
Supplementary materials for “Federated Expectation

Maximization with heterogeneity mitigation and

variance reduction”

This supplementary material is organized as follows. Appendix A extends the results obtained in
Theorem 1 to the Partial Participation regime. Appendix B contains additional details on compres-
sion mechanisms satisfying A6, including an example of admissible quantization operator. Ap-
pendix C contains the pseudo-code for algorithm FedEM in the full participation regime case, and
the proof of Theorem 1 – including necessary technical lemmas. Appendix D contains details con-
cerning the extension to partial participation of the workers and the proof of Theorem 4. Appendix E
is devoted to the proof of Theorem 3 concerning the convergence of VR-FedEM and necessary tech-
nical results; it also contains a discussion on the complexity of VR-FedEM in terms of conditional
expectations evaluations. Finally, Appendix F contains additional details about the latent variable
models used in the numerical section, as well as the pseudo code for FedMissEM.
Note that, in order to make our numerical results reproducible, code is also provided as supplemen-
tary material.

Notations For two vectors a, b 2 Rq , ha, bi is the Euclidean standard scalar product, and k · k
denotes the associated norm. For r � 1, kakr is the `r-norm of a vector a. The Hadamard product
a � b denotes the entrywise product of the two vectors a, b. By convention, vectors are column-
vectors. For a matrix A, A> denotes its transpose and kAkF is its Frobenius norm. For a positive
integer n, set [n]? := {1, · · · , n} and [n] := {0, · · · , n}. The set of non-negative integers (resp.
positive) is denoted by N (resp. N?). The minimum (resp. maximum) of two real numbers a, b is
denoted by a ^ b (resp. a _ b). We will use the Bachmann-Landau notation a(x) = O(b(x)) to
characterize an upper bound of the growth rate of a(x) as being b(x).
We denote by Kp(µ,⌃) the Gaussian distribution in Rp, with expectation µ and covariance matrix ⌃.

A Results for FedEM with partial participation and compression.

In this paragraph, we extend the results of Theorem 1 to the Partial Participation (PP) regime, in
which only a fraction of the workers participate to the training at each step of the learning process.
This is a key feature in the FL framework, as individuals may not always be available or willing to
participate [27]. To analyze the convergence in this situation, we make the following assumption.
A9. For all k 2 [kmax � 1], Ak+1 := {i 2 [n]? s.t. Bk+1,i = 1} where the random variables
Bk+1,i for i 2 [n]? and k 2 [kmax � 1] are independent Bernoulli random variables with success
probability p 2 (0, 1).

This assumption is standard in the FL literature [33, 35, 31], and can easily be extended to worker
dependent probabilities of participation [16].

Usage of the control variates (Vk,i)i2[n]⇤ with PP. We have Vk = n�1
Pn

i=1
Vk,i for all k � 0

(see Proposition 12) even when the workers are not all active at iteration #k. A noteworthy point is
that, upon receiving Quant(�k+1,i) for all i 2 Ak+1, the central server computes

Hk+1 = Vk + (np)�1
X

i2Ak+1

Quant(�k+1,i)

and not
(np)�1

X

i2Ak+1

(Vk,i +Quant(�k+1,i)) .

Though the later solution may appear more natural, it would actually not only require to store all
values Vk,i for i 2 [n]⇤ on the central server, but also impair convergence in the heterogeneous set-
ting. Indeed, even in the uncompressed regime, in which Quant(�k+1,i) = �k+1,i, our algorithm
differs from a naive implementation of a distributed EM: FedEM computes

Hk+1 = Vk � (np)�1
X

i2Ak+1

Vk,i + (np)�1
X

i2Ak+1

⇣
Sk+1,i � bSk

⌘

15

while a naive distributed EM would compute

HdEM

k+1
:= (np)�1

X

i2Ak+1

⇣
Sk+1,i � bSk

⌘
.

Such an update HdEM

k+1
is expected not to be robust to data heterogeneity as proved in [31] for the

Stochastic Gradient algorithm in the FL setting.

The following theorem extends Theorem 1 to the partial participation regime. Its proof is in Ap-
pendix D.
Theorem 4. Assume A1 to A9 and set L2 := n�1

Pn
i=1

L2

i , �2 := n�1
Pn

i=1
�2

i . Let {bSk, k 2
[kmax]} be given by algorithm 1, run with ↵ := (1 + !)�1 and �k = � 2 (0, �max], where

�max :=
vmin

2L
Ẇ

^ p
p
n

2
p
2L(1 + !)

p
! + (1� p)(1 + !)/p

.

Denote by K the uniform random variable on [kmax � 1]. Then, taking V0,i := hi(bS0) for i 2 [n]?,
we get

vmin

✓
1� �

L
Ẇ

vmin

◆
E
h
kh(bSK)k2

i

⇣
W(bS0)�minW

⌘

�kmax

+�L
Ẇ

1 + 5 (! + (1� p)(1 + !)/p)

n
�2 .

The above expressions can be simplified upon noting that ! + (1 � p)(1 + !)/p (1 + !)/p.
When p = 1, Theorem 1 and Theorem 4 coincide. More generally, Theorem 4 highlights that partial
participation impacts both the limiting variance (which increases by a factor proportional to p�1)
and the maximal learning rate.

B An example of quantization mechanisms: the block-p-quantization

In this section, we recall the definition of a common lossy data compression mechanism in FL
(see, e.g. [28]), called block-p-quantization, and demonstrate that such quantizations satisfy the
assumptions required to derive our theoretical results.

Block-p-quantization. Let x 2 Rq . Choose {q`, ` 2 [m]?} a sequence of positive integers such
that

Pm
`=1

q` = q; and p 2 N?. For x 2 Rq , we define the block partition

x =

2

4
x(1)

· · ·
x(m)

3

5 , x(l) 2 Rq` for all ` 2 [m]?.

For all ` 2 [m]?, set

X̂(`) := kx(`)kp

2

4
sign(x(`),1)

· · ·
sign(x(`),q`)

3

5�
"
U`,1

· · ·
U`,q`

#
U`,j

indep⇠ B
✓ |x(`),j |
kx(`)kp

◆
, (13)

where x(`) = (x(`),1, · · · , x(`),q`)
> 2 Rq` and B(u) denotes the Bernoulli random variable with

success probability u. The block-p-quantization operator Quant : Rq ! Rq is defined by

Quant(x) :=

2

4
X̂(1)

· · ·
X̂(m)

3

5 . (14)

The following Lemma ensures the block-p-quantization operator Quant satisfies the assumption A
6 on the compression mechanism required by Theorem 1, Theorem 4 and Theorem 3.
Lemma 5. Let p 2 N? and {q`, ` 2 [m]?} be positive integers such that

Pm
`=1

q` = q. For any
x 2 Rq , we have

E [Quant(x)] = x , E
⇥
kQuant(x)� xk2

⇤
=

mX

`=1

�
kx(`)k1kx(`)kp � kx(`)k2

�
,

where Quant is the block-p-quantization operator defined in (13) and (14). Thus, A6 holds. In
particular, for p = 2, we may take ! = max`2[m]⇤(

p
q` � 1).

16

Proof. We start by noticing that, for all ` 2 [m]?, (Quant(x))
(`) = X̂(`). Furthermore,

E
h
X̂(`)

i
= kx(`)kp

2

4
sign(x(`),1)

· · ·
sign(x(`),q`)

3

5�
"E [U`,1]

· · ·
E [U`,q`]

#
= kx(`)kp

2

4
sign(x(`),1)

· · ·
sign(x(`),q`)

3

5�

2

64

|x(`),1|
kx(`)kp

· · ·
|x(`),q`

|
kx(`)kp

3

75

=

2

4
sign(x(`),1)

· · ·
sign(x(`),q`)

3

5�

2

64
|x(`),1|

...
|x(`),q` |

3

75 =

2

64
x(`),1

...
x(`),q`

3

75 = x(`) ,

which concludes the proof of the first statement. To prove the second statement, we write

kQuant(x)� xk2 =
mX

`=1

kX̂(`) � x(`)k2 =
mX

`=1

kx(`)k2p
qX̀

j=1

(U`,j � E [U`,j])
2 .

Since U`,j is a Bernouilli random variable with parameter |x(`),j |/kx(`)kp, it holds that

E
h
(U`,j � E [U`,j])

2
i
=

|x(`),j |
�
kx(`)kp � |x(`),j |

�

kx(`)k2p
.

Hence

E
⇥
kQuant(x)� xk2

⇤
=

mX

`=1

qX̀

j=1

�
|x(`),j |

�
kx(`)kp � |x(`),j |

�

=
mX

`=1

�
kx(`)k1kx(`)kp � kx(`)k2

�
,

which proves the second statement. In the particular case where p = 2, using the fact that kx(`)k1 p
q`kx(`)k, we obtain that

E
⇥
kQuant(x)� xk2

⇤

mX

`=1

(
p
q` � 1)kx(`)k2 max`2[m]⇤(

p
q` � 1) kxk2,

which concludes the proof.

C Convergence analysis of FedEM

This section contains all the elements to derive the convergence analysis of FedEM developed in
Section 2 in the full participation regime. The analysis is organized as follows. First, Appendix C.1
gives the pseudo code of the FedEM algorithm; Appendix C.2 introduces rigorous definitions for
filtrations and a technical Lemma, and Appendix C.3 presents preliminary results. Then, the proof
of Theorem 1 is given in Appendix C.4 and the proof of Corollary 2 is in Appendix C.5.

The assumptions A1 to A3 are assumed throughout this section.

17

C.1 Pseudo code of the FedEM algorithm

For the sake of completeness of the supplementary material, we start by recalling the pseudo code
which defines the FedEM sequence in the full participation regime. It is given in algorithm 3 below.

Algorithm 3: FedEM

Data: kmax 2 N?; for i 2 [n]?, V0,i 2 Rq; bS0 2 Rq; a positive sequence
{�k+1, k 2 [kmax � 1]}; ↵ > 0

Result: The sequence: {bSk, k 2 [kmax]}
1 Set V0 = n�1

Pn
i=1

V0,i ;
2 for k = 0, . . . , kmax � 1 do

3 for i = 1, . . . , n do

4 (worker #i) ;
5 Sample Sk+1,i, an approximation of s̄i � T(bSk) ;
6 Set �k+1,i = Sk+1,i � Vk,i � bSk ;
7 Set Vk+1,i = Vk,i + ↵Quant(�k+1;i). Send Quant(�k+1;i) to the central server ;
8 (the central server) ;
9 Compute Hk+1 = Vk + n�1

Pn
i=1

Quant(�k+1;i) ;
10 Set bSk+1 = bSk + �k+1Hk+1 ;
11 Set Vk+1 = Vk + ↵n�1

Pn
i=1

Quant(�k+1;i) ;
12 Send bSk+1 and T(bSk+1) to the n workers

C.2 Notations and technical lemma

In this section, we start by introducing the appropriate filtrations employed later on to define condi-
tional expectations. Then, we present a technical lemma used in the main proof of Theorem 1 (see
Appendix C.4).

Notations. For any random variable U , we denote by �(U) the sigma-algebra generated by U . For
n sigma-algebras {Fk, k 2 [n]?}, we denote by

Wn
k=1

Fk the sigma-algebra generated by {Fk, k 2
[n]?}.

Definition of filtrations. Let us define the following filtrations. For any i 2 [n]?, we set

F0,i = F+

0,i := �
⇣
bS0;V0,i

⌘
and F0 :=

n_

i=1

F0,i .

Then, for all k � 0,

(i) Fk+1/2,i := F+

k,i _ � (Sk+1,i),

(ii) Fk+1,i := Fk+1/2,i _ � (Quant(�k+1,i)),
(iii) Fk+1 :=

Wn
i=1

Fk+1,i,
(iv) F+

k+1,i := Fk+1,i _ Fk+1.

Note that, with these notations, for k � 0 and i 2 [n]?, the random variables of the FedEM sequence
defined in Algorithm 3 belong to the filtrations defined above as follows:

(i) bSk 2 F+

k,i, bSk 2 Fk,
(ii) Sk+1,i,�k+1,i 2 Fk+1/2,i,

(iii) Vk+1,i 2 Fk+1,i,

(iv) bSk+1, Hk+1, Vk+1 2 Fk+1.

Note also that we have the following inclusions for filtrations: Fk ⇢ F+

k,i ⇢ Fk+1/2,i ⇢ Fk+1,i ⇢
Fk+1 for all i 2 [n]?.

18

Elementary lemma. In the main proof of Theorem 1, we use the following elementary lemma.
Lemma 6. For any x, y 2 Rq and for any ↵ 2 R, one has:

k↵x+ (1� ↵)yk2 = ↵kxk2 + (1� ↵)kyk2 � ↵(1� ↵)kx� yk2.

Proof. The LHS is equal to

↵2kxk2 + (1� ↵)2kyk2 + 2↵(1� ↵) hx, yi .
The RHS is equal to

↵kxk2 + (1� ↵)kyk2 � ↵(1� ↵)
�
kxk2 + kyk2 � 2 hx, yi

�
.

The proof is concluded upon noting that ↵�↵(1�↵) = ↵2 and (1�↵)�↵(1�↵) = (1�↵)2.

C.3 Preliminary results

In this section, we gather preliminary results on the control of the bias and variance of random vari-
ables of interest, which will be used in the main proof of Theorem 1. Namely, Proposition 8 controls
the random field Hk+1, Proposition 10 controls the local increments �k+1,i and Proposition 11
controls the memory term Vk,i.

C.3.1 Results on the memory terms Vk.

Proposition 7 shows that, even if the central server only receives the variation ↵�1(Vk+1,i � Vk,i)
from each local worker #i, it is able to compute n�1

Pn
i=1

Vk+1,i as soon as the quantity V0 is
correctly initialized.
Proposition 7. For any k 2 [kmax], we have

Vk =
1

n

nX

i=1

Vk,i .

Proof. The proof is by induction on k. When k = 0, the property holds true by Line 1 in algorithm 3.
Assume that the property holds for k kin � 2. Then by definition of Vk+1 and by the induction
assumption:

Vk+1 = Vk + ↵
1

n

nX

i=1

Quant(�k+1,i) =
1

n

nX

i=1

(Vk,i + ↵Quant(�k+1,i))

=
1

n

nX

i=1

Vk+1,i .

This concludes the induction.

C.3.2 Results on the random field Hk+1.

We compute in Proposition 8 the conditional expectation of Hk+1 with respect to the appropriate
filtration Fk defined in Appendix C.2, as well as an upper bound on its variance. These results
are combined in an upper bound on the conditional expectation of the square norm kHk+1k2 in
Corollary 9.

Proposition 8 shows that the stochastic field Hk+1 is a (conditionally) unbiased estimator of h(bSk).
In the case of no compression (i.e. ! = 0), the conditional variance of Hk+1 is �2/n where �2 is
the mean variance of the approximations Sk+1,i over the n workers (see A7); when supi �

2

i < 1,
the variance is inversely proportional to the number of workers n.
Proposition 8. Assume A6 and A7 and set �2 := n�1

Pn
i=1

�2

i . For any k � 0,

E [Hk+1|Fk] = h(bSk) , (15)

E
⇥
kHk+1 � E [Hk+1|Fk] k2

��Fk

⇤
 !

n

1

n

nX

i=1

E
⇥
k�k+1,ik2

��Fk

⇤
!

