
Appendices
Notations and Organizations. To begin, we first briefly introduce some notations used through-
out the appendix. For a scalar function f(Z) with a variable Z ∈ RK×N , its gradient is a K × N
matrix whose (i, j)-th entry is [∇f(Z)]ij = ∂f(Z)

zij
for all i ∈ [K], j ∈ [N ], where zij represents

the (i, j)-th entry of Z. The Hessian of f(Z) can be viewed as an KN × KN matrix by vec-
torizing the matrix Z. An alternative way to present the Hessian is by a bilinear form defined via
[∇2f(Z)](A,B) =

∑
i,j,k,`

∂2f(Z)
∂zijzk`

aijbk` for any A,B ∈ RK×N , which avoids the procedure of
vectorizing the variable Z. We will use the bilinear form for the Hessian in Appendix E.

The appendix is organized as follows. In Appendix A, we discuss the relationship between this work
to the previous work that beyond neural collapse. Appendix B includes the detailed description of
metrics for measuringNCduring network training and additional experimental results. In Appendix
C, we introduce the basic definitions and inequalities used throughout the appendices. In Appendix
D, we provide a detailed proof for Theorem 3.1, showing that the Simplex ETFs are the only global
minimizers to our regularized cross-entropy loss. Finally, in Appendix E, we present the whole
proof for Theorem 3.2 that the function is a strict saddle function and no spurious local minimizers
exist, which is one of the major contributions of the work.

A Relationship to the Prior Arts Beyond Neural Collapse

Our work highly relates to recent advances on studying the optimization landscape in neural network
training; see [98, 99] for a contemporary survey. Most of the existing work [32–42] analyzes the
problem based on a bottom-up approach – from the input to the output of neural networks – ranging
from two-layer linear network [33, 38, 40, 89], deep linear network [34, 37, 38, 41], to nonlinear
network [35,36,38,39]. More specifically, the line of work [33,34,38,40,41] studied the optimization
landscape for linear two-layer networks and proved that the associated training loss is a strict saddle
function. For deeper linear networks, it can be shown that flat saddle points exist at the origin,
but there are no spurious local minima [34, 37]. For nonlinear neural networks, it has been proved
that there do exist spurious local minima [35, 36], but such local minima may be eliminated, or the
number can be significantly reduced, in the over-parameterization regime [35,39]. Additionally, the
work [32] proved that certain local minima (having an all-zero “slice”) are also global solutions,
but the analysis is crucially dependent on the sufficient condition of an all-zero slice in the weights,
which is insufficient to characterize the landscape properties. At a high level, the differences between
these results and ours can be summarized as follows.

• A Feature Learning Perspective. While most of these results based on the bottom-up approach
explain optimization and generalization of certain types of deep neural networks, they provided
limited insights into the practice of deep learning. In contrast, we take a top-down approach to
look at the network starting from the very last layer. The slight difference in the models can lead to
a dramatic difference in the interpretability for deep learning. By starting from the last layer, our
results not only provide valid reasons on why the training loss can be efficiently optimized, but also
provide a precise characterization of the last-layer features as well as the classifiers learned from
the network. As we will show, such a feature learning perspective not only helps with network
design (see Section 4.3), but may bear broadly on generalization and robustness of deep learning
as well as the recent development of contrastive learning (see Section 5).

• Connections to Empirical Phenomena. Moreover, most existing theoretical results on landscape
analysis [100, 101] are somewhat disconnected from practice due to unrealistic assumptions, pro-
viding limited guiding principles for modern network training or design. In contrast, our assump-
tion on the last-layer features as optimization variables is naturally based on model overparame-
terization. Moreover, our results provide explanations for NC, an empirical phenomenon that has
been widely observed on convincing numerical evidence across many different practical network
architectures and a variety of standard image datasets.

Our work also broadly relates to the recent theoretical study for deep learning based on Neural
Tangent Kernels (NTKs) [102], where a neural network behaves like a linear model on random
features hence has a benign optimization landscape. However, the “kernel regime” that NTKs work
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in requires neural networks that are infinitely wide – or at least so wide that is beyond the regime that
practical neural networks work in [103–106]. In contrast, we adopt the unconstrained feature model
which does not directly impose requirements on the width of the neural network and, as shown in our
experiments, well captures the behavior of practical neural networks. Hence, our result can provide
a more practical understanding for deep learning.

Moreover, from a boarder perspective our work is rooted in recent advances on global nonconvex
optimization theory for signal processing and machine learning problems [51, 80,82,107,108]. In a
sequence of works [71–83, 109–111], the authors showed that many problems exhibit “equivalently
good” global minimizers due to symmetries and intrinsic low-dimensional structures, and the loss
functions are usually strict saddles [49–51]. These problems include, but are not limited to, phase
retrieval [75,76], low-rank matrix recovery [71,74,77,79,80], dictionary learning [70,72,73,81,82],
and sparse blind deconvolution [83, 109–111]. As we shall see, the global minimizers (i.e., simplex
ETFs) of our problem here also exhibit a similar rotational symmetry, compared to low-rank matrix
recovery. In fact, our proof techniques are inspired by recent results on low-rank matrix recovery
[77, 80]. Thus, our work establishes a new connection between recent advances on nonconvex
optimization theory and deep learning.

B Experiments

In this section, we provide with more details for reproducing the experiments presented in the paper.
In particular, we emphasize that the datasets involved in the paper, namely MNIST and CIFAR10,
are publicly available for academic usage: MNIST dataset is made available under the terms of the
Creative Commons Attribution-Share Alike 3.0 license, and CIFAR10 dataset is made available un-
der the MIT license. All experiments are conducted on a single RTX3090 GPU with 24GB memory.

B.1 Metrics for Measuring NC During Network Training.

We measureNC for the learned last-layer classifiers and features based on the properties presented
in Section 1. Some of the metrics are similar to those presented in [1]. First, we define the global
mean and class mean of the last-layer features {hk,i} as

hG =
1

nK

K∑
k=1

n∑
i=1

hk,i, hk =
1

n

n∑
i=1

hk,i (1 ≤ k ≤ K).

• Within-class Variability Collapse for the Learned Features H . We introduce the within-class
and between-class covariance matrices as

ΣW :=
1

nK

K∑
k=1

n∑
i=1

(
hk,i − hk

) (
hk,i − hk

)>
, ΣB :=

1

K

K∑
k=1

(
hk − hG

) (
hk − hG

)>
.

