\rangle - A_{t-1}|0\rangle\|^{2}\right)\left(\sum_{t\in[m-1]}1^{2}\right) \leq 4\delta_{1} \cdot m \cdot m.$$
(56)

(57) For all R, $|||P_R A_{m-1} |0\rangle|| - ||P_R A |0\rangle||| \le ||P_R A_{m-1} |0\rangle - P_R A |0\rangle|| = ||P_R (A_{m-1} |0\rangle - A |0\rangle)|| \le ||A_{m-1} |0\rangle - A |0\rangle||$. Hence

$$\mathbb{E}_{R \sim \mathcal{R}} \left(\left(\left\| P_R A_{m-1} \left| 0 \right\rangle \right\| - \left\| P_R A \left| 0 \right\rangle \right\| \right)^2 \right) \le 4m^2 \delta_1.$$
(58)

We want an upper bound on $\mathbb{E}_{R\sim\mathcal{R}}(\|P_RA|0\rangle\|^2 - \|P_RA_{m-1}|0\rangle\|^2)$, which is no larger than $2\mathbb{E}_{R\sim\mathcal{R}}(\|P_RA|0\rangle\| - \|P_RA_{m-1}|0\rangle\|)$ since $\|P_RA|0\rangle\| + \|P_RA_{m-1}|0\rangle\| \le 2$. We get such a bound by applying Jensen's inequality to eq. (58): $\mathbb{E}_{R\sim\mathcal{R}}(\|P_RA|0\rangle\| - \|P_RA_{m-1}|0\rangle\|) \le 2m\sqrt{\delta_1}$, and so $\mathbb{E}_{R\sim\mathcal{R}}(\|P_RA|0\rangle\|^2 - \|P_RA_{m-1}|0\rangle\|^2) \le 4m\sqrt{\delta_1}$.

We can now use linearity of expectation and upper bound our required probability as

$$\Pr_{R \sim \mathcal{R}, x \sim p_R}(x \text{ is a correct output}) = \mathbb{E}_{R \sim \mathcal{R}}(\|P_R A |0\rangle\|^2) \le \delta_2 + 4m\sqrt{\delta_1}.$$
(59)

The proofs of the quantum lower bound in Theorem 1 and the highly parallel lower bound alluded to after that now follow from Theorems 4 and 5 and Corollary 1.

Corollary 2. The complexity of ϵ -optimizing the class of functions g is:

- k rounds in the parallel randomized setting where in each round K parallel queries are allowed, and $Kn^{-9} \ll 1$. (Note that by modifying the constants in the definition of the function, we can support K being any polynomial in n.)
- k queries in the quantum setting to get success probability larger than n^{-4} .