+
�2

n
. (16)

19

Proof. Let k � 0. A6 guarantees

E
"

nX

i=1

Quant(�k+1,i)

�����Fk+1/2,i

#
=

nX

i=1

E
⇥
Quant(�k+1,i)

��Fk+1/2,i

⇤

=
nX

i=1

{Sk+1,i � Vk,i � bSk} . (17)

Note also that, by A7, E
h
Sk+1,i

���F+

k,i

i
= s̄i � T(bSk), and that Vk 2 Fk and Fk ⇢ F+

k,i ⇢ Fk+1/2,i

(see Appendix C.2). Combined with (17) and using that n�1
Pn

i=1
Vk,i = Vk (see Proposition 7),

this yields

E [Hk+1|Fk] = E
"
n�1

nX

i=1

Quant(�k+1,i)

�����Fk

#
+ Vk =

1

n

nX

i=1

s̄i � T(bSk)� bSk = h(bSk) .

We now prove the second statement, and start by writing

Hk+1 � h(bSk) =
1

n

nX

i=1

Quant(�k+1,i) + Vk �
1

n

nX

i=1

s̄i � T(bSk) + bSk

=
1

n

nX

i=1

�
Quant(�k+1,i)� E

⇥
Quant(�k+1,i)

��Fk+1/2,i

⇤

+
1

n

nX

i=1

{Sk+1,i � s̄i � T(bSk)} ,

where we applied (17) to obtain the last equality. Using the fact that Sk+1,i� s̄i �T(bSk) 2 Fk+1/2,i
and since, conditionally to Fk, the workers are independent we have

E
h
kHk+1 � h(bSk)k2

���Fk

i
=

1

n2

nX

i=1

E
⇥
kQuant(�k+1,i)� E

⇥
Quant(�k+1,i)

��Fk+1/2,i

⇤
k2
��Fk

⇤

+
1

n2

nX

i=1

E
h
kSk+1,i � s̄i � T(bSk)k2

���Fk

i
.

The second terme in the RHS is upped bounded by n�1�2 (see A7). For the first term, using A6 and
since �k+1,i 2 Fk+1/2,i, for any i 2 [n]? we have

E
⇥
kQuant(�k+1,i)� E

⇥
Quant(�k+1,i)

��Fk+1/2,i

⇤
k2
��Fk+1/2,i

⇤

= E
⇥
kQuant(�k+1,i)k2

��Fk+1/2,i

⇤
� k�k+1,ik2

 (1 + !)k�k+1,ik2 � k�k+1,ik2 = !k�k+1,ik2 ,

which concludes the proof upon conditioning with respect to Fk.

Corollary 9 (of Proposition 8).

E
⇥
kHk+1k2

��Fk

⇤
 kh(bSk)k2 +

!

n

1

n

nX

i=1

E
⇥
k�k+1,ik2

��Fk

⇤
!

+
�2

n
.

C.3.3 Results on the local increments �k+1,i.

We compute in Proposition 10 an upper bound on the second conditional moment of �k+1,i, with
respect to the appropriate filtration Fk (see Appendix C.2).
Proposition 10. Assume A7. For any i 2 [n]? and k 2 [kmax � 1],

E
⇥
k�k+1,ik2

��Fk

⇤
 kVk,i � hi(bSk)k2 + �2

i .

20

Proof. Let i 2 [n]? and k 2 [kmax � 1]. By A7, E
h
Sk+1,i � bSk

���F+

k,i

i
= hi(bSk); in addition,

bSk 2 Fk, Vk,i 2 F+

k,i and Fk ⇢ F+

k,i. Hence, we get

E
h
k�k+1,ik2

���F+

k,i

i
= E

h
kSk+1,i � Vk,i � bSkk2

���F+

k,i

i

= khi(bSk)� Vk,ik2 + E
h
kSk+1,i � bSk � hi(bSk)k2

���F+

k,i

i

= khi(bSk)� Vk,ik2 + E
h
kSk+1,i � s̄i � T(bSk)k2

���F+

k,i

i

A7

 khi(bSk)� Vk,ik2 + �2

i . (18)

The proof is concluded upon noting that Fk ⇢ F+

k,i, bSk 2 Fk and Vk,i 2 Fk.

C.3.4 Results on the memory terms Vk,i.

Our final preliminary result is to compute in Proposition 11 an upper bound to control the condi-
tional variance of the local memory terms Vk,i with respect to the appropriate filtration Fk (see
Appendix C.2).
Proposition 11. Assume A5, A6 and A7; set L2 := n�1

Pn
i=1

L2

i and �2 := n�1
Pn

i=1
�2

i . For any
k � 0, set

Gk :=
1

n

nX

i=1

kVk,i � hi(bSk)k2 .

For any k 2 [kmax � 1] and ↵ 2 (0, (1/(1 + !))], it holds that

E [Gk+1|Fk]
✓
1� ↵

2
+ 2�2k+1

L2

↵

!

n

◆
Gk + 2�2k+1

L2

↵
kh(bSk)k2

+ 2

✓
↵+ �2k+1

L2

↵

1 + !

n

◆
�2 .

Proof. We start by computing an upper bound for the local conditional expectations
E
h
kVk+1,i � hi(bSk+1)k2

���Fk

i
, i 2 [n]? and then derive the result of Proposition 11 by averag-

ing over the n local workers.

Let i 2 [n]?; from Lemma 6, we have for any s 2 Rq

��E
⇥
Vk+1,i � s

��Fk+1/2,i

⇤��2 = k(1� ↵) (Vk,i � s) + ↵ (Sk+1,i � bSk � s)k2

= (1� ↵) kVk,i � sk2 + ↵kSk+1,i � bSk � sk2 � ↵(1� ↵)k�k+1,ik2 .

On the other hand,
��Vk+1,i � E

⇥
Vk+1,i

��Fk+1/2,i

⇤��2 = ↵2
��Quant(�k+1,i)� E

⇥
Quant(�k+1,i)

��Fk+1/2,i

⇤��2

and by A6 (see the proof of Proposition 8 for the same computation)

E
h��Vk+1,i � E

⇥
Vk+1,i

��Fk+1/2,i

⇤��2
���Fk+1/2,i

i
 ↵2!k�k+1,ik2 .

Hence

E
⇥
kVk+1,i � sk2

��Fk+1/2,i

⇤
 E

h��Vk+1,i � s� E
⇥
Vk+1,i � s

��Fk+1/2,i

⇤��2
���Fk+1/2,i

i

+ E
h��E

⇥
Vk+1,i � s

��Fk+1/2,i

⇤��2
���Fk+1/2,i

i

 (1� ↵) kVk,i � sk2 + ↵kSk+1,i � bSk � sk2 + ↵ (↵(1 + !)� 1) k�k+1,ik2 . (19)

21

For any � > 0, using that ka+ bk2 (1 + �2)kak2 + (1 + ��2)kbk2, we have

E
h
kVk+1,i � hi(bSk+1)k2

���Fk

i

 (1 + ��2)E
h
kVk+1,i � hi(bSk)k2

���Fk

i
+ (1 + �2)E

h
khi(bSk)� hi(bSk+1)k2

���Fk

i

A5

 (1 + ��2)E
h
E
h
kVk+1,i � hi(bSk)k2

���Fk+1/2,i

i���Fk

i
+ (1 + �2)L2

i �
2

k+1
E[kHk+1k2|Fk]

(19)
 (1 + ��2)

✓
(1� ↵) kVk,i � hi(bSk)k2

+ ↵E[kSk+1,i � bSk � hi(bSk)k2|Fk] + ↵ (↵(1 + !)� 1)E
⇥
k�k+1,ik2

��Fk

⇤◆

+ (1 + �2)L2

i �
2

k+1
E
⇥
kHk+1k2

��Fk

⇤
,

where we have used (19) with s = hi(bSk) 2 Fk ⇢ Fk+1/2,i. Choose � > 0 such that

��2 :=

⇢ ↵
2(1�↵) if ↵ 2/3

1 if ↵ � 2/3

which implies that (1 + ��2)(1� ↵) 1� ↵/2; note also that 1 1 + ��2 2. By Corollary 9,
we have (remember that ↵(1 + !)� 1 0)

E
h
kVk+1,i � hi(bSk+1)k2

���Fk

i

⇣
1� ↵

2

⌘
kVk,i � hi(bSk)k2

+ 2↵E
h
kSk+1,i � s̄i � T(bSk)k2

���Fk

i
+ ↵ (↵(1 + !)� 1)E

⇥
k�k+1,ik2

��Fk

⇤

+
2

↵
L2

i �
2

k+1

✓
!

n2

nX

i=1

E
⇥
k�k+1,ik2

��Fk

⇤
+ kh(bSk)k2 +

�2

n

◆
.

Since ↵(1 + !)� 1 0, using A7 and finally Proposition 10, we get:

E
h
kVk+1,i � hi(bSk+1)k2|Fk

i

⇣
1� ↵

2

⌘
kVk,i � hi(bSk)k2 + 2↵�2

i

+ 2�2k+1

L2

i

↵

!

n2

nX

i=1

khi(bSk)� Vk,ik2 + 2�2k+1

L2

i

↵
kh(bSk)k2

+ 2�2k+1

L2

i

↵

1 + !

n
�2 .

Overall, by averaging the previous inequality over all workers, we get:

E[Gk+1|Fk]
✓
1� ↵

2
+ 2�2k+1

L2

↵

!

n

◆
Gk + 2�2k+1

L2

↵
kh(bSk)k2

+ 2

✓
↵+ �2k+1

L2

↵

1 + !

n

◆
�2 .

C.4 Proof of Theorem 1

Equipped with the necessary results, we now provide the main proof of Theorem 1. We proceed
in three steps, as follows. First, for k � 1, we compute an upper bound on the average decrement
E
h
W(bSk+1)

���Fk

i
�W(bSk) of the Lyapunov function W (defined in A4). Second, we introduce

the maximal value of the learning rate. Third and finally, we deduce the result of Theorem 1 by
computing the expectation w.r.t. a randomly chosen termination time K in [kmax � 1]; in this step,
we restrict the computations to the case the step sizes are constant (�k+1 = � for any k � 0).

22

Step 1: Upper bound on the decrement. Let k � 0; from A4, we have

W(bSk+1) W(bSk) +
D
rW(bSk), bSk+1 � bSk

E
+

L
Ẇ

2
kbSk+1 � bSkk2

W(bSk)� �k+1

D
B(bSk) h(bSk), Hk+1

E
+

L
Ẇ

2
�2k+1

kHk+1k2 . (20)

Since bSk 2 Fk, by Proposition 8 and A4 we have

E
hD

B(bSk) h(bSk), Hk+1

E���Fk

i
=
D
B(bSk) h(bSk), h(bSk)

E
� vminkh(bSk)k2. (21)

Hence, combining (20) and (21), we have

E
h
W(bSk+1)

���Fk

i
W(bSk)� �k+1vminkh(bSk)k2 + �2k+1

L
Ẇ

2
E
⇥
kHk+1k2

��Fk

⇤

W(bSk)� �k+1vminkh(bSk)k2 + �2k+1

L
Ẇ

2
E
⇥
kHk+1 � E [Hk+1|Fk] k2

��Fk

⇤
+ �2k+1

L
Ẇ

2
kh(bSk)k2

W(bSk)� �k+1vmin

✓
1� �k+1

L
Ẇ

2vmin

◆
kh(bSk)k2 + �2k+1

L
Ẇ

2
E
⇥
kHk+1 � E [Hk+1|Fk] k2

��Fk

⇤
.

Applying Proposition 8, we obtain that

E
h
W(bSk+1)

���Fk

i
W(bSk)� �k+1vmin

✓
1� �k+1

L
Ẇ

2vmin

◆
kh(bSk)k2

+ �2k+1

L
Ẇ

2

!

n

1

n

nX

i=1

E
⇥
k�k+1,ik2

��Fk

⇤
!

+ �2k+1

L
Ẇ

2n
�2 . (22)

Finally, using Proposition 10 and (22), we get:

E[W(bSk+1)|Fk] W(bSk)� �k+1vmin

✓
1� �k+1

L
Ẇ

2vmin

◆
kh(bSk)k2

+ �2k+1

L
Ẇ

2

!

n
Gk + �2k+1

L
Ẇ

2n
(1 + !)�2 , (23)

where

Gk :=
1

n

nX

i=1

kVk,i � hi(bSk)k2 .

Step 2: Maximal learning rate �k+1 when ! 6= 0. From Proposition 11, for any non-increasing
positive sequence {�k, k 2 [kmax � 1]} such that

�2k+1
 ↵2

8L2

n

!
,

and for any positive sequence {Ck, k 2 [kmax � 1]}, it holds

Ck+1E [Gk+1|Fk] Ck+1

⇣
1� ↵

4

⌘
Gk

+ Ck+1�
2

k+1

2

↵
L2kh(bSk)k2 + 2Ck+1

✓
↵+ �2k+1

L2

↵

1 + !

n

◆
�2 . (24)

Combining equations (23) and (24), we thus have

E[W(bSk+1)|Fk] + Ck+1E [Gk+1|Fk] W(bSk) + CkGk

� �k+1vmin

✓
1� �k+1

L
Ẇ

2vmin

� Ck+1

vmin

�k+1

2

↵
L2

◆
kh(bSk)k2

+

✓
�2k+1

L
Ẇ

2

!

n
� Ck + Ck+1 � Ck+1

↵

4

◆
Gk

+

⇢
2↵Ck+1 + �2k+1

(1 + !)

n

✓
L
Ẇ

2
+ 2Ck+1

L2

↵

◆�
�2 .

23

We choose the sequence {Ck} as follows:

Ck := �2k
2L

Ẇ

↵

!

n
;

the sequence satisfies Ck+1 Ck (since �k+1 �k) and �2k+1
L
Ẇ
!/(2n) Ck+1↵/4. By

convention, �0 2 [�1,+1). Therefore

E[W(bSk+1)|Fk] + �2k+1

2L
Ẇ

↵

!

n
E [Gk+1|Fk] W(bSk) + �2k

2L
Ẇ

↵

!

n
Gk (25)

� �k+1vmin

✓
1� �k+1

L
Ẇ

2vmin

n
1 + 8�2k+1

!

↵2n
L2

o◆
kh(bSk)k2 (26)

+ 4�2k+1
L
Ẇ

!

n

⇢
1 +

(1 + !)

8!

✓
1 + �2k+1

8
L2

↵2

!

n

◆�
�2 . (27)

Step 3: Computing the expectation. Let us apply the expectations, sum from k = 0 to k =
kmax � 1, and divide by kmax. This yields

vmin

kmax

kmax�1X

k=0

�k+1

✓
1� �k+1

L
Ẇ

2vmin

n
1 + 8�2k+1

!