Thus, we can measure the within-class variability collapse by measuring the magnitude of the
between-class covariance ΣB ∈ Rd×d compared to the within-class covariance ΣW ∈ Rd×d of
the learned features via

NC1 :=
1

K
trace

(
ΣWΣ†B

)
, (6)

where Σ†B denotes the pseudo inverse of ΣB .

• Convergence of the Learned Classifier W to a Simplex ETF. For the learned classifier W ∈
RK×d, we quantify its closeness to a Simplex ETF up to scaling by

NC2 :=

∥∥∥∥ WW>

‖WW>‖F
− 1√

K − 1

(
IK −

1

K
1K1>K

)∥∥∥∥
F

, (7)

where we rescale the ETF in (5) so that 1√
K−1

(
IK − 1

K1K1>K
)

has unit energy (in Frobenius
norm). It should be noted that our metric NC2 combines two metrics used in [1] to quantity to
what extent the classifier approaches equiangularity and maximal-angle equiangularity.
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Figure 6: Illustration of NC across different training algorithms with ResNet18 on MNIST. From the left
to the right, the plots show the four metrics, NC1,NC2,NC3, and NC4, for measuring NC, defined in (6),
(7), (8), and (9), respectively.

• Convergence to Self-duality. Next, we measure the collapse of the learned features H to its dual
W . Let us define the centered class-mean matrix as

H :=
[
h1 − hG · · · hK − hG

]
∈ Rd×K .

Thus, we measure the duality between the classifiersW and the centered class-meansH by

NC3 :=

∥∥∥∥∥ WH∥∥WH
∥∥
F

− 1√
K − 1

(
IK −

1

K
1K1>K

)∥∥∥∥∥
F

. (8)

• Collapse of the Bias. In many cases, the global mean hG of the features might not be zero,17 and
the bias term b would compensate for the global mean hG in the sense that

Whk,i + b = W (hk,i − hG) +WhG + b︸ ︷︷ ︸
=0

.

Thus, we capture this collapsing phenomenon by measuring

NC4 := ‖b+WhG‖2 . (9)

B.2 Additional Experiments

B.2.1 The Prevalence of NC Across Different Optimization Algorithms

In Figure 6 and Figure 7, we run all the experiments with ResNet18 on MNIST and CIFAR10
without modification. The results lead to the following observations:

• NC is Algorithm Independent. Similar to Figure 3, we consistently observe from Figure 6 that all
four metrics collapse to zero, trained by different types of algorithms – SGD, Adam, and LBFGS.
This implies thatNC happens regardless of the choice of training methods. The last-layer features
learned by the network are always maximally linearly separable, and correspondingly the last-
layer classifier is a perfect linear classifier for the features.

• Relationship between NC and Generalization. Figure 7 depicts the learning curves in terms of
both the training and test accuracy for all three optimization algorithms (i.e., SGD, Adam, and
LBFGS). These experimental results18 show that different training algorithms learn neural net-
works with notably different generalization performances, even though all of them exhibit NC.
Since NC is only a characterization of the training data, it does not directly translate to unseen
data. As the network is highly overparameterized, there are infinitely many networks that produce
the same H with NC for a particular training dataset, but with different generalization perfor-
mance. This suggests that study generalization needs to consider the algorithmic bias and the
learned weights for the feature H . A thorough investigation between NC and generalization is
the subject of future work.

17For example, as discussed after Theorem 3.1 all the feature vectors in H would be nonnegative, because
the nonnegative nonlinear operator ReLU has been applied at the end of the penultimate layer.

18Note that here we use the default version of LBFGS in PyTorch. Other variants of quasi-Newton methods
[112, 113] may give different or better generalization performance.
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(a) MNIST: Training (left) vs. Testing (right)
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(b) CIFAR10: Training (left) vs. Testing (right)

Figure 7: Illustrations of training and test accuracy for three different training algorithms (i.e., SGD, Adam,
and LBFGS) with ResNet18 on MNIST and CIFAR10.
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(a) Random Label CIFAR10-MLP (from left to right): NC1 (log scale),NC2,NC3, Training Error Rate

Figure 8: Training results of CIFAR10 with completely random label. Multilayer perceptron (MLP) of a
fixed depth of 4 is used with various feature width. Note that the right column is the misclassification percentage
of all samples in training.

B.2.2 The Validity of (3) Based on Unconstrained Feature Models for NC

The premise of our global landscape analysis of (3) for studying NC in deep neural networks is
based upon the unconstrained feature model introduced in Section 2.1, which simplifies the network
by synthesizing the first L − 1 layers as a universal approximator that generates a simple decision
variable for each training sample. Here, we demonstrate through experiments that such a simpli-
fication is reasonable for overparameterized networks, at least sufficient for characterizing NC in
practical network training.

The Validity of Unconstrained Feature Models. For the ease of studying the effects of model
sizes (i.e., overparameterization) on NC, we also train 4-layer multilayer perceptrons (MLP) of
different network width using SGD with learning rate 0.01 and weight decay 10−4. We report the
corresponding NC behaviors in Figure 8, which shows how training misclassification rate and NC
evolve over epochs of training for networks with different widths. Figure 8 shows similar results
to Figure 4 with ResNet18, in the sense that the training accuracy is highly correlated with NC in
the sense that a larger network (i.e., larger width) tends to exhibit severe NC and achieves smaller
training error.

Comparison of Weight Decay on the Network Parameter Θ vs. on the Features H in (3).
In comparison to typical training protocols of deep networks which enforce weight decay on all
the network weights Θ, our problem formulation (3) based on the unconstrained feature model
replaced Θ by penalizing the feature H produced by the L − 1 “peeled-off” layers. To check the
practicality of such formulation, we empirically run experiments using ResNet18 on MNIST and
CIFAR10. Figure 9 shows the NC evolution for both the classical formulation and our “peeled”
formulation, we notice that the NC behavior happens in both scenarios comparably. We also point
that without extensive hyper-parameter tuning, the models trained under the “peeled” set-up could
already achieve test accuracy of 99.57% and 77.92% on MNIST and CIFAR10 respectively. We
note that such performances are on-par with the test accuracy of the classical formulation (2), with
test accuracy of 99.60% and 78.42% on MNIST and CIFAR10 as reported in Figure 7.

