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Abstract

The representations learned by large-scale NLP models such as BERT have been
widely used in various tasks. However, the increasing model size of the pre-trained
models also brings efficiency challenges, including inference speed and model
size when deploying models on mobile devices. Specifically, most operations
in BERT consist of matrix multiplications. These matrices are not low-rank and
thus canonical matrix decompositions do not lead to efficient approximations. In
this paper, we observe that the learned representation of each layer lies in a low-
dimensional space. Based on this observation, we propose DRONE (data-aware
low-rank compression), a provably optimal low-rank decomposition of weight
matrices, which has a simple closed form solution that can be efficiently computed.
DRONE can be applied to both fully-connected and self-attention layers appearing
in the BERT model. In addition to compressing standard models, our method
can also be used on distilled BERT models to further improve the compression
rate. Experimental results show that DRONE is able to improve both model size
and inference speed with limited loss in accuracy. Specifically, DRONE alone
achieves 1.92x speedup on the MRPC task with only 1.5% loss in accuracy, and
when DRONE is combined with distillation, it further achieves over 12.3x speedup
on various natural language inference tasks.

1 Introduction

The representations learned by large-scale Natural Language Processing (NLP) models such as BERT
and its variations have been widely used in various tasks [8, 2, 25, 3, 24]. The successes of these large
NLP models rely on the usage of large corpus and big models. Indeed, researchers have reported
better results with models that have more parameters [31] and number of layers [1]. The increasing
model size of the pre-trained models inhibits public users from training a model from scratch, and it
also brings forth efficiency challenges, including inference speed and model size when deploying
models on mobile devices.

To deal with efficiency issues, most existing work resorts to adjusting the model structure or distilla-
tion. For instance, [17] used locality-sensitive hashing to accelerate dot-product attention, [18] used
repeating model parameters to reduce the size and [44] applied a pre-defined attention pattern to save
computation. A large body of prior work focused on variants of distillation has also been explored
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Figure 1: Illustration of the BERT-base computational model. |V | (at bottom of the Parameter Size
column) denotes the number of tokens in the model. #Classes (at top of the Parmeter Size column)
denotes the number of classes in the down-stream classification task. Input encoding, Feed-forward 3
and Feed-forward 4 are computed only once and thus do not contribute much to overall time. The
inference time (in milliseconds) listed here is based on the inference time measured on a CPU.

[27, 15, 35, 20, 34, 35, 41, 45, 4]. These methods require a specific design of model architecture, or
a long training stage and thus it is less straightforward to combine these methods with each other.

In this paper, we explore a simpler acceleration method to speed up inference time which can be
applied to most existing architectures. As shown in Figure 1, matrix multiplication (feed-forward
layer) is a fundamental operation which appears many times in the Transformer [36], the backbone
architecture of the BERT model. In fact, the underlying computation of both multi-head attention
layers and feed-forward layers is matrix multiplication. Therefore, instead of resorting to the complex
architecture redesign approaches, we aim to investigate whether low-rank matrix approximation, a
classical and simple model compression approach, can be used to accelerate Transformers. Despite its
successful application to CNNs [42, 33, 32], at first glance, low-rank compression does not appear to
work for BERT since the matrices in both feed-forward layers and attention layers are not low rank
(see Figure 2). Therefore, even the optimal low-rank approximation (e.g., by SVD) will lead to very
large reconstruction error. This is probably why low-rank approximation has not been successfully
used in BERT compression.

In this paper, we propose a novel low-rank approximation algorithm to compress the weight matrices
even though they are not low-rank. The main idea is to exploit the data distribution. In NLP
applications, the latent features (features fed into each matrix mulitplication layer) usually indicate
some information extracted from natural sentences, and they often lie in a subspace with a low intrinsic
dimension [5, 32, 22]. Therefore, in most of the matrix-vector products, even though the weight
matrices are not low-rank, the input vectors lie in a low-dimensional subspace, allowing dimension
reduction with minimal degraded performance. We mathematically formulate this generalized low-
rank approximation problem which includes the data distribution term and provide a closed-form
solution for the optimal rank-k decomposition of the weight matrices. By leveraging the data
distribution idea, we propose DRONE (data-aware low-rank compression). Our decomposition
significantly outperforms the SVD under the same rank constraint, and can successfully accelerate
the BERT model without sacrificing too much test performance. In addition to compressing standard
models, DRONE can also be used on distilled BERT models to further improve the compression
rate. For example, DRONE alone achieves 1.92x speedup on the MRPC task with only 1.5% loss
in accuracy, and when combined with distillation, DRONE achieves over 12.3x speedup on various
natural language inference tasks.

2 Related Work
Fast inference is important for deploying NLP models in various applications. Generally speaking,
inference efficiency can be enhanced by hardware [30] or lower-level instruction optimization [23].
On the other hand, the main focus of the current research is on using algorithmic methods to reduce
computational complexity. These methods can be mainly categorized into two aspects: attention
complexity reduction and model size reduction.
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Figure 2: Illustration of the empirical observation that weight matrices in BERT model are not
low-rank. The X-axis represents what percentage of singular values; the Y-axis represents sum of
singular values connected to the selected ranks divided by sum of all singular values. Ideally, a
low-rank structure will have a larger area under the curve, meaning that a small percentage of the
singular values can explain their total sum. We observe that the sum of the top 50% of the ranks
only accounts about 60% of all singular values for matrices in the BERT model. This shows that the
matrices do not have a clear low-rank structure.