↵2n
L2

o◆
kh(bSk)k2

 k�1

max

⇢
W(bS0) + �2

0

2L
Ẇ

↵

!

n
G0 � E

h
W(bSkmax)

i
� �2kmax

2L
Ẇ

↵

!

n
E [Gkmax]

�

+ 4L
Ẇ

!

n

1

kmax

kmax�1X

k=0

�2k+1

⇢
1 +

(1 + !)

8!

✓
1 + �2k+1

8
L2

↵2

!

n

◆�
�2 .

We now focus on the case when �k+1 = � for any k � 0. Denote by K a uniform random variable
on [kmax � 1], independent of the path {bSk, k 2 [kmax]}. Since �2 ↵2n/(8L2!), we have

1 + 8�2
!

↵2n
L2 2 .

This yields

vmin�

✓
1� �

L
Ẇ

vmin

◆
E
h
kh(bSK)k2

i

 k�1

max

⇢
W(bS0) + �2

2L
Ẇ

↵

!

n
G0 � E

h
W(bSkmax)

i
� �2

2L
Ẇ

↵

!

n
E [Gkmax]

�

+ 4L
Ẇ

!

n
�2
⇢
1 +

(1 + !)

4!

�
�2 . (28)

Note that 4(1 + (1 + !)/(4!)) = (5! + 1)/!.

Step 4. Conclusion (when ! 6= 0). By choosing V0,i = hi for any i 2 [n]?, we have G0 = 0. The
roots of � 7! �(1 � �L

Ẇ
/vmin) are 0 and vmin/LẆ

and its maximum is reached at vmin/(2LẆ
):

this function is increasing on (0, vmin/(2LẆ
)]. We therefore choose � 2 (0, �max(↵)] where

�max(↵) := min

✓
vmin

2L
Ẇ

;
↵

2
p
2L

p
np
!

◆

Finally, since ↵ 2 (0, 1/(1 + !)], we choose ↵ = 1/(1 + !). This yields

�max := min

✓
vmin

2L
Ẇ

;
1

2
p
2L

p
np

!(1 + !)

◆
.

Case ! = 0. From (23), applying the expectation we have

�k+1vmin

✓
1� �k+1

L
Ẇ

2vmin

◆
E
h
kh(bSk)k2

i
 E

h
W(bSk)

i
� E

h
W(bSk+1)

i
+ �2k+1

L
Ẇ
�2

2n
.

We now sum from k = 0 to k = kmax � 1 and then divide by kmax. In the case �k+1 = �, we have

�vmin

✓
1� �

L
Ẇ

2vmin

◆
E
h
kh(bSK)k2

i
 k�1

max

⇣
E
h
W(bS0)

i
�minW

⌘
+ �2

L
Ẇ
�2

2n
. (29)

24

Remark on the maximal learning rate. The condition �k+1 ↵
2
p
2L

p
np
!

is used twice in the
proof:

1. To ensure that
⇣
1� �k+1

LẆ
2vmin

�
1 + 8�2k+1

!
↵2nL

2
 ⌘
�
⇣
1� �k+1

LẆ
vmin

⌘
in order to obtain

Equation (28).
2. To ensure that the process (Gk)k�0 is “pseudo-contractive” (i.e., satisfies a recursion of the form

uk+1 ⇢uk + vk, with ⇢ < 1) in Proposition 11.

A more detailed analysis can get rid of this condition (and thus the dependency � = O!!1(!�3/2),
as we recall that ↵1 _!!1 !) for the first point. Indeed, we ultimately only require

✓
1� �k+1

L
Ẇ

2vmin

n
1 + 8�2k+1

!

↵2n
L2

o◆
� 1

2
(30)

to conclude the proof. This is for example satisfied if �k+1

LẆ
2vmin

 1

4
and 8�3k+1

LẆ
2vmin

!
↵2nL

2 1

4
.

This approach results in a better asymptotic dependency of the maximal learning rate w.r.t. ! to
obtain Equation (30): � = O!!1(!�1). However, the condition �k+1 ↵

2
p
2L

p
np
!

seems to be
necessary to obtain the second point and Proposition 11. The possibility of providing a similar result
to Proposition 11 without the !�3/2 dependency, is an interesting open problem.

C.5 Proof of Corollary 2

In (8), the RHS is of the form A/� + �B for some positive constants A,B: we have A/� + �B �
2
p
AB with equality reached with �? :=

p
A/B. Hence, we set

�? :=
1

�

0

@
n
⇣
W(bS0)�minW

⌘

L
Ẇ
(1 + 5!)

1

A

1/2

1p
kmax

.

If �? �max, then let us apply (8) with � = �? which yields a RHS given by 2
p
A/B i.e.

2�

✓⇣
W(bS0)�minW

⌘
L
Ẇ

(1 + 5!)

n

◆1/2 1p
kmax

.

If �? � �max, we write

A

�max

+B�max
A

�max

+
A

�max

�2
max

B

A
=

A

�max

+
A

�max

�2
max

�2?
 2

A

�max

.

and the RHS is upper bounded by

2
W(bS0)�minW

�maxkmax

.

Finally, in the LHS of (8), we have

1� �
L
Ẇ

vmin

� 1� �max

L
Ẇ

vmin

� 1� vmin

2L
Ẇ

L
Ẇ

vmin

=
1

2
.

This concludes the proof.

D Partial Participation case

In this section, we generalize the result of Theorem 1 to the partial participation case. This extra
scheme could be incorporated into the main proof, but we choose to present it separately to improve
the readability of the main proof in Appendix C. We first provide an equivalent description of algo-
rithm 1 in Appendix D.1; algorithm 4 will be used throughout this section. Then, we introduce a
new family of filtrations. In Appendix D.3, we first establish preliminary results and then give the
proof of Theorem 4 in Appendix D.4.

The assumptions A1 to A3 hold throughout this section.

25

D.1 An equivalent algorithm

In this Section, we describe an equivalent algorithm, that outputs the same result as Algorithm 1,
and for which the analysis is conducted.

Algorithm 4: FedEM with partial participation

Data: kmax 2 N?; for i 2 [n]?, V0,i 2 Rq; bS0 2 Rq; a positive sequence
{�k+1, k 2 [kmax � 1]}; ↵ > 0; p 2 (0, 1).

Result: The FedEM-PP sequence: {bSk, k 2 [kmax]}
1 Set V0 = n�1

Pn
i=1

V0,i ;
2 for k = 0, . . . , kmax � 1 do

3 for i = 1, . . . , n do

4 (worker #i);
5 Sample Sk+1,i, an approximation of s̄i � T(bSk) ;
6 Set �k+1,i = Sk+1,i � Vk,i � bSk ;
7 Sample a Bernoulli r.v. Bk+1,i with success probability p ;
8 Set Vk+1,i = Vk,i + ↵Bk+1,iQuant(�k+1,i). ;
9 Send Bk+1,iQuant(�k+1,i) to the central server ;

10 (the central server) ;
11 Set Hk+1 = Vk + (np)�1

Pn
i=1

Bk+1,iQuant(�k+1,i) ;
12 Set bSk+1 = bSk + �k+1Hk+1 ;
13 Set Vk+1 = Vk + ↵n�1

Pn
i=1

Bk+1,iQuant(�k+1,i) ;
14 Send bSk+1 and T(bSk+1) to the n workers

D.2 Notations

Let us introduce a new sequence of filtrations. For any i 2 [n]?, we set

F0,i = F+

0,i := �
⇣
bS0;V0,i

⌘
and F0 :=

n_

i=1

F0,i .

Then, for all k � 0,

(i) Fk+1/3,i := F+

k,i _ � (Sk+1,i),

(ii) Fk+2/3,i := Fk+1/3,i _ � (Quant(�k+1,i)),
(iii) Fk+1,i := Fk+2/3,i _ � (Bk+1,i),

(iv) Fk+1 :=
Wn

i=1
Fk+1,i,

(v) F+

k+1,i := Fk+1,i _ Fk+1.

Note that, with these notations, for k � 0 and i 2 [n]?, the random variables of the FedEM sequence
defined in algorithm 4 belong to the filtrations defined above as follows:

(i) bSk 2 F+

k,i, bSk 2 Fk,
(ii) Sk+1,i,�k+1,i 2 Fk+1/3,i,

(iii) Vk+1,i 2 Fk+1,i,

(iv) bSk+1, Hk+1, Vk+1 2 Fk+1.

Note also that we have the following inclusions for filtrations: Fk ⇢ F+

k,i ⇢ Fk+1/3,i ⇢ Fk+2/3,i ⇢
Fk+1,i ⇢ Fk+1 for all i 2 [n]?.

D.3 Preliminary results

In this section, we extend Proposition 7, Proposition 8 (that controls the random field Hk+1) and
Proposition 11 (that controls the memory term Vk,i). We start by verifying the simple following

26

proposition, that ensures that the global variable Vk corresponds to the mean of the local control
variables (Vk,i)i2[n]⇤ .

Proposition 12. For any k 2 [kmax],

Vk =
1

n

nX

i=1

Vk,i .

Proof. By definition of V0, the property holds true when k = 0. Assume this holds true for k 2
[kmax � 1]. We write

Vk+1 = Vk +
↵

n

nX

i=1

Bk+1,i Quant(�k+1,i)

=
1

n

nX

i=1

Vk,i +
1

n

nX

i=1

(Vk+1,i � Vk,i)

=
1

n

nX

i=1

Vk+1,i .

This concludes the induction.

We now prove that the unbiased character of Hk is preserved, and we provide a new control on
its second order moment. Proposition 13 is Proposition 8 with ! replaced with !p. When p = 1,
Proposition 13 and Proposition 8 are the same.
Proposition 13. Assume A6, A7 and A9. Set �2 := n�1

Pn
i=1

�2

i . For any k 2 [kmax � 1], we have

E [Hk+1|Fk] = h(bSk) ,

and

E
⇥
kHk+1 � E [Hk+1|Fk] k2|Fk

⇤
 !p

n

1

n

nX

i=1

E
⇥
k�k+1,ik2|Fk

⇤
+
�2

n
,

where
!p :=

1� p

p
(1 + !) + ! . (31)

Proof. Let k 2 [kmax � 1]. By definition, we have

Hk+1 = Vk +
1

np

nX

i=1

Bk+1,iQuant(�k+1,i)

where the Bernoulli random variables {Bk+1,i, i 2 [n]?} are independent with the same success
probability p. By definition of the filtrations, we have Bk+1,i 2 Fk+1,i, Quant(�k+1,i) 2 Fk+2/3,i,
Vk 2 Fk and �k+1,i 2 Fk+1/3,i; and the inclusions Fk ⇢ Fk+1/3,i ⇢ Fk+2/3,i ⇢ Fk+1,i.
Therefore,

E [Hk+1|Fk] = Vk +
1

np

nX

i=1

E
⇥
E
⇥
Bk+1,i

��Fk+2/3,i

⇤
Quant(�k+1,i)

��Fk

⇤

= Vk +
1

n

nX

i=1

E
⇥
E
⇥
Quant(�k+1,i)

��Fk+1/3,i

⇤��Fk

⇤
= Vk +

1

n

nX

i=1

E [�k+1,i|Fk]

= Vk +
1

n

nX

i=1

⇣
E [Sk+1,i|Fk]� bSk � Vk,i

⌘

=
1

n

nX

i=1

hi(bSk) = h(bSk) ,

27

where we used E
⇥
Bk+1,i

��Fk+2/3,i

⇤
= p (see A9), A6, A7 and Proposition 12. This concludes the

proof of the first statement of Proposition 13. For the second point, we write

Hk+1 � h(bSk) =
1

n

nX

i=1

⌅k+1,i

⌅k+1,i := Sk+1,i � E
h
Sk+1,i

���F+

k,i

i

+Quant(�k+1,i)� E
⇥
Quant(�k+1,i)

��Fk+1/3,i

⇤

+
1

p

�
Bk+1,i � E

⇥
Bk+1,i

��Fk+2/3,i

⇤�
Quant(�k+1,i) ;

note indeed that hi(bSk) = E
h
Sk+1,i

���F+

k,i

i
� bSk, E

⇥
Quant(�k+1,i)

��Fk+1/3,i

⇤
= �k+1,i,

�k+1,i = Vk,i + Sk+1,i � bSk, Vk = n�1
Pn

i=1
Vk,i and p = E

⇥
Bk+1,i

��Fk+2/3,i

⇤
. Write

Hk+1 � h(bSk) =
1

n

Pn
i=1

⌅k+1,i. Since the workers are independent, we have

E
h
kHk+1 � h(bSk)k2

���Fk

i
=

1

n2

nX

i=1

E
⇥
k⌅k+1,ik2

��Fk

⇤
.

Fix i 2 [n]?. ⌅k+1,i is the sum of three terms
P

3

`=1
⌅k+1,i,` and observe that for any ` 6= `0 we

have
E [h⌅k+1,i,`,⌅k+1,i,`0i|Fk] = 0 .

Therefore E
⇥
k⌅k+1,ik2

��Fk

⇤
=
P

3

`=1
E
⇥
k⌅k+1,i,`k2

��Fk

⇤
. We have by A7

E
h
kSk+1,i � E

h
Sk+1,i

���F+

k,i

i
k2
���Fk

i
 �2

i ;

by A6,

E
⇥
kQuant(�k+1,i)� E

⇥
Quant(�k+1,i)

��Fk+1/3,i

⇤
k2
��Fk

⇤
 !E

⇥
k�k+1,ik2

��Fk

⇤
;

and by A6 and A9

E

1

p2
�
Bk+1,i � E

⇥
Bk+1,i

��Fk+2/3,i

⇤�2 kQuant(�k+1,i)k2
����Fk

�

 1� p

p
E
⇥
kQuant(�k+1,i)k2

��Fk

⇤

 1� p

p
(1 + !)E

⇥
k�k+1,ik2

��Fk

⇤
.

This concludes the proof.

Proposition 14. Assume A7 and set �2 := n�1
Pn

i=1
�2

i . For any k 2 [kmax � 1],

1

n

nX

i=1

E
⇥
k�k+1,ik2

��Fk

⇤
 1

n

nX

i=1

kVk,i � hi(bSk)k2 + �2 .

The proof is on the same lines as the proof of Proposition 10 and is omitted.

Proposition 15 extends Proposition 11: the result is similar but with ↵ replaced with ↵p and ! by
!p.

Proposition 15. Assume A5, A6, A7 and A9; set L2 := n�1
Pn

i=1
L2

i and �2 := n�1
Pn

i=1
�2

i .
Choose ↵ 2 (0, 1/(1 + !)]. For any k � 0, define

Gk :=
1

n

nX

i=1

kVk,i � hi(bSk)k2 .

We have, for any k 2 [kmax � 1]

28

E [Gk+1|Fk]
✓
1� ↵p

2
+ 2�2k+1

L2

↵p

!p

n

◆
Gk + 2�2k+1

L2

↵p
kh(bSk)k2

+ 2

✓
↵p+ �2k+1

L2

↵p

!p

n

◆
�2 ,

where !p is defined in Proposition 13.