B.3 Insights from NC for Improving Network Designs

Similar to Figure 5, we train a ResNet18 and fix the weights in the last layer as a Simplex ETF
throughout training for MNIST and CIFAR10 datasets, but without any data augmentation. Fig-
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Figure 9: Comparison of NC behavior for weight decay on Θ vs. on (H,W ). For the latter set up, we
choose λW = λb = 0.01 and λH = 0.00001.
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(a) MNIST-ResNet18 (from left to right): NC1,NC3, Training Accuracy, Testing Accuracy

0 50 100 150 200
Epoch

0

2

4

6

8

1

learned classifier, d=512
fixed classifier, d=512
learned classifier, d=10
fixed classifier, d=10

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3

learned classifier, d=512
fixed classifier, d=512
learned classifier, d=10
fixed classifier, d=10

0 50 100 150 200
Epoch

40

60

80

100

Tr
ai

ni
ng

 a
cc

ur
ac

y

learned classifier, d=512
fixed classifier, d=512
learned classifier, d=10
fixed classifier, d=10

0 50 100 150 200
Epoch

40

50

60

70

80

90

Te
st

in
g 

ac
cu

ra
cy

learned classifier, d=512
fixed classifier, d=512
learned classifier, d=10
fixed classifier, d=10

(b) CIFAR10-ResNet18 (from left to right): NC1,NC3, Training Accuracy, Testing Accuracy

Figure 10: Comparison of the performances on learned vs. fixed last-layer classifiers. We compare within-
class variation collapse NC1, self-duality NC3, training accuracy, and test accuracy, on fixed and learned
classifier on MNIST-ResNet18 (Top) and CIFAR10-ResNet18 (Middle). All networks are trained by SGD
optimizer.

ure 10 presents a comparison of learned and fixed classifiers in terms of within-class variation col-
lapse (NC1), self-duality (NC3), training accuracy, and test accuracy. The results in Figure 10 are
consistent with those in Figure 5, implying that the fixed classifier and setting d = K exhibits the
same within-class variation collapse for the featureH , and achieves the same classification accuracy
as the fully-trained classifier with d > K.

C Basics

Definition C.1 (K-Simplex ETF) A standard Simplex ETF is a collection of points in RK specified
by the columns of

M =

√
K

K − 1

(
IK −

1

K
1K1>K

)
,
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where IK ∈ RK×K is the identity matrix, and 1K ∈ RK is the all ones vector. In the other words,
we also have

M>M = MM> =
K

K − 1

(
IK −

1

K
1K1>K

)
.

As in [1,26], in this paper we consider general Simplex ETF as a collection of points in Rd specified

by the columns of
√

K
K−1P

(
IK − 1

K1K1>K
)
, where (i) when d ≥ K, P ∈ Rd×K is an orthonor-

mal matrix, i.e., P>P = IK , and (ii) when d = K − 1, P is chosen such that
[
P> 1√

K
1K
]

is
an orthonormal matrix.

Lemma C.2 (Young’s Inequality) Let p, q be positive real numbers satisfying 1
p +

1
q = 1. Then for

any a, b ∈ R, we have

|ab| ≤ |a|
p

p
+
|b|q

q
,

where the equality holds if and only if |a|p = |b|q . The case p = q = 2 is just the AM-GM inequality
for a2, b2: |ab| ≤ 1

2

(
a2 + b2

)
, where the equality holds if and only if |a| = |b|.

The following Lemma extends the standard variational form of the nuclear norm.

Lemma C.3 For any fixed Z ∈ RK×N and α > 0, we have

‖Z‖∗ = min
Z=WH

1

2
√
α

(
‖W ‖2F + α ‖H‖2F

)
. (10)

Here, ‖Z‖∗ denotes the nuclear norm of Z:

‖Z‖∗ :=

min{K,N}∑
k=1

σk(Z) = trace (Σ) , with Z = UΣV >,

where {σk}min{K,N}
k=1 denotes the singular values of Z, and Z = UΣV > is the singular value

decomposition (SVD) of Z.

Proof [Proof of Lemma C.3] Let Z = UΣV > be the SVD of Z. First of all, by the facts that
U>U = I , V >V = I , traceA>A = ‖A‖2F for any A ∈ Rn1×n2 , and cyclic permutation
invariance of trace (·), we have

‖Z‖∗ = trace (Σ) =
1

2
√
α
trace

(√
αU>UΣ

)
+

√
α

2
trace

(
1√
α

ΣV >V

)
=

1

2
√
α

(∥∥∥α1/4UΣ1/2
∥∥∥2
F
+ α

∥∥∥α−1/4Σ1/2V >
∥∥∥2
F

)
.

This implies that there exists someW = α1/4UΣ1/2 andH = α−1/4Σ1/2V >, such that ‖Z‖∗ =
1

2
√
α

(
‖W ‖2F + α ‖H‖2F

)
. This equality further implies that

‖Z‖∗ ≥ min
Z=WH

1

2
√
α

(
‖W ‖2F + α ‖H‖2F

)
. (11)

On the other hand, for anyWH = Z, we have

‖Z‖∗ = trace (Σ) = trace
(
U>ZV

)
= trace

(
U>WHV

)
≤ 1

2
√
α

∥∥U>W∥∥2
F
+

√
α

2
‖HV ‖2F ≤

1

2
√
α

(
‖W ‖2F + α ‖H‖2F

)
,

where the first inequality utilize the Young’s inequality in Lemma C.2 that |trace(AB)| ≤
1
2c ‖A‖

2
F + c

2 ‖B‖
2
F for any c > 0 and A,B of appropriate dimensions, and the last inequality

follows because ‖U‖ = 1 and ‖V ‖ = 1. Therefore, we have

‖Z‖∗ ≤ min
Z=WH

1

2
√
α

(
‖W ‖2F + α ‖H‖2F

)
. (12)

Combining the results in (11) and (12), we complete the proof.
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Lemma C.4 (Theorem 7.2.6 of [114]) LetA ∈ Rn×n be a symmetric positive semidefinite matrix.
Then for any fixed k ∈ {2, 3, · · ·}, there exists a unique real symmetric positive semidefinte matrix
B such thatBk = A.

D Proof of Theorem 3.1

In this part of appendices, we prove Theorem 3.1 in Section 3 that we restate as follows.

Theorem D.1 (Global Optimality Condition) Assume that the feature dimension d is larger than
the number of classes K, i.e., d ≥ K − 1. Then any global minimizer (W ?,H?, b?) of

min
W ,H,b

f(W ,H, b) := g(WH + b1>) +
λW
2
‖W ‖2F +

λH
2
‖H‖2F +

λb
2
‖b‖22 (13)

with

g(WH + b1>) :=
1

N

K∑
k=1

n∑
i=1

LCE(Whk,i + b,yk), (14)

obeys the following
‖w?‖2 =

∥∥w?1
∥∥
2

=
∥∥w?2

∥∥
2

= · · · =
∥∥w?K

∥∥
2
, and b? = b?1,

h?k,i =

√
λW
λHn

w?k, ∀ k ∈ [K], i ∈ [n], and h
?

i :=
1

K

K∑
j=1

h?j,i = 0, ∀ i ∈ [n],

where either b? = 0 or λb = 0, and the matrix 1
‖w?‖2

W ?> forms a K-simplex ETF defined in
Definition C.1 in the sense that

1

‖w?‖22
W ?>W ? =

K

K − 1

(
IK −

1

K
1K1>K

)
.

D.1 Main Proof

Similar to the proofs in [24, 26], we prove the theorem by directly showing that f(W ,H, b) >
f(W ?,H?, b?) for any (W ,H, b) not in the form as shown in Theorem D.1.

Proof [Proof of Theorem D.1] First note that the objective function f is coercive19 due to the weight
decay regularizers and the fact that the CE loss is always non-negative. This implies that the global
minimizer of f(W ,H, b) in (13) is always finite. By Lemma D.2, we know that any critical point
(W ,H, b) of f in (13) satisfies

W>W =
λH
λW

HH>.

For the rest of the proof, to simplify the notations, let ‖W ‖2F = ρ, and thus ‖H‖2F = λH
λW

ρ.

We will first provide a lower bound for the cross-entropy term g(WH + b1>) for any W with
energy ρ, and then show that the lower bound is attained if and only if the parameters are in the form
described in Theorem D.1. Now, by Lemma D.3, we know that for any c1, c3 > 0,

g(WH + b1>) ≥ − ρ

(1 + c1)(K − 1)

√
λW
λHn

+ c2

with c2 = 1
1+c1

log ((1 + c1)(K − 1)) + c1
1+c1

log
(

1+c1
c1

)
. Therefore, we have

f(W ,H, b) = g(WH + b1>) +
λW
2
‖W ‖2F +

λH
2
‖H‖2F +

λb
2
‖b‖22

≥ − ρ

(1 + c1)(K − 1)

√
λW
λHn

+ c2 + λW ρ︸ ︷︷ ︸
ξ(ρ,λW ,λH)

+
λb
2
‖b‖22

≥ ξ (ρ, λW , λH) ,

19A function f : Rn 7→ R is coercive if f(x)→ +∞ as ‖x‖2 → +∞.
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where the last inequality becomes an equality whenever either λb = 0 or b = 0. Furthermore, by
Lemma D.4, we know that the inequality f(W ,H, b) ≥ ξ (ρ, λW , λH) becomes an equality if
and only if (W ,H, b) satisfy the following

(a) ‖w‖2 =
∥∥w1

∥∥
2

=
∥∥w2

∥∥
2

= · · · =
∥∥wK

∥∥
2
;

(b) b = b1, where either b = 0 or λb = 0;

(c) hi := 1
K

∑K
j=1 hj,i = 0, ∀ i ∈ [n], and

√
λW
λHn

wk = hk,i, ∀ k ∈ [K], i ∈ [n];

(d) WW> = ρ
K−1

(
IK − 1

K1K1>K
)
;

(e) c1 =
[
(K − 1) exp

(
− ρ
K−1

√
λW
λHn

)]−1
.

To finish the proof, we only need to show that ρ = ‖W ‖2F must be finite for any fixed λW , λH > 0.

From (e), we know that c1 =
[
(K − 1) exp

(
− ρ
K−1

√
λW
λHn

)]−1
is an increasing function in terms

of ρ, and c2 = 1
1+c1

log ((1 + c1)(K − 1)) + c1
1+c1

log
(

1+c1
c1

)
is a decreasing function in terms of

c1. Therefore, we observe the following:

• When ρ→ 0, we have c1 → 1
K−1 and c2 → logK, so that

lim
ρ→0

ξ(ρ;λW , λH) = lim
ρ→0

c2(ρ) = logK.

• On the other hand, when ρ→ +∞, c1 → +∞ and c2 → 0, so that ξ(ρ;λW , λH)→ +∞
as ρ→ +∞.
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Figure 11: Plot of ξ(ρ;λW , λH) in terms of ρ for n = 100 and different K,λW , λH .

Since ξ(ρ;λW , λH) is a continuous function of ρ ∈ [0,+∞) and ξ(ρ;λW , λH) → +∞ and
ρ → +∞, these further imply that ξ(ρ;λW , λH) achieves its minimum at a finite ρ (see Figure 11
for an example. This finishes the proof.

D.2 Supporting Lemmas

We first characterize the following balance property between W and H for any critical point
(W ,H, b) of our loss function:

Lemma D.2 Let ρ = ‖W ‖2F . Any critical point (W ,H, b) of (13) obeys

W>W =
λH
λW

HH> and ρ = ‖W ‖2F =
λH
λW
‖H‖2F . (15)
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Proof [Proof of Lemma D.2] By definition, any critical point (W ,H, b) of (13) satisfies the fol-
lowing:

∇W f(W ,H, b) = ∇Z=WH g(WH + b1>)H> + λWW = 0, (16)

∇Hf(W ,H, b) = W>∇Z=WH g(WH + b1>) + λHH = 0. (17)

Left multiply the first equation by W> on both sides and then right multiply second equation by
H> on both sides, it gives

W>∇Z=WH g(WH + b1>)H> = −λWW>W ,

W>∇Z=WH g(WH + b1>)H> = −λHH>H.

Therefore, combining the equations above, we obtain

λWW
>W = λHHH

>.

Moreover, we have

ρ = ‖W ‖2F = trace
(
W>W

)
=

λH
λW

trace
(
HH>

)
=

λH
λW

trace
(
H>H

)
=

λH
λW
‖H‖2F ,

as desired.