Proof. Let i 2 [n]?. We follow the same line of the proof as Proposition 11: for any � > 0, using
that ka+ bk2 (1 + �2)kak2 + (1 + ��2)kbk2, we have

E
h
kVk+1,i � hi(bSk+1)k2

���Fk

i

 (1 + ��2)E
h
kVk+1,i � hi(bSk)k2

���Fk

i
+ (1 + �2)E

h
khi(bSk)� hi(bSk+1)k2

���Fk

i

A5

 (1 + ��2)E
h
kVk+1,i � hi(bSk)k2

���Fk

i
+ (1 + �2)L2

i �
2

k+1
E
⇥
kHk+1k2

��Fk

⇤
.

We then provide a control for E
h
kVk+1,i � hi(bSk)k2

���Fk

i
. Recall that:

Vk+1,i = Vk,i + ↵Bk+1,iQuant(�k+1;i).

We write f(Bk+1,i) = f(1) Bk+1,i=1+f(0) Bk+1,i=0 for any measurable positive function f ; and
then use E

⇥
Bk+1,i

��Fk+2/3,i

⇤
= p (see A9), Quant(�k+1,i), bSk, Vk,i 2 Fk+2/3,i . We get

E
h
kVk+1,i � hi(bSk)k2|Fk

i

= pE
h
kVk,i � hi(bSk)� ↵Quant(�k+1,i)k2

���Fk

i
+ (1� p)kVk,i � hi(bSk)k2

(19)
= p(1� ↵) kVk,i � hi(bSk)k2 + ↵pE

h
kSk+1,i � bSk � hi(bSk)k2

���Fk

i

+ ↵p (↵(1 + !)� 1)E
⇥
k�k+1,ik2

��Fk

⇤
+ (1� p) kVk,i � hi(bSk)k2

= (1� ↵p) kVk,i � hi(bSk)k2

+ ↵pE
h
kSk+1,i � bSk � hi(bSk)k2

���Fk

i
+ ↵p (↵(1 + !)� 1)E

⇥
k�k+1,ik2

��Fk

⇤
.

The end of the proof is identical to the proof of Proposition 11: we choose �p > 0 such that ��2
p = 1

if ↵p � 2/3 and ��2
p = ↵p

2(1�↵p) if ↵p 2/3. We have

(1� ↵p)(1 + ��2

p) 1� ↵p

2
, (1 + �2

p)
2

↵p
, 1 1 + ��2

p 2 ;

and this yields

E
h
kVk+1,i � hi(bSk+1)k2

���Fk

i

⇣
1� ↵p

2

⌘
kVk,i � hi(bSk)k2

+ 2↵pE
h
kSk+1,i � s̄i � T(bSk)k2

���Fk

i
+ ↵p (↵(1 + !)� 1)E

⇥
k�k+1,ik2

��Fk

⇤

+
2

↵p
L2

i �
2

k+1
E
⇥
kHk+1k2

��Fk

⇤
.

By definition of the conditional expectation and Proposition 13 we have

E
⇥
kHk+1k2

��Fk

⇤
= kE [Hk+1|Fk] k2 + E

⇥
kHk+1 � E [Hk+1|Fk] k2

��Fk

⇤

= kh(bSk)k2 + E
h
kHk+1 � h(bSk)k2

���Fk

i
.

Since (↵(1 + !)� 1) 0, using A7 and Proposition 13 again, we get:

E [Gk+1|Fk]
⇣
1� ↵p

2

⌘
Gk + 2↵p�2 +

2

↵p
L2�2k+1

1

n

�2 + !p

1

n

nX

i=1

E
⇥
k�k+1,ik2

��Fk

⇤
!

.

29

Finally, from Proposition 14,

1

n

nX

i=1

E
⇥
k�k+1,ik2

��Fk

⇤
 Gk + �2 .

This concludes the proof.

D.4 Proof of Theorem 4

Throughout this proof, set

!p :=
1� p

p
(1 + !) + ! .

Step 1: Upper bound on the decrement. Let k � 0. Following the same lines as in the proof of
Theorem 1, we have

E
h
W(bSk+1)

���Fk

i

W(bSk)� �k+1vmin

✓
1� �k+1

L
Ẇ

2vmin

◆
kh(bSk)k2 + �2k+1

L
Ẇ

2
E
⇥
kHk+1 � E [Hk+1|Fk] k2

��Fk

⇤
.

Applying Proposition 13 and Proposition 14, we obtain that

E
h
W(bSk+1)

���Fk

i
W(bSk)� �k+1vmin

✓
1� �k+1

L
Ẇ

2vmin

◆
kh(bSk)k2

+ �2k+1

L
Ẇ

2

!p

n
Gk + �2k+1

L
Ẇ

2n
(1 + !p)�

2 , (32)

where

Gk :=
1

n

nX

i=1

kVk,i � hi(bSk)k2 .

Step 2: Maximal learning rate �k+1 when ! 6= 0. From Proposition 11, for any non-increasing
positive sequence {�k, k 2 [kmax � 1]} such that

�2k+1
 ↵2p2

8L2

n

!p
,

and for any positive sequence {Ck, k 2 [kmax � 1]}, it holds

Ck+1E [Gk+1|Fk] Ck+1

⇣
1� ↵p

4

⌘
Gk

+ Ck+1�
2

k+1

2

↵p
L2kh(bSk)k2 + 2Ck+1

✓
↵p+ �2k+1

L2

↵p

1 + !p

n

◆
�2 . (33)

Combining equations (32) and (33), we thus have

E[W(bSk+1)|Fk] + Ck+1E [Gk+1|Fk] W(bSk) + CkGk

� �k+1vmin

✓
1� �k+1

L
Ẇ

2vmin

� Ck+1

vmin

�k+1

2

↵p
L2

◆
kh(bSk)k2

+

✓
�2k+1

L
Ẇ

2

!p

n
� Ck + Ck+1 � Ck+1

↵p

4

◆
Gk

+

⇢
2↵pCk+1 + �2k+1

(1 + !p)

n

✓
L
Ẇ

2
+ 2Ck+1

L2

↵p

◆�
�2 .

We choose the sequence {Ck} as follows:

Ck := �2k
2L

Ẇ

↵p

!p

n
;

30

the sequence satisfies Ck+1 Ck (since �k+1 �k) and �2k+1
L
Ẇ
!p/(2n) Ck+1↵p/4. By

convention, �0 2 [�1,+1). Therefore

E[W(bSk+1)|Fk] + �2k+1

2L
Ẇ

↵p

!p

n
E [Gk+1|Fk] W(bSk) + �2k

2L
Ẇ

↵p

!p

n
Gk

� �k+1vmin

✓
1� �k+1

L
Ẇ

2vmin

⇢
1 + 8�2k+1

!p

↵2p2n
L2

�◆
kh(bSk)k2

+ 4�2k+1
L
Ẇ

!p

n

⇢
1 +

(1 + !p)

8!p

✓
1 + �2k+1

8
L2

↵2p2
!p

n

◆�
�2 .

Step 3: Computing the expectation. Let us apply the expectations, sum from k = 0 to k =
kmax � 1, and divide by kmax. This yields

vmin

kmax

kmax�1X

k=0

�k+1

✓
1� �k+1

L
Ẇ

2vmin

⇢
1 + 8�2k+1

!p

↵2p2n
L2

�◆
kh(bSk)k2

 k�1

max

⇢
W(bS0) + �2

0

2L
Ẇ

↵

!p

n
G0 � E

h
W(bSkmax)

i
� �2kmax

2L
Ẇ

↵p

!p

n
E [Gkmax]

�

+ 4L
Ẇ

!p

n

1

kmax

kmax�1X

k=0

�2k+1

⇢
1 +

(1 + !p)

8!

✓
1 + �2k+1

8
L2

↵2p2
!p

n

◆�
�2 .

We now focus on the case when �k+1 = � for any k � 0. Denote by K a uniform random variable
on [kmax � 1], independent of the path {bSk, k 2 [kmax]}. Since �2 ↵2p2n/(8L2!p), we have

1 + 8�2
!p

↵2p2n
L2 2 .

This yields

vmin�

✓
1� �

L
Ẇ

vmin

◆
E
h
kh(bSK)k2

i

 k�1

max

⇢
W(bS0) + �2

2L
Ẇ

↵p

!p

n
G0 � E

h
W(bSkmax)

i
� �2

2L
Ẇ

↵p

!p

n
E [Gkmax]

�

+ 4L
Ẇ

!p

n
�2
⇢
1 +

(1 + !p)

4!p

�
�2 .

Note that 4(1 + (1 + !p)/(4!p)) = (5!p + 1)/!p.

Step 4. Conclusion (when ! 6= 0) By choosing V0,i = hi for any i 2 [n]?, we have G0 = 0. The
roots of � 7! �(1 � �L

Ẇ
/vmin) are 0 and vmin/LẆ

and its maximum is reached at vmin/(2LẆ
):

this function is increasing on (0, vmin/(2LẆ
)]. We therefore choose � 2 (0, �max(↵)] where

�max(↵) := min

✓
vmin

2L
Ẇ

;
↵p

2
p
2L

p
n

p
!p

◆

Finally, since ↵ 2 (0, 1/(1 + !)], we choose ↵ = 1/(1 + !). This yields

�max := min

✓
vmin

2L
Ẇ

;
p

2
p
2L

p
n

p
!p(1 + !)

◆
.

E Convergence Analysis of VR-FedEM

The assumptions A1 to A3 hold throughout this section. We will use the notations

L2

i := m�1

mX

j=1

L2

ij , L2 := n�1

nX

i=1

L2

i , (34)

where Lij is defined in A8, and

hi(s) :=
1

m

mX

j=1

s̄ij � T(s)� s , h(s) :=
1

n

nX

i=1

hi(s) .

31

E.1 Notations and elementary result

Let us define the following filtrations: for any i 2 [n]? and t 2 [kout]?, k 2 [kmax � 1], set

F1,0,i = F+

1,0,i := �
⇣
bSinit;V1,0,i

⌘
, F1,0 :=

n_

i=1

F1,0,i ,

Ft,k+1/2,i := F+

t,k,i _ � (Bt,k+1,i) , Ft,k+1,i := Ft,k+1/2,i _ � (Quant(�t,k+1,i)) ,

Ft,k+1 :=
n_

i=1

Ft,k+1,i , F+

t,k+1,i := Ft,k+1 .

With these notations, for t 2 [kout]?, k 2 [kmax � 1] and i 2 [n]?, bSt,k+1 2 F+

t,k+1,i, St,k+1,i 2
Ft,k+1/2,i,�t,k+1,i 2 Ft,k+1/2,i, Vt,k+1,i 2 Ft,k+1,i, bSt,k+1 2 Ft,k+1 Ht,k+1 2 Ft,k+1, and
Vt,k+1 2 Ft,k+1.

E.2 Computed conditional expectations complexity.

In this section, we provide a discussion on the computed conditional expectations complexity KCE

that was removed from the main text due to spaces constraints.

The number of calls to conditional expectations (i.e., computing s̄ij) to perform kout outer steps of
algorithm 2, each composed of kin inner iterations, with n workers and mini-batches of size b is

nmkout + n(2b)kinkout = nkinkout

✓
m

kin
+ 2b

◆
;

it corresponds to one full pass on the data at the beginning of each outer loop and two batches of
size b on each worker i 2 [n]?, at each inner iteration. In oder to reach an accuracy ✏, we need
(kinkout�)�1 = O(✏) with the parameter choices in Theorem 3 (esp. on b) we thus have

KCE(✏) = O

✓
n

✏�

✓
m

kin
+ 2

kin
(1 + !)2

◆◆
.

This complexity is minimized with kin = (1 + !)
p

m/2. We then obtain an overall complexity
KCE of O

⇣p
m

✏�
n

(1+!)

⌘
. We stress the following two points:

1. Dependency w.r.t. m: the complexity increases as
p
m. For n = 1,! = 0, this yields a scaling

equal to
p
m✏�1 that corresponds to the optimal KCE of SPIDER-EM [10];

2. Dependency w.r.t. !. Again, the dependency on ! depends on the regime for �. In the (worst
case regime), � = O(

p
n/!3/2), we get

KCE(✏) = O

✓p
m
p
n
p
!

✏

◆

when ✏ ! 0 and !, n ! 1, which corresponds to a sublinear increase w.r.t. ! (that compares to a
linear increase in the cost of each communication).

E.3 Preliminary results

E.3.1 Results on the minibatch Bt,k+1

The proof of the following proposition is given in [10, Lemma 4]. It establishes the bias and the
variance of the sum along the random set of indices Bt,k+1 conditionally to the past.
Proposition 16. Let B be a minibatch of size b, sampled at random (with or without replacement)
from [m]?. It holds for any i 2 [n]? and s 2 Rq ,

E

2

41
b

X

j2B
s̄ij � T(s)

3

5 =
1

m

mX

j=1

s̄ij � T(s) ;

32

and for any s, s0 2 Rq ,

E

2

4
���
1

b

X

j2B
{s̄ij � T(s)� s)� (s̄ij � T(s0)� s0)}

� 1

m

mX

j=1

{(s̄ij � T(s)� s)� (s̄ij � T(s0)� s0)}
���
2

3

5 L2

i

b
ks� s0k2 .

E.3.2 Results on the statistics St,k,i

Proposition 17 shows that for k � 1, St,k+1,i is a biased approximation of m�1
Pm

j=1
s̄ij �T(bSt,k);

and this bias is canceled at the beginning of each outer loop since St,1,i = m�1
Pm

j=1
s̄ij �T(bSt,0).

Corollary 18 establishes an upper bound for the conditional variance and the mean squared error of
St,k+1,i.
Let us comment the definition of St,k+1,i. For any t 2 [kout]?, k 2 [kin � 1] and i 2 [n]?,

St,k+1,i =
1

b

X

j2Bt,k+1,i

s̄ij �T(bSt,k)+⌥t,k+1,i , ⌥t,k+1,i := St,k,i�
1

b

X

j2Bt,k+1,i

s̄ij �T(bSt,k�1) .

It is easily seen that

⌥t,k+1,i = ⌥t,k,i +
1

b

X

j2Bt,k,i

s̄ij � T(bSt,k�1)�
1

b

X

j2Bt,k+1,i

s̄ij � T(bSt,k�1) ,

and since ⌥t,1,i = St,0,i � b�1
P

j2Bt,1,i
s̄ij � T(bSt,�1), we have by using Proposition 17,

⌥t,k,i =
kX

`=1

8
<

:
1

b

X

j2Bt,`,i

s̄ij � T(bSt,`�1)�
1

b

X

j2Bt,`+1,i

s̄ij � T(bSt,`�1)

9
=

;

+
1

m

mX

j=1

s̄ij � T(bSt,�1)�
1

b

X

j2Bt,1,i

s̄ij � T(bSt,�1) .