Lemma D.3 Let W =

 (w1)>

...
(wK)>

 ∈ RK×d, H = [h1,1 · · ·hK,n] ∈ Rd×N , N = nK, and

ρ = ‖W ‖2F . Given g(WH + b1>) defined in (14), for any critical point (W ,H, b) of (13) and
c1 > 0, we have

g(WH + b1>) ≥ − ρ

(1 + c1)(K − 1)

√
λW
λHn

+ c2, (18)

with c2 = 1
1+c1

log ((1 + c1)(K − 1)) + c1
1+c1

log
(

1+c1
c1

)
.

Proof [Proof of Lemma D.3] By Lemma D.5 with zk,i = Whk,i + b, since the scalar c1 > 0 can
be arbitrary, we choose the same c1 and c2 for all i ∈ [n] and k ∈ [K], we have the following lower
bound for g(WH + b1>) as

(1 + c1)(K − 1)
[
g(WH + b1>)− c2

]
= (1 + c1)(K − 1)

[
1

N

K∑
k=1

n∑
i=1

LCE(Whk,i + b,yk)− c2

]

≥ 1

N

K∑
k=1

n∑
i=1

[
K∑
j=1

(
h>k,iw

j + bj
)
−K

(
h>k,iw

k + bk
) ]

(19)

=
1

N

n∑
i=1

[ K∑
k=1

K∑
j=1

h>k,iw
j −K

K∑
k=1

h>k,iw
k

 +

K∑
k=1

K∑
j=1

(bj − bk)︸ ︷︷ ︸
=0

]

=
1

N

n∑
i=1

 K∑
k=1

K∑
j=1

h>j,iw
k −K

K∑
k=1

h>k,iw
k


=
K

N

n∑
i=1

K∑
k=1

( 1

K

K∑
j=1

(hj,i − hk,i)
)>
wk

 =
1

n

n∑
i=1

K∑
k=1

(
hi − hk,i

)>
wk,
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where for the last equality we let hi = 1
K

∑K
j=1 hj,i. Furthermore, from the AM-GM inequality in

Lemma C.2, we know that for any u,v ∈ RK and any c3 > 0,

u>v ≤ c3
2
‖u‖22 +

1

2c3
‖v‖22 ,

where the inequality becomes an equality when c3u = v. Thus, we further have

(1 + c1)(K − 1)
[
g(WH + b1>)− c2

]
≥ − c3

2

K∑
k=1

∥∥wk
∥∥2
2
− 1

2c3n

n∑
i=1

K∑
k=1

∥∥hi − hk,i∥∥22
= − c3

2

K∑
k=1

∥∥wk
∥∥2
2
− 1

2c3n

n∑
i=1

[(
K∑
k=1

‖hk,i‖22

)
−K

∥∥hi∥∥22
]

= − c3
2
‖W ‖2F −

1

2c3n

(
‖H‖2F −K

n∑
i=1

∥∥hi∥∥22
)
,

where the first inequality becomes an equality if and only if

c3w
k = (hk,i − hi), ∀ k ∈ [K], i ∈ [n]. (20)

Let ρ = ‖W ‖2F . Now, by using Lemma D.2, we have W>W = λH
λW
HH>, so that ‖H‖2F =

trace
(
HH>

)
= λW

λH
trace

(
W>W

)
= λW

λH
ρ. Therefore, we have

g(WH + b1>) ≥ − ρ

2(1 + c1)(K − 1)

(
c3 +

λW
λH

1

c3n

)
+ c2, (21)

as desired. The last inequality achieves its equality if and only if

hi = 0, ∀ i ∈ [n]. (22)

Plugging this into (20), we have

c3w
k = hk,i ⇒ c23 =

∑n
i=1

∑K
k=1 ‖hk,i‖

2
2

n
∑K
k=1 ‖wk‖22

=
‖H‖2F
n ‖W ‖2F

=
λW
nλH

.

This together with the lower bound in (21) gives

g(WH + b1>) ≥ − ρ

(1 + c1)(K − 1)

√
λW
λHn

+ c2,

as suggested in (18).

Next, we show that the lower bound in (18) is attained if and only if (W ,H, b) satisfies the follow-
ing conditions.

Lemma D.4 Under the same assumptions of Lemma D.3, the lower bound in (18) is attained for
any critical point (W ,H, b) of (13) if and only if the following hold∥∥w1

∥∥
2

=
∥∥w2

∥∥
2

= · · · =
∥∥wK

∥∥
2
, and b = b1,

hi :=
1

K

K∑
j=1

hj,i = 0, ∀ i ∈ [n], and

√
λW
λHn

wk = hk,i, ∀ k ∈ [K], i ∈ [n],

WW> =
ρ

K − 1

(
IK −

1

K
1K1>K

)
, and c1 =

[
(K − 1) exp

(
− ρ

K − 1

√
λW
λHn

)]−1
.

The proof of Lemma D.4 utilizes the conditions in Lemma D.5, and the conditions (20) and (22)
during the proof of Lemma D.3.
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Proof [Proof of Lemma D.4] From the proof of D.3, if we want to attain the lower bound, we know
that we need at least (20) and (22) to hold, which is equivalent to the following:

hi =
1

K

K∑
j=1

hj,i = 0, ∀i ∈ [n], and

√
λW
λHn

wk = hk,i, ∀ k ∈ [K], i ∈ [n], (23)

which further implies that
K∑
k=1

wk = 0. (24)

Next, under the condition (23), if we want (18) to become an equality, we only need (19) to become
an equality, which is true if and only if the condition (34) in Lemma D.5 holds for zk,i =Whk,i+b
for all i ∈ [n] and k ∈ [K]. First, let [zk,i]j = h>k,iw

j + bj , where we have

K∑
j=1

[zk,i]j = h>k,i

K∑
j=1

wj +

K∑
j=1

bj =

√
λHn

λW
h>k,i

K∑
j=1

hj,i +

K∑
j=1

bj

=

√
λHn

λW
Kh>k,ihi +

K∑
j=1

bj = Kb (25)

with b = 1
K

∑K
i=1 bi, and

K[zk,i]k = Kh>k,iw
k +Kbk =

√
λW
λHn

(
K
∥∥wk

∥∥2
2

)
+Kbk. (26)