We have E [⌥t,k,i|Ft,0] = 0 but conditionally to the past F+

t,k�1,i, the variable ⌥t,k,i is not centered.

Proposition 17. For any t 2 [kout]? and i 2 [n]?,

St,1,i �
1

m

mX

j=1

s̄ij � T(bSt,0) = St,0,i �
1

m

mX

j=1

s̄ij � T(bSt,�1) = 0 .

For any t 2 [kout]?, k 2 [kin � 1] and i 2 [n]?, we have

E
h
St,k+1,i

���F+

t,k,i

i
� 1

m

mX

j=1

s̄ij � T(bSt,k) = St,k,i �
1

m

mX

j=1

s̄ij � T(bSt,k�1) .

Proof. Let t 2 [kout]? and i 2 [n]?. We have by definition of St,1,i and St,0,i

St,1,i = St,0,i + b�1
X

j2Bt,1,i

⇣
s̄ij � T(bSt,0)� s̄ij � T(bSt,�1)

⌘
= St,0,i =

1

m

mX

j=1

s̄ij � T(bSt,0)

where we used that bSt,0 = bSt,�1.

Let k 2 [kin � 1]. By definition of St,k+1,i, we have

St,k+1,i � St,k,i = b�1
X

j2Bt,k+1,i

⇣
s̄ij � T(bSt,k)� s̄ij � T(bSt,k�1)

⌘
.

33

Since bSt,k, bSt,k�1 2 F+

t,k,i, we have by Proposition 16

E

2

4b�1
X

j2Bt,k+1,i

⇣
s̄ij � T(bSt,k)� s̄ij � T(bSt,k�1)

⌘
������
F+

t,k,i

3

5

=
1

m

mX

j=1

⇣
s̄ij � T(bSt,k)� s̄ij � T(bSt,k�1)

⌘

and the proof follows.

Corollary 18 (of Proposition 17). Assume A8. For any t 2 [kout]?, k 2 [kin � 1] and i 2 [n]?,

E
⇥
kSt,k+1,i � E [St,k+1,i|Ft,k,i] k2

��Ft,k

⇤
 L2

i

b
�2t,kkHt,kk2 ,

E

2

4kSt,k+1,i �
1

m

mX

j=1

s̄ij � T(bSt,k)k2
������
Ft,0

3

5 L2

i

b

kX

`=1

�2t,`E
⇥
kHt,`k2

��Ft,0

⇤
.

By convention, Ht,0 = 0 and
P

0

`=1
a` = 0.

Proof. Note that bSt,k, bSt,k�1 2 Ft,k. By Proposition 17, we have

E
⇥
kSt,k+1,i � E

⇥
St,k+1,i

��F+
t,k,i

⇤
k2
��Ft,k

⇤

= E

2

4
���
1
b

X

j2Bt,k+1,i

⇣
s̄ij � T(bSt,k)� s̄ij � T(bSt,k�1)

⌘
� 1
m

mX

j=1

⇣
s̄ij � T(bSt,k)� s̄ij � T(bSt,k�1)

⌘���
2
�����Ft,k

3

5 .

By Proposition 16, it holds

E
⇥
kSt,k+1,i � E [St,k+1,i|Ft,k,i] k2|Ft,k

⇤
 L2

i

b
kbSt,k � bSt,k�1k2 =

L2

i

b
�2t,kkHt,kk2 ;

with the convention that Ht,0 = 0 since bSt,0 = bSt,�1. The proof of the first statement is concluded.

For the second statement, by definition of the conditional expectation and since bSt,k 2 Ft,k ⇢ F+

t,k,i,
it holds

E

2

4kSt,k+1,i �
1

m

mX

j=1

s̄ij � T(bSt,k)k2
������
Ft,k

3

5 = E
h
kSt,k+1,i � E

h
St,k+1,i

���F+

t,k,i

i
k2
���Ft,k

i

+ E

2

4kE
h
St,k+1,i

���F+

t,k,i

i
� 1

m

mX

j=1

s̄ij � T(bSt,k)k2
������
Ft,k

3

5 .

By Proposition 17,
�����E
h
St,k+1,i

���F+

t,k,i

i
� 1

m

mX

j=1

s̄ij � T(bSt,k)

�����

2

=

�����St,k,i �
1

m

mX

j=1

s̄ij � T(bSt,k�1)

�����

2

.

Hence, by using St,1,i �m�1
Pm

j=1
s̄ij � T(bSt,0) = 0 (see Proposition 17), we have

E

2

4
���St,k+1,i �

1

m

mX

j=1

s̄ij � T(bSt,k)
���
2

������
Ft,0

3

5

 L2

i

b
�2t,kE

⇥
kHt,kk2

��Ft,0

⇤
+ E

2

4
���St,k,i �

1

m

mX

j=1

s̄ij � T(bSt,k�1)
���
2

������
Ft,0

3

5

 L2

i

b

kX

`=1

�2t,`E
⇥
kHt,`k2

��Ft,0

⇤
.

34

E.3.3 Results on �t,k+1,i

Proposition 19 provides an upper bound for the mean value of the conditional variance of �t,k+1,·
and for its L2-moment. Proposition 20 prepares the control of the varianc of the random field Ht,k+1

upon noting that

Ht,k+1 � E [Ht,k+1|Ft,k] =
1

n

nX

i=1

(Quant(�t,k+1,i)� E [�t,k+1,i|Ft,k]) .

Proposition 19. Assume A8. For any t 2 [kout]? and k 2 [kin � 1],

1

n

nX

i=1

E
⇥
k�t,k+1,ik2

��Ft,0

⇤

 2
L2

b

kX

`=1

�2t,`E
⇥
kHt,`k2

��Ft,0

⇤
+

2

n

nX

i=1

E
h
khi(bSt,k)� Vt,k,ik2

���Ft,0

i
.

In addition,

1

n

nX

i=1

E
⇥
k�t,k+1,i � E [�t,k+1,i|Ft,k] k2

��Ft,k

⇤
 L2

b
�2t,kkHt,kk2 .

Proof. Let i 2 [n]?, t 2 [kout]? and k 2 [kin � 1]. We write

�t,k+1,i = St,k+1,i �
1

m

mX

j=1

s̄ij � T(bSt,k) + hi(bSt,k)� Vt,k,i .

When k = 0, we have St,1,i � 1

m

Pm
j=1

s̄ij � T(bSt,0) = 0 (see Proposition 17) so that �t,1,i =

hi(bSt,0)� Vt,0,i. For k � 1, we write

E
⇥
k�t,k+1,ik2

��Ft,0

⇤
 2E

2

4kSt,k+1,i �
1

m

mX

j=1

s̄ij � T(bSt,k)k2
������
Ft,0

3

5

+ 2E
h
khi(bSt,k)� Vt,k,ik2

���Ft,0

i

and the proof of the first statement is concluded by Corollary 18.

By definition of �t,k+1,i, it holds

�t,k+1,i � E [�t,k+1,i|Ft,k] = St,k+1,i � E [St,k+1,i|Ft,k] . (35)

The proof is concluded by (35) and Corollary 18.

Proposition 20. Assume A6 and A8. For any t 2 [kout]? and k 2 [kin � 1],

1

n

nX

i=1

E
⇥
kQuant(�t,k+1,i)� E [�t,k+1,i|Ft,k] k2

��Ft,0

⇤
 !

n

nX

i=1

E
⇥
k�t,k+1,ik2

��Ft,0

⇤

+
L2

b
�2t,kE

⇥
kHt,kk2

��Ft,0

⇤
.

Proof. Let i 2 [n]?, t 2 [kout]? and k 2 [kin � 1]. We write

Quant(�t,k+1,i)�E [�t,k+1,i|Ft,k] = Quant(�t,k+1,i)��t,k+1,i+�t,k+1,i�E [�t,k+1,i|Ft,k] ;

and use the property

E
⇥
kQuant(�t,k+1,i)� E [�t,k+1,i|Ft,k] k2

��Ft,0

⇤
= E

⇥
kQuant(�t,k+1,i)��t,k+1,ik2

��Ft,0

⇤

+ E
⇥
k�t,k+1,i � E [�t,k+1,i|Ft,k] k2

��Ft,0

⇤
.

35

By A6 and Ft,k ⇢ Ft,k+1/2,i, we have

E
⇥
kQuant(�t,k+1,i)��t,k+1,ik2

��Ft,0

⇤

= E
⇥
E
⇥
kQuant(�t,k+1,i)��t,k+1,ik2

��Ft,k+1/2,i

⇤��Ft,0

⇤
 !E

⇥
k�t,k+1,ik2

��Ft,0

⇤
;

in addition, by Proposition 19,

n�1

nX

i=1

E
⇥
k�t,k+1,i � E [�t,k+1,i|Ft,k] k2

��Ft,0

⇤
 L2

b
�2t,kE

⇥
kHt,kk2

��Ft,0

⇤
.

This concludes the proof.

E.3.4 Results on the memory terms Vt,k+1,i

Lemma 21 proves that the memory term Vt,k+1 computed by the central server is the mean value
of the local Vt,k+1,i computed by each worker #i. Proposition 22 establishes a contraction-like
inequality on the mean quantity n�1

Pn
i=1
kVt,k+1,i � hi(bSt,k+1)k2 thus providing the intuition

that Vt,k+1,i approximates hi(bSt,k+1).
Lemma 21. For any t 2 [kout]? and k 2 [kin � 1],

Vt,k+1 =
1

n

nX

i=1

Vt,k+1,i , Vt,0 =
1

n

nX

i=1

Vt,0,i .

Proof. The proof is by induction on t and k. Consider the case t = 1. When k = 0, the property
holds true by Line 1 in algorithm 2. Assume that the property holds for k kin � 2. Then by
definition of V1,k+1 and by the induction assumption:

V1,k+1 = V1,k + ↵
1

n

nX

i=1

Quant(�1,k+1,i) =
1

n

nX

i=1

(V1,k,i + ↵Quant(�1,k+1,i))

=
1

n

nX

i=1

V1,k+1,i .

By Lines 18 and 21 in algorithm 2 and by the induction on k, we obtain

V2,0 = V1,kin =
1

n

nX

i=1

V1,kin,i =
1

n

nX

i=1

V2,0,i .

Assume that for t 2 [kout � 1]? we have Vt,0 = n�1
Pn

i=1
Vt,0,i. As in the case t = 1, we prove by

induction on k that for any k 2 [kin � 1], Vt,k+1 = n�1
Pn

i=1
Vt,k+1,i (details are omitted). This

implies, by using Lines 18 and 21 of algorithm 2, that

Vt+1,0 = Vt,kin =
1

n

nX

i=1

Vt,kin,i =
1

n

nX

i=1

Vt+1,0,i .

This concludes the induction.

Proposition 22. Assume A6 and A8. Let ↵ 2
�
0, (1 + !)�1

⇤
. For any t 2 [kout]?, k 2 [kin� 1] and

i 2 [n]?, it holds

E
⇥
Vt,k+1,i

��Ft,k+1/2,i

⇤
= (1� ↵)Vt,k,i + ↵

⇣
St,k+1,i � bSt,k

⌘
,

Define for t 2 [kout]? and k 2 [kin]

Gt,k :=
1

n

nX

i=1

kVt,k,i � hi(bSt,k)k2 .

36

We have

E [Gt,k+1|Ft,0] (1� ↵/2)E [Gt,k|Ft,0]

+
2

↵
L2�2t,k+1

E
⇥
kHt,k+1k2

��Ft,0

⇤
+ 2↵

L2

b

kX

`=1

�2t,`E
⇥
kHt,`k2

��Ft,0

⇤

+ ↵ (↵(1 + !)� 1)
1

n

nX

i=1

E
⇥
k�t,k+1,ik2

��Ft,0

⇤
.

Proof. Let t 2 [kout]?, k 2 [kin � 1] and i 2 [n]?. By definition of Vt,k+1,i, �t,k+1,i and by A6, it
holds

E
⇥
Vt,k+1,i

��Ft,k+1/2,i

⇤
= Vt,k,i + ↵E

⇥
Quant(�t,k+1,i)

��Ft,k+1/2,i

⇤

= Vt,k,i + ↵
⇣
St,k+1,i � bSt,k � Vt,k,i

⌘
.

This concludes the proof of the first statement. For the second statement, we write for any � > 0:

kVt,k+1,i � hi(bSt,k+1)k2 (1 + �2)khi(bSt,k+1)� hi(bSt,k)k2 + (1 + ��2)kVt,k+1,i � hi(bSt,k)k2

 (1 + �2)L2

i �
2

t,k+1
kHt,k+1k2 + (1 + ��2)kVt,k+1,i � hi(bSt,k)k2 ,

(36)

where we used A8 and the definition of bSt,k+1 in the last inequality. For any s 2 Rq

E
⇥
kVt,k+1,i � sk2

��Ft,k+1/2,i

⇤
= E

⇥
kVt,k+1,i � E

⇥
Vt,k+1,i

��Ft,k+1/2,i

⇤
k2
��Ft,k+1/2,i

⇤

+ kE
⇥
Vt,k+1,i � s

��Ft,k+1/2,i

⇤
k2 . (37)

On one hand,

kVt,k+1,i�E
⇥
Vt,k+1,i

��Ft,k+1/2,i

⇤
k2 = ↵2kQuant(�t,k+1,i)�E

⇥
Quant(�t,k+1,i)

��Ft,k+1/2,i

⇤
k2

and by A6,

E
⇥
kVt,k+1,i � E

⇥
Vt,k+1,i

��Ft,k+1/2,i

⇤
k2
��Ft,k+1/2,i

⇤
 ↵2!k�t,k+1,ik2 . (38)

On the other hand, for any s 2 Rq , and using Lemma 6

kE
⇥
Vt,k+1,i � s

��Ft,k+1/2,i

⇤
k2 = k(1� ↵) (Vt,k,i � s) + ↵ (St,k+1,i � bSt,k � s)k2

= (1� ↵) kVt,k,i � sk2 + ↵kSt,k+1,i � bSt,k � sk2 � ↵(1� ↵)kVt,k,i � St,k+1,i + bSt,kk2

= (1� ↵) kVt,k,i � sk2 + ↵kSt,k+1,i � bSt,k � sk2 � ↵(1� ↵)k�t,k+1,ik2 . (39)

Let us combine (36) to (39), the last one being applied with s hi(bSt,k) 2 F+

t,k,i ✓ Ft,k+1/2,i.
Since

kSt,k+1,i � bSt,k � hi(bSt,k)k2 = kSt,k+1,i �
1

m

mX

j=1

s̄ij � T(bSt,k)k2 ,

we write

E
h
kVt,k+1,i � hi(bSt,k+1)k2

���Ft,k

i
 (1 + �2)L2

i �
2

t,k+1
E
⇥
kHt,k+1k2

��Ft,k

⇤

+ (1 + ��2)
n
↵2!E

⇥
k�t,k+1,ik2

��Ft,k

⇤
+ (1� ↵)kVt,k,i � hi(bSt,k)k2

+↵E

2

4kSt,k+1,i �
1

m

mX

j=1

s̄ij � T(bSt,k)k2
������
Ft,k

3

5� ↵(1� ↵)E
⇥
k�t,k+1,ik2

��Ft,k

⇤
9
=

; .