Based on (25), (26), and (34) from Lemma D.5, we have

c1 =

(K − 1) exp


(∑K

j=1[zk,i]j

)
−K[zk,i]k

K − 1

−1

=

[
(K − 1) exp

(
K

K − 1

(
b−

√
λW
λHn

∥∥wk
∥∥2
2
− bk

))]−1
. (27)

Since the scalar c1 > 0 is chosen to be the same for all k ∈ [K], we have√
λW
λHn

∥∥wk
∥∥2
2
+ bk =

√
λW
λHn

∥∥w`
∥∥2
2
+ b`, ∀ ` 6= k. (28)

Second, since [zk,i]j = [zk,i]` for all ∀j, ` 6= k, k ∈ [K], from (23) we have

h>k,iw
j + bj = h>k,iw

` + b`, ∀j, ` 6= k, k ∈ [K]

⇐⇒
√

λW
λHn

(wk)>wj + bj =

√
λW
λHn

(wk)>w` + b`, ∀j, ` 6= k, k ∈ [K]. (29)

Based on this and (24), we have√
λW
λHn

∥∥wk
∥∥2
2
+ bk = −

√
λW
λHn

∑
j 6=k

(wj)>wk + bk

= −(K − 1)

√
λW
λHn

(w`)>wk︸ ︷︷ ︸
` 6=k,`∈[K]

+

bk + ∑
j 6=`,k

(b` − bj)


= −(K − 1)

√
λW
λHn

(w`)>wk +
[
2bk + (K − 1)b` −Kb

]
(30)

for all ` 6= k. Combining (28) and (30), for all k, ` ∈ [K] with k 6= ` we have

2bk + (K − 1)b` −Kb = 2b` + (K − 1)bk −Kb ⇐⇒ bk = b`, ∀ k 6= `.
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Therefore, we can write b = b1K for some b > 0. Moreover, since bk = b` for all k 6= `, (28) and
(29), and (30) further imply that∥∥w1

∥∥
2

=
∥∥w2

∥∥
2

= · · · =
∥∥wK

∥∥
2
, and

∥∥wk
∥∥2
2

=
1

K
‖W ‖2F =

ρ

K
, (31)

(wj)>wk = (w`)>wk = − 1

K − 1

∥∥wk
∥∥2
2

= − ρ

K(K − 1)
, ∀j, ` 6= k, k ∈ [K], (32)

where (32) is equivalent to

WW> =
ρ

K − 1

(
IK −

1

K
1K1>K

)
.

Finally, plugging the results in (31) and (32) into (27), we have

c1 =

[
(K − 1) exp

(
− ρ

K − 1

√
λW
λHn

)]−1
,

as desired.

Lemma D.5 Let yk ∈ RK be an one-hot vector with the kth entry equalling 1 for some k ∈ [K].
For any vector z ∈ RK and c1 > 0, the cross-entropy loss LCE(z,yk) with yk can be lower
bounded by

LCE(z,yk) ≥
1

1 + c1

(∑K
i=1 zi

)
−Kzk

K − 1
+ c2, (33)

where c2 = 1
1+c1

log ((1 + c1)(K − 1)) + c1
1+c1

log
(

1+c1
c1

)
. The inequality becomes an equality

when

zi = zj , ∀i, j 6= k, and c1 =

(K − 1) exp


(∑K

i=1 zi

)
−Kzk

K − 1

−1 . (34)

Proof [Proof of Lemma D.5] Notice that for any vector z ∈ RK , the cross-entropy loss with yk can
be lower bounded by

LCE(z,yk) = log

(∑K
i=1 exp(zi)

exp(zk)

)
= log

1 +
∑
i6=k

exp (zi − zk)


≥ log

1 + (K − 1) exp

∑
i 6=k

zi − zk
K − 1


= log

(
1 + (K − 1) exp

(∑K
i=1 zi −Kzk
K − 1

))
(35)

where the inequality follows from the Jensen’s inequality that

∑
i 6=k

exp (zi − zk) = (K − 1)
∑
i 6=k

1

K − 1
exp (zi − zk) ≥ (K − 1) exp

∑
i 6=k

zi − zk
K − 1

 ,

which achieves the equality only when zi = zj for all i, j 6= k. Second, by the concavity of the
log(·) function (i.e., log (tx+ (1− t)x′) ≥ t log x+ (1− t) log x′ for any x, x′ ∈ R and t ∈ [0, 1],
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which becomes an equality iff x = x′, or t = 0, or t = 1), from (35), for any c1 > 0 we have

LCE(z,yk)

= log

(
c1

1 + c1

1 + c1
c1

+
1

1 + c1
(1 + c1)(K − 1) exp

(∑K
i=1 zi −Kzk
K − 1

))

≥ 1

1 + c1
log

(
(1 + c1)(K − 1) exp

(∑K
i=1 zi −Kzk
K − 1

))
+

c1
1 + c1

log

(
1 + c1
c1

)

=
1

1 + c1

(∑K
i=1 zi

)
−Kzk

K − 1
+

1

1 + c1
log ((1 + c1)(K − 1)) +

c1
1 + c1

log

(
1 + c1
c1

)
︸ ︷︷ ︸

c2

,

as desired. The last inequality becomes an equality if any only if

1 + c1
c1

= (1 + c1)(K − 1) exp

(∑K
i=1 zi −Kzk
K − 1

)
or c1 = 0, or c1 = +∞.

However, when c1 = 0 or c1 = +∞, the equality is trivial. Therefore, we have

c1 =

(K − 1) exp


(∑K

i=1 zi

)
−Kzk

K − 1

−1 ,
as desired.

E Proof of Theorem 3.2

In this part of appendices, we prove Theorem 3.2 in Section 3. In particular, we analyze the global
optimization landscape of

min
W ,H,b

f(W ,H, b) =
1

Kn

K∑
k=1

n∑
i=1

LCE (Whk,i + b,yk) +
λW
2
‖W ‖2F +

λH
2
‖H‖2F +

λb
2
‖b‖22 ,

with respect toW ∈ RK×d,H = [h1,1 · · ·hK,n] ∈ Rd×N , and b ∈ RK . We show that the function
is a strict saddle function [49–51] in the Euclidean space, that there is no spurious local minimizer
and all global minima are corresponding to the form showed in Theorem D.1.