Choose �2 > 0 such that

��2 :=

⇢
1 if ↵ � 2/3
↵

2(1�↵) if ↵ 2/3

37

This implies that

(1 + ��2)(1� ↵) 1� ↵

2
, 1 + �2 2

↵
, 1 + ��2 2 .

Hence,

E
h
kVt,k+1,i � hi(bSt,k+1)k2

���Ft,k

i
 (1� ↵/2)kVt,k,i � hi(bSt,k)k2

+
2

↵
L2

i �
2

t,k+1
E
⇥
kHt,k+1k2

��Ft,k

⇤
+ 2↵E

2

4kSt,k+1,i �
1

m

mX

j=1

s̄ij � T(bSt,k)k2
������
Ft,k

3

5

+ ↵ (↵! � 1 + ↵)E
⇥
k�t,k+1,ik2

��Ft,k

⇤
;

(in the last equality, we use 1+ ��2 � 1 since ↵!� 1+↵ 0). Finally, by using Corollary 18, we
have

E
h
kVt,k+1,i � hi(bSt,k+1)k2

���Ft,0

i
 (1� ↵/2)E

h
kVt,k,i � hi(bSt,k)k2

���Ft,0

i

+
2

↵
L2

i �
2

t,k+1
E
⇥
kHt,k+1k2

��Ft,0

⇤
+ 2↵

L2

i

b

kX

`=1

�2t,`E
⇥
kHt,`k2

��Ft,0

⇤

+ ↵ (↵! � 1 + ↵)E
⇥
k�t,k+1,ik2

��Ft,0

⇤
.

The proof is concluded.

E.3.5 Results on the random field Ht,k+1

Proposition 23 shows that the random field Ht,k+1 is a biased approximation of the field h(bSt,k),
and this bias is canceled at the beginning of each outer loop. Observe also that the bias exists even
when there is no compression: when ! = 0 (so that Quant(u) = u) we have

E [Ht,k+1|Ft,k]� h(bSt,k) = Ht,k � h(bSt,k�1) ,

and the bias is again canceled at the beginning of each outer loop. Proposition 24 provides an upper
bound for the variance and the mean squared error of the random field Ht,k+1. In the case of no
compression (! = 0) and of a single worker (n = 1) so that VR-FedEM is SPIDER-EM, Proposition 24
retrieves the variance and the mean squared error of the random field Ht,k+1 in SPIDER-EM (see [10,
Proposition 13]).

Proposition 23. Assume A6. For any t 2 [kout]?, E [Ht,2|Ft,0] � h(bSt,1) = E [Ht,1|Ft,0] �
h(bSt,0) = 0 and for any k 2 [kin � 1]?,

E [Ht,k+1|Ft,k]� h(bSt,k) = Ht,k � h(bSt,k�1)� n�1

nX

i=1

(Quant(�t,k,i)��t,k,i)

= n�1

nX

i=1

0

@E [St,k+1,i|Ft,k]�m�1

mX

j=1

s̄ij � T(bSt,k)

1

A .

Proof. Let t 2 [kout]?.

• By definition of Ht,1 and �t,1,i, by A6 and by Lemma 21, we have

E [Ht,1|Ft,0] = Vt,0 + n�1

nX

i=1

E [Quant(�t,1,i)|Ft,0] = Vt,0 + n�1

nX

i=1

E [�t,1,i|Ft,0]

= Vt,0 + n�1

nX

i=1

⇣
E [St,1,i|Ft,0]� bSt,0 � Vt,0,i

⌘

= n�1

nX

i=1

E [St,1,i|Ft,0]� bSt,0 .

38

By Proposition 17 n�1
Pn

i=1
E [St,1,i|Ft,0]� bSt,0 = h(bSt,0).

• Consider the case k = 1. We have by definition of Ht,2

E [Ht,2|Ft,1]� h(bSt,1) =
1

n

nX

i=1

0

@E [St,2,i|Ft,1]�m�1

mX

j=1

s̄ij � T(bSt,1)

1

A ;

Proposition 17 concludes the proof.

• Let k � 2. As in the case k = 0, we have

E [Ht,k+1|Ft,k] = Vt,k + n�1

nX

i=1

E [Quant(�t,k+1,i)|Ft,k] = Vt,k + n�1

nX

i=1

E [�t,k+1,i|Ft,k]

= Vt,k + n�1

nX

i=1

⇣
E [St,k+1,i|Ft,k]� bSt,k � Vt,k,i

⌘

= n�1

nX

i=1

E [St,k+1,i|Ft,k]� bSt,k ,

so that

E [Ht,k+1|Ft,k]� h(bSt,k) = n�1

nX

i=1

0

@E [St,k+1,i|Ft,k]�m�1

mX

j=1

s̄ij � T(bSt,k)

1

A . (40)

By Proposition 17, upon noting that Ft,k ⇢ F+

t,k,i and St,k,i, bSt,k�1 2 Ft,k, we have

n�1

nX

i=1

E [St,k+1,i|Ft,k]�m�1

mX

j=1

s̄ij�T(bSt,k) = n�1

nX

i=1

0

@St,k,i �m�1

mX

j=1

s̄ij � T(bSt,k�1)

1

A .

(41)
On the other hand, observe that

Ht,k = Vt,k�1 + n�1

nX

i=1

Quant(�t,k,i)

= Vt,k�1 + n�1

nX

i=1

St,k,i � bSt,k�1 � n�1

nX

i=1

Vt,k�1,i + n�1

nX

i=1

(Quant(�t,k,i)��t,k,i)

= n�1

nX

i=1

St,k,i � bSt,k�1 + n�1

nX

i=1

(Quant(�t,k,i)��t,k,i) ,

where we used Lemma 21. This yields

Ht,k � h(bSt,k�1)

= n�1

nX

i=1

0

@St,k,i �m�1

mX

j=1

s̄ij � T(bSt,k�1)

1

A+ n�1

nX

i=1

(Quant(�t,k,i)��t,k,i) . (42)

The proof is concluded by combining (40), (41) and (42).

Proposition 24. Assume A6 and A8. For any t 2 [kout]?,

E
h
kHt,1 � h(bSt,0)k2

���Ft,0

i
 !

n

1

n

nX

i=1

kVt,0,i � hi(bSt,0)k2
!

,

and for any k 2 [kin � 1]?,

E
h
kHt,k+1 � h(bSt,k)k2

���Ft,0

i
 !

n

1

n

nX

i=1

E
⇥
k�t,k+1,ik2

��Ft,0

⇤
+

L2

nb

kX

`=1

�2t,`E
⇥
kHt,`k2

��Ft,0

⇤
,

E
h
kE [Ht,k+1|Ft,k]� h(bSt,k)k2

���Ft,0

i
 L2

nb

k�1X

`=1

�2t,`E
⇥
kHt,`k2

��Ft,0

⇤
.

39

Proof. • Case k = 1. From Proposition 23 and the definition of Ht,1, we have

Ht,1 � h(bSt,0) = Ht,1 � E [[Ht,1|Ft,0] = n�1

nX

i=1

(Quant(�t,1,i)� E [Quant(�t,1,i)|Ft,0])

= n�1

nX

i=1

(Quant(�t,1,i)� E [�t,1,i|Ft,0]) ,

where we used E
⇥
Quant(�t,1,i)

��Ft,1/2,i

⇤
= �t,1,i and Ft,0 ⇢ Ft,1/2,i in the last equality. In

addition, since bSt,0 = bSt,�1, we have (see Proposition 17)

St,1,i = St,0,i = hi(bSt,0) + bSt,0 .

Hence,
�t,1,i = St,1,i � bSt,0 � Vt,0,i = hi(bSt,0)� Vt,0,i .

Therefore, E [�t,1,i|Ft,0] = �t,1,i = hi(bSt,0)�Vt,0,i. Since the workers are independent, we write

E
h
kHt,1 � h(bSt,0)k2

���Ft,0

i
=

1

n2

nX

i=1

E
h
kQuant(hi(bSt,0)� Vt,0,i)�

⇣
hi(bSt,0)� Vt,0,i

⌘
k2
���Ft,0

i
.

By A6, this yields

E
h
kHt,1 � h(bSt,0)k2

���Ft,0

i
 !

n

1

n

nX

i=1

khi(bSt,0)� Vt,0,ik2 .

• Case k � 1. Let t 2 [kout]? and k 2 [kin � 1]?. We write

E
h
kHt,k+1 � h(bSt,k)k2

���Ft,0

i
= E

⇥
kHt,k+1 � E [Ht,k+1|Ft,k] k2

��Ft,0

⇤

+ E
h
kE [Ht,k+1|Ft,k]� h(bSt,k)k2

���Ft,0

i
. (43)

Let us first consider the bias term. From Proposition 17, Proposition 23 and the definition of St,k+1,i

(remember that St,k,i, bSt,k and bSt,k�1 are in F+

t,k,i � Ft,k), it holds

E
���E [Ht,k+1|Ft,k]� h(bSt,k)

���
2
����Ft,0

�

= E

2

4
���n�1

nX

i=1

(E [St,k+1,i|Ft,k]�m�1

mX

j=1

s̄ij � T(bSt,k))
���
2

������
Ft,0

3

5

 E

2

4
���n�1

nX

i=1

(St,k,i �m�1

mX

j=1

s̄ij � T(bSt,k�1))
���
2

������
Ft,0

3

5 .

By Proposition 17 again, the RHS is zero when k = 1; when k � 2, by Corollary 18 and the
independence of the workers, we have yields

E
h
kE [Ht,k+1|Ft,k]� h(bSt,k)k2

���Ft,0

i
 L2

nb

k�1X

`=1

�2t,`E
⇥
kHt,`k2

��Ft,0

⇤
. (44)

Let us now consider the variance term. We have from the definition of Ht,k+1 and A6

Ht,k+1 � E [Ht,k+1|Ft,k] =
1

n

nX

i=1

(Quant(�t,k+1,i)� E [�t,k+1,i|Ft,k])

and here again, by the independence of the workers

E
⇥
kHt,k+1 � E [Ht,k+1|Ft,k] k2

��Ft,0

⇤

 1

n2

nX

i=1

E
⇥
kQuant(�t,k+1,i)� E [�t,k+1,i|Ft,k] k2

��Ft,0

⇤
. (45)

The proof follows from (43) to (45) and Proposition 20.

40

E.4 Proof of Theorem 3

Theorem 3 is a corollary of the more general following proposition.
Proposition 25. Assume A1 to 3, A4, A6 and A8. Set L2 := n�1m�1

Pn
i=1

Pm
j=1

L2

ij . Let
{bSt,k, t 2 [kout]?, k 2 [kin � 1]} be given by algorithm 2 run with any ↵ 1/(1 + !), and
b � 1, with V1,0,i = hi(bS1,0) for any i 2 [n]?. Let (⌧,K) be a uniform random variable on
[kout]? ⇥ [kin � 1], independent of {bSt,k, t 2 [kout]?, k 2 [kin � 1]}. Then, it holds

vmin (1� �⇤?)E
⇥
kH⌧,K+1k2

⇤
 ��1k�1

in
k�1

out

⇣
E
h
W(bS1,0)

i
�minW

⌘
,

where

⇤? :=
L
Ẇ

2vmin

+ 2
p
2
vmax

vmin

Lp
n↵

✓
! +

kin↵2

8b
(1 + 10!)

◆1/2

.

The proof of Theorem 3 from Proposition 25 (which corresponds to particular choices of b,↵, etc.
is detailed in Appendix E.5).

E.4.1 Control of H⌧,K

Let t 2 [kout]? and k 2 [kin � 1]. By A4, we have

W(bSt,k+1) W(bSt,k) +
D
rW(bSt,k), bSt,k+1 � bSt,k

E
+

L
Ẇ

2
kbSt,k+1 � bSt,kk2 .

Since bSt,k+1 � bSt,k = �t,k+1Ht,k+1, we have using again A4

W(bSt,k+1) W(bSt,k)� �t,k+1

D
B(bSt,k)h(bSt,k), Ht,k+1

E
+

L
Ẇ

2
�2t,k+1

kHt,k+1k2 .

We have the inequality, for any � > 0:

�hBh,Hi � hBH,Hi � hB(h�H), Hi � hBH,Hi+ �2

2
kHk2 + 1

2�2
kB(H � h)k2 .

By A4 again, this inequality yields for any �t,k+1 > 0 after applying the conditional expectation

E
h
W(bSt,k+1)

���Ft,0

i
 E

h
W(bSt,k)

���Ft,0

i
� �t,k+1vmin⇤t,k+1E

⇥
kHt,k+1k2

��Ft,0

⇤

+
�t,k+1

2�2

t,k+1

v2
max

E
h
kHt,k+1 � h(bSt,k)k2

���Ft,0

i
, (46)

where

⇤t,k+1 := 1� �t,k+1

L
Ẇ

2vmin

�
�2

t,k+1

2vmin

.

By (46) and Proposition 24, it holds

E
h
W(bSt,k+1)|Ft,0

i
 E

h
W(bSt,k)|Ft,0

i
� �t,k+1vmin⇤t,k+1E

⇥
kHt,k+1k2|Ft,0

⇤

+
�t,k+1

2�2

t,k+1

v2
max

L2

nb

kX

`=1

�2t,`E
⇥
kHt,`k2|Ft,0

⇤

+
�t,k+1

2�2

t,k+1

v2
max

!

n

1

n

nX

i=1

E
⇥
k�t,k+1,ik2|Ft,0

⇤
. (47)

Set

Gt,k :=
1

n

nX

i=1

kVt,k,i � hi(bSt,k)k2 .

41

From Proposition 19, we obtain

E
h
W(bSt,k+1)|Ft,0

i
 E

h
W(bSt,k)|Ft,0

i
� �t,k+1vmin⇤t,k+1E

⇥
kHt,k+1k2|Ft,0

⇤

+
�t,k+1

2�2

t,k+1

v2
max

L2

nb
(1 + 2!)

kX

`=1

�2t,`E
⇥
kHt,`k2|Ft,0

⇤
+
�t,k+1

�2

t,k+1

v2
max

!

n
E [Gt,k|Ft,0] . (48)

Assume that k 7! �t,k+1/�2

t,k+1
is a non-increasing sequence and set

Ct,k+1 :=
2!