Theorem E.1 (No Spurious Local Minima and Strict Saddle Property) Assume that the feature
dimension d is larger than the number of classes K, i.e., d > K. Then the function f(W ,H, b) in
(13) is a strict saddle function with no spurious local minimum:

• Any local minimizer of (13) is a global minimum of the form shown in Theorem D.1.

• Any critical point of (13) that is not a local minimum has at least one negative curvature
direction, i.e., the Hessian∇2f(W ,H, b) at this point has at least one negative eigenvalue

λi
(
∇2f(W ,H, b)

)
< 0.

E.1 Main Proof

Proof [Proof of Theorem E.1] The main idea of proving Theorem 3.2 is to first connect the problem
(13) to its corresponding convex counterpart, so that we can obtain the global optimality conditions
for the original problem (13) based on the convex counterpart. Finally, we characterize the properties
of all the critical points based on the optimality condition. We describe this in more detail as follows.
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Connection of (13) to a Convex Program. LetZ =HW ∈ RK×N withN = nK and α = λH
λW

.
By Lemma C.3, we know that

min
HW=Z

λW
2
‖W ‖2F +

λH
2
‖H‖2F =

√
λWλH min

HW=Z

1

2
√
α

(
‖W ‖2F + α ‖H‖2F

)
=
√
λWλH ‖Z‖∗ .

Thus, we can relate the bilinear factorized problem (13) to a convex problem in terms of Z and b as
follows

min
Z∈RK×N , b∈RK

f̃(Z, b) := g
(
Z + b1>

)
+
√
λWλH ‖Z‖∗ +

λb
2
‖b‖22 . (36)

Similar to the idea in [32,77,87,115], we will characeterize the critical points of (13) by establishing
a connection to the optimality condition of the convex problem (36). Towards this goal, we first show
the global minimum of the convex program (36) provides a lower bound for the original problem (3).
More specifically, in Lemma E.2 we can show that for any global minimizer (Z?, b?) of f̃ satisfies

f̃(Z?, b?) ≤ f(W ,H, b), ∀W ∈ RK×d, H ∈ Rd×N , b ∈ RK . (37)

Characterizing the Optimality Condition of (13) Based on the Convex Program (36). Next,
we characterize the optimality condition of our nonconvex problem (13), based on the relationship
to its convex counterpart (36). Specifically, Lemma E.3 showed that any critical point (Z, b) of (36)
is characterized by the following necessary and sufficient condition

∇g(Z + b1>) ∈ −
√
λWλH∂ ‖Z‖∗ ,

N∑
i=1

[∇g(Z + b1>)]i + λbb = 0,
(38)

where [∇g(Z+b1>)]i represents the i-th column in∇g(Z+b1>). By Lemma E.4, we can transfer
the optimality condition from convex to the nonconvex problem (13). More specifically, any critical
point (W ,H, b) of (13) satisfies∥∥∇g(WH + b1>)

∥∥ ≤ √
λWλH ,

then (Z, b) with Z = WH satisfies all the conditions in (38). Combining with (37), Lemma E.4
showed that (W ,H, b) is a global solution of the nonconvex problem (13).

Proving No Spurious Local Minima and Strict Saddle Property. Now we turn to prove the
strict saddle property and that there are no spurious local minima by characterizing the properties
for all the critical points of (13). Denote the set of critical points of f(W ,H, b) by

C :=
{
W ∈ RK×d,H ∈ Rd×N , b ∈ RK | ∇f(W ,H, b) = 0

}
.

To proceed, we separate the set C into two disjoint subsets

C1 := C ∩
{
W ∈ RK×d,H ∈ Rd×N , b ∈ RK |

∥∥∇g(WH + b1>)
∥∥ ≤ √

λWλH

}
,

C2 := C ∩
{
W ∈ RK×d,H ∈ Rd×N , b ∈ RK |

∥∥∇g(WH + b1>)
∥∥ >

√
λWλH

}
,

satisfying C = C1 ∪ C2. By Lemma E.4, we already know that any (W ,H, b) ∈ C1 is a global
optimal solution of f(W ,H, b) in (13). If we can show that any critical point in C2 possesses
negative curvatures (i.e., the Hessian at (W ,H, b) has at least one negative eigenvalue), then we
prove that there is no spurious local minima as well as strict saddle property.

Thus, the remaining part is to show any point in C2 possesses negative curvatures. We will find a
direction ∆ along which the Hessian has a strictly negative curvature for this point. Towards that
goal, for any ∆ = (∆W ,∆H ,∆b), we first compute the Hessian bilinear form of f(W ,H, b)
along the direction ∆ by

∇2f(W ,H, b)[∆,∆]

= ∇2g(WH + b1>)
[
W∆H + ∆WH + ∆b1

>,W∆H + ∆WH + ∆b1
>]

+ 2
〈
∇g(WH + b1>),∆W∆H

〉
+ λW ‖∆W ‖2F + λH ‖∆H‖2F + λb ‖∆b‖22 .

(39)
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We now utilize the property that
∥∥∇g(WH + b1>)

∥∥ >
√
λWλH for any (W ,H, b) ∈ C2 to

construct a negative curvature direction. Let u and v be the left and right singular vectors corre-
sponding to the largest singular value σ1(∇2g(WH+b1>)) of∇2g(WH+b1>), which is larger
than
√
λWλH by our assumption.

Since d > K andW ∈ RK×d, there exists a nonzero a ∈ Rd in the null space ofW , i.e.,Wa = 0.
Furthermore, by Lemma D.2, we know that

W>W =

√
λH
λW

HH> =⇒ H>a = 0.

We now construct the negative curvature direction as

∆ = (∆W ,∆H ,∆b) =

((
λH
λW

)1/4

ua>,−
(
λH
λW

)−1/4
av>,0

)
so that the term

〈
∇g(WH + b1>),∆W∆H

〉
is small enough to create a negative curvature. Since

Wa = 0, a>H = 0, and ∆b = 0, we have

W∆H + ∆WH + ∆b1
> = −

(
λH
λW

)−1/4
Wav> +

(
λH
λW

)1/4

ua>H = 0,

so that ∇2g(WH + b1>)
[
W∆H + ∆WH + ∆b1

>,W∆H + ∆WH + ∆b1
>] = 0. Thus,

combining the results above with (39), we obtain the following

∇f(W ,H, b)[∆,∆]

= 2
〈
∇g(WH + b1>),∆W∆H

〉
+ λW ‖∆W ‖2F + λH ‖∆H‖2F

= − 2 ‖a‖22
〈
∇g(WH + b1>),uv>

〉
+ 2
√
λWλH ‖a‖22

= − 2 ‖a‖22
(∥∥∇g(WH + b1>)

∥∥ −√λWλH

)
< 0,

where the last inequality is based on the fact that (W ,H, b) ∈ C2 so that
∥∥∇g(WH + b1>)

∥∥ >√
λWλH . Therefore, any (W ,H, b) ∈ C2 possesses at least one negative curvature direction. This

completes our proof of Theorem E.1.

E.2 Supporting Lemmas

Lemma E.2 If (Z?, b?) is a global minimizer of

min
Z∈RK×N , b∈RK

f̃(Z, b) := g
(
Z + b1>

)
+
√
λWλH ‖Z‖∗ +

λb
2
‖b‖22 .

introduced in (36), then f̃(Z?, b?) ≤ f(W ,H, b) for allW ∈ RK×d,H ∈ Rd×N , b ∈ RK .

Proof [Proof of Lemma E.2] Suppose (Z?, b?) is a global minimum of f̃(Z, b). Then by Theo-
rem C.3, we have

f̃(Z?, b?) = min
Z,b

g(Z + b1>) +
√
λWλH ‖Z‖∗ +

λb
2
‖b‖22

= min
Z,b

g(Z + b1>) + min
WH=Z

(
λW
2
‖W ‖2F +

λH
2
‖H‖2F

)
+
λb
2
‖b‖22

≤ min
W ,H,Z,b,Z=WH

g(WH + b1>) +
λW
2
‖W ‖2F +

λH
2
‖H‖2F +

λb
2
‖b‖22 .

Thus, we have

f̃(Z?, b?) ≤ min
W∈RK×d,H∈Rd×N ,b∈RK

f(W ,H, b)

as desired.
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Lemma E.3 (Optimality Condition for the Convex Program (36)) Consider the following con-
vex program in (36) that we rewrite as follows

min
Z∈RK×N , b∈RK

f̃(Z, b) := g
(
Z + b1>

)
+
√
λWλH ‖Z‖∗ +

λb
2
‖b‖22 .

Then the necessary and sufficient condition for (Z, b) being the global solution of (36) is

∇g(Z + b1>)V = −
√
λWλHU , ∇g(Z + b1>)>U = −

√
λWλHV ,∥∥∇g(Z + b1>)

∥∥ ≤ √
λWλH , and

N∑
i=1

[∇g(Z + b1>)]i + λbb = 0,
(40)

where U and V are the left and right singular value matrices of Z, i.e., Z = UΣV >.

Proof [Proof of Lemma E.3] Standard convex optimization theory asserts that any critical point
(Z, b) of (36) is global, where the optimality is characterized by the following necessary and suffi-
cient condition

∇g(Z + b1>) ∈ −
√
λWλH∂ ‖Z‖∗ ,

N∑
i=1

[∇g(Z + b1>)]i + λbb = 0,
(41)

where [∇g(Z + b1>)]i represents the i-th column in∇g(Z + b1>), and ∂ ‖Z‖∗ denotes the subd-
ifferential of the convex nuclear norm ‖Z‖∗ evaluated at Z. By its definition, we have

∂ ‖Z‖∗ :=
{
D ∈ RK×N | ‖G‖∗ ≥ ‖Z‖∗ + 〈G−Z,D〉 , G ∈ RK×N

}
,

where for nuclear norm, the previous work [116, 117] showed that based on the projection onto the
column space and row space via the SVD of Z = UΣV >, this is equivalent to

∂ ‖Z‖∗ =
{
UV > +W ,W ∈ RK×N | U>W = 0, WV = 0, ‖W ‖ ≤ 1

}
,

where U and V are the left and right singular value matrices of Z. Using the result above, we can
now rewrite the optimality condition in (41) as suggested in Lemma E.3.

Lemma E.4 (Optimality Condition for the Nonconvex Program (13)) If a critical point
(W ,H, b) of (13) satisfies ∥∥∇g(WH + b1>)

∥∥ ≤ √
λWλH , (42)

then it is a global minimum of (13).

Proof [Proof of Lemma E.4] Suppose (W ?,H?, b?) is a critical point of (13) satisfying (42),
we will show that (Z?, b?) with Z? = W ?H? is a global minimizer of (36) by showing that
(W ?H?, b?) satisfies the optimality condition for the convex program in (40) (Lemma E.3). First
of all, it is easy to check that

∇bf(W ?,H?, b?) =

N∑
i=1

[∇g(W ?H? + b?1>)]i + λbb
? = 0

=⇒
N∑
i=1

[∇g(Z? + b?1>)]i + λbb
? = 0.

Second, let Z? =W ?H? = UΣV > be the compact SVD of Z? =W ?H?. By Lemma D.2, we
have

W ?>W ? =
λH
λW

H?H?> =⇒ H?>H?H?>H? =
λW
λH

H?>W ?>W ?H? =
λW
λH

V Σ2V >.

Now by utilizing Lemma C.4, from the above equation we obtain the following

H?>H? =

√
λW
λH

V ΣV >.
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This together with the first equation in (16) gives

∇g(W ?H? + b?1>)H?> = −λWW ? =⇒ ∇g(W ?H? + b?1>)H?>H? = −λWW ?H?

=⇒ ∇g(W ?H? + b1>)

√
λW
λH

V ΣV > = −λWUΣV >

=⇒ ∇g(Z? + b?1>)V = −
√
λWλHU .

Similarly, we can also get

∇g(Z? + b?1>)>U = −
√
λWλHV .

Thus, together with (42), (Z?, b?) with Z? = W ?H? satisfies the optimality condition (40), and
hence is a global minimizer of f̃(Z?, b?) in (36).

Finally, we complete the proof by invoking Lemma E.2. By Lemma E.2 with Z? = W ?H?, we
know that f(W ?,H?, b?) = f̃(Z?, b?) ≤ f(W ,H, b) for all W ∈ RK×d,H ∈ Rd×N , b ∈ RK .
Therefore, we must have (W ?,H?, b?) to be the global solution of f(W ,H, b) in (13).
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