↵n
v2
max

�t,k+1

�2

t,k+1

. (49)

From Proposition 22, since ↵ 2 (0, 1/(1 + !)], we have

Ct,k+1E [Gt,k+1|Ft,0] (1�↵/2)Ct,k+1E [Gt,k|Ft,0]+
2

↵
L2�2t,k+1

Ct,k+1E
⇥
kHt,k+1k2

��Ft,0

⇤

+ 2↵
L2

b
Ct,k+1

kX

`=1

�2t,`E
⇥
kHt,`k2

��Ft,0

⇤
. (50)

Upon noting that by definition of Ct,k+1 we have (remember that Ct,k+1 Ct,k)

(1� ↵/2)Ct,k+1 � Ct,k +
�t,k+1

�2

t,k+1

v2
max

!

n
 0 ,

this yields from (48) and (50)

E
h
W(bSt,k+1)|Ft,0

i
+ Ct,k+1E [Gt,k+1|Ft,0] E

h
W(bSt,k)|Ft,0

i
+ Ct,kE [Gt,k|Ft,0]

�
✓
�t,k+1vmin⇤t,k+1 �

2

↵
L2�2t,k+1

Ct,k+1

◆
E
⇥
kHt,k+1k2|Ft,0

⇤

+

�t,k+1

2�2

t,k+1

v2
max

L2

nb
(1 + 2!) + 2↵

L2

b
Ct,k+1

!
kX

`=1

�2t,`E
⇥
kHt,`k2|Ft,0

⇤
.

Let us restrict the computations to the case �t,k = �, �t,k = � (which implies Ct,k+1 = Ct,k =: C);
we obtain

�vmin

✓
1� �

L
Ẇ

2vmin

� �2

2vmin

� �2

�2

4v2
max

vmin

L2
!

↵2n

◆
E
⇥
kHt,k+1k2|Ft,0

⇤

 E
h
W(bSt,k)|Ft,0

i
+ CE [Gt,k|Ft,0]� E

h
W(bSt,k+1)|Ft,0

i
� CE [Gt,k+1|Ft,0]

+
�3

2�2
v2
max

L2

nb
(1 + 10!)

kX

`=1

E
⇥
kHt,`k2|Ft,0

⇤
.

We now sum from k = 0 to k = kin � 1 and divide by kin:

�vmin

✓
1� �

L
Ẇ

2vmin

� �2

2vmin

� �2

�2

4v2
max

vmin

L2
!

↵2n

◆
1

kin

kinX

k=1

E
⇥
kHt,kk2|Ft,0

⇤

 k�1

in
E
h
W(bSt,0)|Ft,0

i
+

C

kin
E [Gt,0|Ft,0]

� k�1

in
E
h
W(bSt,kin)|Ft,0

i
� C

kin
E [Gt,kin |Ft,0]

+
�3

2�2
v2
max

L2

nb
(1 + 10!)

kinX

k=1

E
⇥
kHt,kk2|Ft,0

⇤
.

42

As a conclusion, we have

�vmin

✓
1� �

L
Ẇ

2vmin

� �⇤̄
◆

1

kin

kin�1X

k=0

E
⇥
kHt,k+1k2|Ft,0

⇤

 k�1

in
E
h
W(bSt,0)|Ft,0

i
+

C

kin
E [Gt,0|Ft,0]

� k�1

in
E
h
W(bSt,kin)|Ft,0

i
� C

kin
E [Gt,kin |Ft,0] .

where

⇤̄ :=
�2

2vmin�
+

�

�2

4v2
max

vmin

L2
!

↵2n
+

�

2�2

v2
max

vmin

L2kin
nb

(1 + 10!) .

Next, we sum from t = 1 to t = kout, divide by kout.

�vmin

✓
1� �

L
Ẇ

2vmin

� �⇤̄
◆

1

koutkin

koutX

k=1

kinX

k=1

E
⇥
kHt,k+1k2

⇤

 k�1

in
k�1

out

⇣
E
h
W(bS1,0)

i
�minW

⌘
+

C

kinkout
E [G1,0] . (51)

Finally, we apply the expectation, with (⌧,K) a uniform random variable on [kout]? ⇥ [kin � 1],
independent of {bSt,k, t 2 [kout]?, k 2 [kin � 1]}, upon noting that Gt,kin = Gt+1,0 and bSt,kin =
bSt+1,0, this yields

�vmin

✓
1� �

L
Ẇ

2vmin

� �⇤̄
◆
E
⇥
kH⌧,K+1k2

⇤

 k�1

in
k�1

out

⇣
E
h
W(bS1,0)

i
�minW

⌘
+

C

kinkout
E [G1,0] . (52)

Impact of initialization. With V1,0,i = hi(bS1,0) for any i 2 [n]?, we have G1,0 = 0.

Choice of �. The latter inequality is true for all parameter �2 > 0 (coming from Young’s inequal-
ity). We can thus optimize the value of �2 to minimize the value of ⇤̄. We here discuss this choice.
First, to ensure that ⇤̄ is independent of �, we introduce a, and set �2 = a� so that

⇤̄ =
a

2vmin

+
1

a

4v2
max

vmin

L2
!

↵2n
+

1

2a

v2
max

vmin

L2kin
nb

(1 + 10!)

=
a

2vmin

+
4

a

v2
max

vmin

L2

n↵2

✓
! +

kin↵2

8b
(1 + 10!)

◆
.

Next, we optimize the value of a.2 Upon noting that a 7! Aa+B/a (for A,B > 0) is lower bounded
by 2
p
AB and its minimizer is a? :=

p
B/A, we choose

a? := 2
p
2vmax

Lp
n↵

✓
! +

kin↵2

8b
(1 + 10!)

◆1/2

.

and obtain

⇤̄ = 2
p
2
vmax

vmin

Lp
n↵

✓
! +

kin↵2

8b
(1 + 10!)

◆1/2

. (53)

Combining Equation (53) and Equation (52), we obtain

vmin (1� �⇤?)E
⇥
kH⌧,K+1k2

⇤
 ��1k�1

in
k�1

out

⇣
E
h
W(bS1,0)

i
�minW

⌘
,

where

⇤? :=
L
Ẇ

2vmin

+ 2
p
2
vmax

vmin

Lp
n↵

✓
! +

kin↵2

8b
(1 + 10!)

◆1/2

, (54)

which is the result of Proposition 25.
2Remark that this optimization step is crucial to optimize the dependency of ⇤̄ w.r.t. !: this ensures that

⇤̄ _ !3/2.

43

E.5 Proof of Theorem 3 (Equation (11)) from Proposition 25

We apply Proposition 25 with: b := d kin
(1+!)2

e and the largest possible learning rate ↵ = (1+ !)�1:
this gives in Equation (54)

⇤? =
L
Ẇ

2vmin

+ 2
p
2
vmax

vmin

Lp
n
(1 + !)

✓
! +

1 + 10!

8

◆1/2

=
L
Ẇ

2vmin

1 + 4

p
2
vmax

L
Ẇ

Lp
n
(1 + !)

✓
! +

1 + 10!

8

◆1/2
!

.

Next, we choose � to be the largest possible value to ensure (1� �⇤?) � 1

2
. For all t, k,

�t,k = � :=
1

2⇤?
=

vmin

L
Ẇ

1 + 4

p
2
vmax

L
Ẇ

Lp
n
(1 + !)

✓
! +

1 + 10!

8

◆1/2
!�1

.

This gives the first result of Theorem 3, namely Equation (11). We give the proof of the second
result, Equation (12) in the following subsection.

E.6 Proof of Theorem 3 (Equation (12)): control on h(bS⌧,K)

We now establish (12) for �t,k = �. Let t 2 [kout]? and k 2 [kin � 1]. We have

kh(bSt,k)k2 2kE [Ht,k+1|Ft,k] k2 + 2kh(bSt,k)� E [Ht,k+1|Ft,k] k2 . (55)

Let us consider the first term in (55). By Jensen’s inequality and the tower property of conditional
expectations

E
⇥
kE [Ht,k+1|Ft,k] k2|Ft,0

⇤
 E

⇥
E
⇥
kHt,k+1k2|Ft,k

⇤
|Ft,0

⇤
= E

⇥
kHt,k+1k2|Ft,0

⇤
.

Let us now consider the second term in (55). By Proposition 23 and Proposition 24, we have

E
h
kE [Ht,k+1|Ft,k]� h(bSt,k)k2|Ft,0

i

⇢
�2 L2

nb

Pk�1

`=1
E
⇥
kHt,`k2|Ft,0

⇤
when k � 2

0 when k 2 {0, 1} .

Therefore, we write

E
h
kh(bSt,k)k2

i
 2E

⇥
kHt,k+1k2

⇤
+ 2�2

L2

nb

k�1X

`=1

E
⇥
kHt,`k2

⇤

We now sum from k = 0 to k = kin � 1, then from t = 1 to t = kout, and finally we divide by
kinkout. This yields

E
h
kh(bS⌧,K)k2

i
 2E

⇥
kH⌧,K+1k2

⇤
+ 2�2

L2

nb

1

kinkout

koutX

t=1

kin�1X

k=2

k�1X

`=1

E
⇥
kHt,`k2

⇤

 2E
⇥
kH⌧,K+1k2

⇤
+ 2�2

L2

nb

1

kout

koutX

t=1

kin�2X

k=1

E
⇥
kHt,kk2

⇤

 2E
⇥
kH⌧,K+1k2

⇤
+ 2�2

L2

n

kin
b
E
⇥
kH⌧,K+1k2

⇤

 2

✓
1 + �2

L2

n

kin
b

◆
E
⇥
kH⌧,K+1k2

⇤
.

E.7 On the convergence of the Vt,k,i’s

In this subsection, we provide a complementary result, to support the assertion made in the text,
that the variable Vt,k,i approximates hi(bSt,k). Recall that for t 2 [kout]? and k 2 [kin], Gt,k :=
1

n

Pn
i=1
kVt,k,i � hi(bSt,k)k2 .

44

Proposition 26. When running algorithm 2 with a constant step size � equal to

� :=
vmin

L
Ẇ

1 + 4

p
2
vmax

L
Ẇ

Lp
n
(1 + !)

✓
! +

1 + 10!

8

◆1/2
!�1

,

with b := d kin
(1+!)2

e and ↵ := 1/(! + 1), we have

1

koutkin

koutX

t=1

kinX

k=1

E[Gt,k]
2(1 + !)

kinkout
E[G1,0] + 16

�

kinkout

(1 + !)2L2

vmin

⇣
E
h
W(bS1,0)

i
�minW

⌘
.

In words, the Cesaro average 1

koutkin

Pkout

t=1

Pkin

k=1
E[Gt,k] decreases proportionally to the number

of iterations kinkout. Consequently, the average squared distance between Vt,k,i and hi(bSt,k) (i.e.,
Gt,k), converges to 0 in the sense of Cesaro.

Proof. From Proposition 22, we have that, t 2 [kout]? and k 2 [kin], and any ↵ (! + 1)�1:

E [Gt,k+1|Ft,0] (1� ↵/2)E [Gt,k|Ft,0]

+
2

↵
L2�2t,k+1

E
⇥
kHt,k+1k2

��Ft,0

⇤
+ 2↵

L2

b

kX

`=1

�2t,`E
⇥
kHt,`k2

��Ft,0

⇤
.

Equivalently:

↵/2E [Gt,k|Ft,0] E [Gt,k|Ft,0]� E [Gt,k+1|Ft,0]

+
2

↵
L2�2t,k+1

E
⇥
kHt,k+1k2

��Ft,0

⇤
+ 2↵

L2

b

kX

`=1

�2t,`E
⇥
kHt,`k2

��Ft,0

⇤
.

Summing from k = 0 to k = kin � 1, we get, with �2t,k+1
= �:

↵

2

kin�1X

k=0

E [Gt,k|Ft,0] E [Gt,0|Ft,0]� E [Gt,kin |Ft,0]

+
2

↵
L2�2

kinX

k=1

E
⇥
kHt,kk2

��Ft,0

⇤
+ 2↵

L2

b

kin�1X

k=1

kX

`=1

�2E
⇥
kHt,`k2

��Ft,0

⇤

 E [Gt,0|Ft,0]� E [Gt,kin |Ft,0]

+
2

↵
L2�2

kinX

k=1

E
⇥
kHt,kk2

��Ft,0

⇤
+ 2↵

L2kin
b

kinX

k=1

�2E
⇥
kHt,kk2

��Ft,0

⇤

 E [Gt,0|Ft,0]� E [Gt,kin |Ft,0]

+
2

↵
L2�2

✓
1 +

↵2kin
b

◆ kinX

k=1

E
⇥
kHt,kk2

��Ft,0

⇤
.

Summing from t = 1 to t = kout, dividing by koutkin, and taking expectation we get:

1

koutkin

koutX

t=1

kin�1X

k=0

E[Gt,k]
2

↵koutkin
E[G1,0]

+
4

↵2koutkin
L2�2

✓
1 +

↵2kin
b

◆ koutX

t=1

kinX

k=1

E[kHt,kk2] .

We used that Gt,kin = Gt+1,0. By denoting (⌧,K) a uniform random variable on [kout]?⇥ [kin� 1]

– independent of the path {bSt,k, t 2 [kout]?, k 2 [kin]}, we have

E[G⌧,K] 2

↵koutkin
E[G1,0] +

4

↵2
L2�2

✓
1 +

↵2kin
b

◆
E[kH⌧,K+1k2] .

45

From Theorem 3, this yields (note that ↵ = (1 + !)�1 and b � kin/(1 + !)2)

E[G⌧,K] 2(1 + !)

koutkin
E[G1,0] + �

16(1 + !)2L2

vminkinkout

⇣
W(bS1,0)�minW

⌘
.

F Supplement to the numerical section

This section gathers additional details concerning the models used in our numerical experiments.
Namely, Appendix F.1 presents the full derivations for the FedEM algorithm for finite Gaussian Mix-
ture Models, and Appendix F.2 provides the detailed pseudo-code for the FedMissEM algorithm for
federated missing values imputation introduced in Section 4 and provides the necessary information
to request access to the data we used on the eBird platform [1].

F.1 Gaussian Mixture Model

Let y1, . . . , yN be N Rp-valued observations; they are modeled as the realization of a vector
(Y1, . . . , YN) with distribution defined as follows:

• conditionally to a {1, . . . , L}-valued vector of random variables (Z1, . . . , ZN),
(Y1, . . . , YN) are independent; and the conditional distribution of Yi is Np(µZi ,⌃).

• the r.v. (Z1, . . . , Zn) are i.i.d. with multinomial distribution of size 1 and with probabilities
⇡1, . . . ,⇡L.

Equivalently, the random variables (Y1, . . . , YN) are independent with distributionPL
`=1

⇡` Np(µ`,⌃). For 1 i N , the negative log-likelihood of the observation Yi is
given up to an additive constant term by

✓ 7! 1

2
ln det⌃+

1

2

⌦
YiY

>
i ,⌃�1

↵
� ln

LX

z=1

exp (hs(Yi, z),�(✓)i)

where, denoting {l}(z) the indicator function equal to 1 if z = l and 0 otherwise:

s(y, z) :=

0

BBBBBBB@

{1}(z)
...

{L}(z)
y {1}(z)

...
y {L}(z)

1

CCCCCCCA

, �(✓) :=

0

BBBBBBBB@

log(⇡1)� 1

2
µ>
1
⌃�1µ1

...
log(⇡L)� 1

2
µ>
L⌃

�1µL

⌃�1µ1

...
⌃�1µL

1

CCCCCCCCA

. (56)

The goal is to estimate the parameter ✓ := (⇡1, . . . ,⇡L, µ1, . . . , µL,⌃) by minimizing the normal-
ized negative log-likelihood:

F (✓) :=
1

2
ln det⌃+

1

2

*
1

N

NX

i=1

YiY
>
i ,⌃�1

+
� 1

N

NX

i=1

ln

Z
exp (hs(Yi, z),�(✓)i) ⌫(dz) (57)

where ⌫ is the counting measure on {1, . . . L}.

Classical EM algorithm We use the EM algorithm: in the Expectation (E) step, using the current
value of the iterate ✓curr, we compute a majorizing function ✓ 7! Q(✓, ✓curr) given up to an additive
constant by

Q(✓, ✓curr) = �hs̄(✓curr),�(✓)i+ (✓),

where

 (✓) :=
1

2
ln det⌃+

1

2

*
1

N

NX

i=1

YiY
>
i ,⌃�1

+
,

46

s̄(✓curr) :=
1

N

PN
i=1

s̄i(✓), and for any i 2 [N]?, s̄i(✓) is the conditional expectation of the complete
data sufficient statistics:

s̄i(✓) =

0

BBBBBBB@

⇢̄i,1(✓)
...

⇢̄i,L(✓)
Yi⇢̄i,1(✓)

...
Yi⇢̄i,L(✓)

1

CCCCCCCA

, where for ` 2 [L]?, ⇢̄i,l(✓) :=
⇡` Np(µ`,⌃)[Yi]PL

u=1
⇡u Np(µu,⌃)[Yi]

. (58)

In (58), Np(µ,⌃)[y] is the density function of the distribution Np(µ,⌃) evaluated at y.

In the optimization step (M-step), a new value of ✓curr is computed as a minimizer of ✓ 7! Q(✓, ✓curr).
Let us now detail this step.

Algorithm 5: Classical EM algorithm for mixture of Gaussians

1: Input: kmax 2 N, X , Ŝ0, ✓̂0
2: Output: The sequence of statistics: {Ŝk, k 2 [kmax]}; the sequence of parameters

{✓̂k, k 2 [kmax]}
3: for k = 0, . . . , kmax � 1 do

4: Expectation step: compute conditional expectations given current parameter ✓̂k: Set
Ŝk+1 = 1

N

PN
i=1

s̄i(✓̂k)

5: Maximization step: update parameter ✓̂k+1 based on current statistics Ŝk+1 according to
update rule (60)

6: end for

The M step: the map T. Let

s = (s(1), s(2)) = (s(1),1, . . . , s(1),L, s(2),1, . . . , s(2),L) 2 RL ⇥ RpL ;

we write hs,�(✓)i =
P

2

j=1

⌦
s(j),�(j)(✓)

↵
where the functions �(j) are defined by

�(1)(✓) :=

0

B@
log(⇡1)� 1

2
µ>
1
⌃�1µ1

...
log(⇡L)� 1

2
µ>
L⌃

�1µL

1

CA , �(2)(✓) :=

0

B@
⌃�1µ1

...
⌃�1µL

1

CA . (59)

By definition, T(s) = argmin✓2⇥ � hs,�(✓)i+ (✓). Here, this optimum is unique and defined by
T(s) = {⇡`(s), µ`(s), ` = 1, . . . , L;⌃} with

⇡`(s) :=
s(1),`

PL
u=1

s(1),u
, (60)

µ`(s) :=
s(2),`

s(1),`
, (61)

⌃(s) :=
1

N

NX

i=1

YiY
>
i �

LX

`=1

s(1),`µ`(s)µ
>
` (s) . (62)

The expressions of ⇡`(s) and µ`(s) are easily obtained. We provide details for the covariance matrix.
We have for any symmetric matrix H

ln
det(�+H)

det(�)
= ln det(I + ��1H) = ln(1 + Tr(��1H) + o(kHk))

= Tr(��1H) + o(kHk) =
⌦
H,��1

↵
+ o(kHk)

thus showing that the derivative of � 7! ln det� is ��1. T(s) depends on ⌃�1 through the function

⌃�1 7! �1

2
ln det(⌃�1)+

1

2

*
⌃�1,

1

N

NX

i=1

YiY
>
i

+
+

*
⌃�1,

1

2

LX

`=1

s(1),`µ`µ
>
` �

LX

`=1

µ` (s
(2),`)>

+
.

47

The optimum solves

⌃ =
1

N

NX

i=1

YiY
>
i +

LX

`=1

s(1),`µ`µ
>
` � 2

LX

`=1

µ` (s
(2),`)>

Hence, ⌃(s) is this solution when µ` µ`(s) which yields the expression since s(2),` =
s(1),`µ`(s).

In the federated setting. In the federated setting, the data is distributed across n local servers. For
all c 2 [n]?, the c-th server possesses a local data set of size Nc; Nc � 1 and

Pn
c=1

Nc = N . We
write

N[

i=1

{Yi} =
n[

c=1

Nc[

j=1

{Ycj} ,

thus meaning that each local worker #c processes the data set {Yc1, . . . , YcNc}.

The computation of the map T requires the knowledge of a statistic of the full data set, namely
N�1

PN
i=1

YiY >
i . For this reason, we want the map T to be available at the central server only.

Since
NX

i=1

Yi =
nX

c=1

NcX

j=1

Ycj

this full sum can be computed during the initialization of the algorithm by the central server, by
using the n local summaries

PNc

j=1
Ycj sent by the local workers.

In the FL setting, we write the objective function as follows

✓ 7! (✓)� 1

N

nX

c=1

NcX

j=1

ln

Z
exp (hs(Ycj , z),�(✓)i) ⌫(dz)

= � 1

N

nX

c=1

ln
NcY

j=1

Z
exp

✓
hs(Ycj , z),�(✓)i �

N

nNc
 (✓)

◆
⌫(dz)

/ � 1

n

nX

c=1

ln
NcY

j=1

Z
exp

✓
hs(Ycj , z),�(✓)i �

N

nNc
 (✓)

◆
⌫(dz) .

It is of the form (1) with R(✓) = 0 and

Lc(✓) := � ln
NcY

j=1

Z
exp

✓
hs(Ycj , z),�(✓)i �

N

nNc
 (✓)

◆
⌫(dz) .

In the case nNc = N for any c 2 [n]?, we have

Lc(✓) = �
N/nX

j=1

ln p(Ycj ; ✓) ,

with

p(y; ✓) :=

Z
p(y, z; ✓) ⌫(dz) p(y, z; ✓) := exp (hs(y, z),�(✓)i � (✓)) ⌫(dz) .

p(y, z; ✓) is of the form (2); this yields

s̄cj(✓) :=
LX

z=1

s(Ycj , z)⇢̄cj,z(✓) , s̄c(✓) :=
n

N

N/nX

j=1

s̄cj ,

where ⇢̄cj,z(✓) is defined by (58).

The pseudo code for the FedEM algorithm is given in Algorithm 6.

48

Algorithm 6: Federated EM algorithm for distributed GMM without compression

1: Input: kmax 2 N; for c 2 [n]?, V0,c 2 RL+pL; bS0 2 RL+pL; ✓̂0 2 RL ⇥ (Rp)L ⇥ Rp⇥p; a
positive sequence {�k+1, k 2 [kmax � 1]}; ↵

2: Output: The FedEMsequence: {bSk, k 2 [kmax]}
3: for k = 0, . . . , kmax � 1 do

4: for c = 1, . . . , n do

5: (agent #i, locally)
6: Sample a batch Ik,c ⇢ [Nc]

7: Set Sk+1,c =
1

|Ik,c|
P

i2Ik,c
s̄i(✓̂k), where s̄i is defined in (58)

8: Set �k+1,c = Sk+1,c � bSk � Vk,c

9: Update Vk+1,c = Vk,c + ↵Quant(�k+1,c)
10: Send Quant(�k+1,c) to the controller
11: end for

12: (the controller)
13: Compute Hk+1 = Vk + 1

n

Pn
c=1

Quant(�k+1,c)

14: Set bSk+1 = bSk + �k+1Hk+1

15: Set Vk+1 = Vk + ↵n�1
Pn

c=1
Quant(�k+1,c).

16: Send bSk+1 and ✓̂k+1 = T(bSk+1) to the agents, where T(Ŝk+1) is given by the update
rule (60)

17: end for

F.2 Federated missing values imputation

• Model and the FedMissEM algorithm. I observers participate in the programme, there are J
ecological sites and L time stamps. Each observer #i provides a J ⇥ L matrix Xi and a subset of
indices ⌦i ✓ [J]? ⇥ [L]?. For j 2 [J]? and ` 2 [L]?, the variable Xi

j` encodes the observation
that would be collected by observer #i if the site #j were visited at time stamp #`; since there
are unvisited sites, we denote by Y i := {Xi

j`, (j, `) 2 ⌦i} the set of observed values and Zi :=

{Xi
j`, (j, `) /2 ⌦i} the set of unobserved values. The statistical model is parameterized by a matrix

✓ 2 RJ⇥L, where ✓j` is a scalar parameter characterizing the distribution of species individuals at
site j and time stamp `. For instance, ✓j` is the log-intensity of a Poisson distribution when the
observations are count data or the log-odd of a binomial model when the observations are presence-
absence data. This model could be extended to the case observers #i and #i0 count different number
of specimens on average at the same location and time stamp, because they do not have access to
the same material or do not have the same level of expertise: heterogeneity between observers could
be modeled by using different parameters for each individual #i say ✓i 2 RJ⇥L. Here, we consider
the case when ✓ij` = ✓j` for all (j, `) 2 [J]? ⇥ [L]? and i 2 [I]?.

We further assume that the entries {Xi
j`, i 2 [I]?, j 2 [J]?, ` 2 [L]?} are independent

with a distribution from an exponential family with respect to some reference measure ⌫ on
R of the form: x 7! ⇢(x) exp{x✓j` � (✓j`)}. The function is for instance defined by
 (⌧) = � 1

2
⌧2 for a Gaussian model with expectation ⌧ and variance 1, (⌧) = log(1 +

e⌧) for a Bernoulli model with success probability ⌧ , and (⌧) = e⌧ for a Poisson model
with intensity ⌧ . Therefore, the joint distribution of (Y i, Zi) is given by pi(yi, zi; ✓) :=⇣Q

(j,`)2⌦i ⇢(yij`)
⌘ ⇣Q

(j,`)/2⌦i ⇢(zij`)
⌘
exp

⇣ ⌦
si(yi, zi), ✓

↵
�
P

j` (✓j`)
⌘
; where si(Y i, Zi) is

a J ⇥ L matrix with entry #(j, `) given by Y i
j` if (j, `) 2 ⌦i and Zi

j,` otherwise.

In order to estimate the unknown matrix ✓ 2 RJ⇥L, we assume that ✓ is low-rank; we use
the parameterization ✓ = UV >, where U 2 RJ⇥r and V 2 RL⇥r with rank(✓) = r and
r < min(J, L). The estimator is defined as a minimizer of the negative penalized log-likelihood:
minU2RJ⇥r,V 2RL⇥r F (U, V), with F (U, V) := 1

n

Pn
i=1

Li(UV >) + �
2

�
kUk2F + kV k2F

�
, where

for ✓ 2 RJ⇥L, Li(✓) := � log
R
pi(Y i, zi; ✓)

Q
(j,`)/2⌦i ⌫(dzij`).

49

FedMissEM algorithm. Algorithm 7 provides the pseudo-code for the Federated EM algorithm
for mising values imputation.

Algorithm 7: Federated EM algorithm for distributed missing data imputation

1: Input: kmax 2 N; for c 2 [n]?, V c
0
2 RI⇥J ; bS0 2 RI⇥J ; a positive sequence

{�k+1, k 2 [kmax � 1]}; ↵; the quantization function Quant
2: Output: The FedEM sequence: {bSk, k 2 [kmax]}
3: for k = 0, . . . , kmax � 1 do

4: for c = 1, . . . , n do

5: (agent #i, locally)
6: Initialize Sk+1,c = 0 and �k+1,c = 0 everywhere.
7: Sample a minibatch (Ic

k,J c
k) ⇢ [I]? ⇥ [J]?

8: for i 2 Ic
k do

9: for j 2 J c
k do

10: Set (Sck+1
)i,j = i,j2⌦cY c

i,j + (1� i,j2⌦c)(✓̂k)i,j
11: Set (�c

k+1
)i,j = (Sck+1

)i,j � bSi,j � (V c
k)i,j

12: end for

13: end for

14: Update V c
k+1

= V c
k + ↵Quant(�k+1,c)

15: Send Quant(�c
k+1

) to the controller
16: end for

17: (the controller)
18: Compute Hk+1 = Vk + n�1

Pn
c=1

Quant(�c
k+1

)

19: Set bSk+1 = bSk + �k+1Hk+1

20: Set Vk+1 = Vk + ↵n�1
Pn

c=1
Quant(�c

k+1
).

21: Send bSk+1 and ✓̂k+1 = T(bSk+1) to the agents
22: (Note: thresholded SVD for Gaussian model or computed iteratively for a general

exponential family model)
23: end for

eBird data information. In our experiments, we used a sample of the eBird data set [1], provided
upon request by the Cornell Lab of Ornithology. We are not allowed to disclose the data itself,
but we provide here the details to reproduce our experiments on the same data set, after requesting
acess on the eBird platform (https://ebird.org/data/request). We selected the counts recorded any-
where in France, between January 2000 and September 2020, for two different species: the Mallard
and the Common Buzzard. These two species were analyzed independently (see Section 4); the
corresponding code is also available as supplementary material.

50

	Introduction
	FedEM: Expectation Maximization algorithms for federated learning
	VR-FedEM: Federated EM algorithm with variance reduction
	Numerical illustrations
	Conclusions
	Results for FedEM with partial participation and compression.
	An example of quantization mechanisms: the block-p-quantization
	Convergence analysis of FedEM
	Pseudo code of the FedEM algorithm
	Notations and technical lemma
	Preliminary results
	Results on the memory terms Vk.
	Results on the random field Hk+1.
	Results on the local increments k+1,i.
	Results on the memory terms Vk,i.

	Proof of Theorem 1
	Proof of cor:diana-em

	Partial Participation case
	An equivalent algorithm
	Notations
	Preliminary results
	Proof of prop:PP

	Convergence Analysis of VR-FedEM
	Notations and elementary result
	Computed conditional expectations complexity.
	Preliminary results
	Results on the minibatch Bt,k+1
	Results on the statistics St,k,i
	Results on t,k+1,i
	Results on the memory terms Vt,k+1,i
	Results on the random field Ht,k+1

	Proof of Theorem 3
	Control of H, K

	Proof of theo:DS (eq:thm-VR-conv) from prop:DS
	Proof of theo:DS (eq:thm-VR-control): control on h(S"0362S,K)
	On the convergence of the Vt,k,i's

	Supplement to the numerical section
	Gaussian Mixture Model
	Federated missing values imputation