Attention Complexity Reduction

Attention mechanism is the building block of transformer models and has attracted the most attention
of researchers recently in the NLP field [36]. Pre-training on large corpus of BERT, a transformer-
based model, has contributed to state-of-the-art performance on various tasks after fine-tuning [8].
Attention on sequences of length L is O(L2) in both computational and memory complexity, which
yields long inference time when the sequence is long. Thus, researchers have focused on reducing the
complexity of the attention module. [17] used locality-sensitive hashing to reduce the complexity
to O(L logL). [44, 7] pre-defined an attention map to have a constant computational time. [11]
progressively eliminated the redundant context vectors within the attended sequence to improve
efficiency of attention in the last few layers of the model. [38] proposed to train the low-rank attention
by choosing a rank r � L. This is similar to our work in the sense of leveraging low-rank structures.
But our method does not require training the model from scratch and can be applied to different
modules other than attention. In fact, most of the above methods require special modules and thus
need to train the proposed models from scratch. This prohibits the usage of a large body of publicly
available open models for faster research progress. More importantly, these methods mainly focus
on the long sequence scenario. As shown in Figure 1, we have found out that attention module is
actually not the main inference bottleneck of inference time in common usage. In most, if not all,
models of common usages, two layers of large feed-forward layer are appended after the attention
module which incurs much more computational time. Attention complexity reduction only works
when a long sequence is used but in current practice this is unusual. Thus, in many tasks accelerating
the attention module itself does not contribute to a significant reduction of overall inference time.

Model Size Reduction

Inference speed is also related to model compression. In principle, smaller models lead to reduction
in the number of operations and thus faster inference time. [28] explored pruning methods on
BERT models to eliminate redundant links, and there is a line of research on pruning methods
[12, 13, 6, 10]. Quantization methods [43, 14, 19, 9] convert the 32 bits float models into fewer-bits
fixed-point representation and make model prediction faster with fixed point accelerator. [18] reduce
the model size by sharing encoder parameters. A large body of prior work focused on variants of
knowledge distillation [27, 15, 35, 20, 34, 35, 41, 45, 4]. These methods use different strategies to
distill information from a teacher network and reduce the number of layers [27] or hidden dimension
size [15]. Further, a hybrid compression method by combining matrix factorization, pruning and
knowledge distillation is proposed by [21]. Notice that [21] performed SVD for some components
and in this paper we propose an improvement over SVD by leveraging input distribution to each
layer. Idea of using input distribution to compress model has also been explored in PCN method

3



[37], which is perhaps the closest to our work. However, DRONE differs from PCN in following
three aspects. First, PCN only considers input distribution but not weight matrix and thus it’s
a special case of DRONE (i.e., W be an identity matrix in equation (3)). Second, PCN merely
does dimension reduction whereas our formulation achieves dimension reduction and low-rank
approximation simultaneously. Last, PCN does not guarantee the obtained transformation is the
optimal; whereas, DRONE formulates an approximation optimization problem and we provide the
optimal solution. Other forms of low-rank learning strategies including initialization and structure
pruning were also explored in the literature [39, 16], and we will compare to these baseline methods.
Among the above-mentioned methods, quantization requires hardware accelerator to maximally
reduce the inference time. Pruning methods can only reduce the model size, but the inference time
might not be reduced due to the limitation of sparse operations. Only algorithmic methods such as
distillation serve as a more generic inference time accelerating method. We want to emphasize that
our method is orthogonal to these distillation methods. In fact, the proposed method is an acceleration
method that is applicable to all components in most NLP models. In Section 4, we show that DRONE
can be combined with the distilled models to further improve the performance.

3 Proposed Method

We now introduce an algorithm for improving efficiency of matrix multiplication. The computation
of feed-forward (FF) layer in the attention models can be described as:

h = Wx+ b, (1)
o = σ(h), (2)

where W ∈ Rd2×d1 and b ∈ Rd2 are model parameters, x ∈ Rd1 is the latent representation of
a token, and h ∈ Rd2 is the intermediate representation before the activation function, σ(·) is the
activation function, and o ∈ Rd2 is the output. Assuming the sequence length is L, all the token
representations x1, . . . , xL ∈ Rd1 will pass through this same operation, so in practice the whole FF
layer can be computed by a matrix-matrix product W [x1, . . . xL] + b, and the computation of the bias
term b would be broadcast to all L input tokens. In practice we will normally have L� max(d1, d2)
(e.g., L = 128, d2 = 3072). Notice that applying σ(·) on h element-wisely costs O(Ld2), which
is much smaller than the cost of computing Wx (O(Ld2d1)). Therefore, in this paper we focus on
reducing the cost of computing Wx to accelerate the computation. A standard way to accelerate this
computation is to perform low-rank approximation on W . A low-rank approximation can be obatined
by using singular value decomposition (SVD), which achieves the best rank-k approximation in terms
of Frobenius norm and we can write W as:

W = USV T ≈ UW,kVW,k
T ,

with orthogonal matrices U ∈ Rd2×d2 , V ∈ Rd1×d1 and a diagonal matrix S ∈ Rd2×d1 . UW,k ∈
Rd2×k and VW,k ∈ Rd1×k are the rank-k approximation matrices by taking UW,k = US

1
2

k , VW,k =

V S
1
2

k , where S
1
2

k is the square-root of the first k entries of the diagonal matrix S. Given such an
approximation, we can simplify the computation in (1) by

h = Wx+ b ≈ UW,kVW,k
Tx+ b.

After conducting rank-k approximation, the computational complexity reduces from O(d2d1) to
O((d1+d2)k). When k is small enough, low-rank approximation not only accelerates the computation
[32] but also compresses the model size [26]. However, as shown in Figure 2, matrices in FF layer
of BERT do not show obvious low-rank structures. We observe that choosing top 50% rank (e.g.,
k = 0.5 min(d1, d2)) can only achieve around 60% of the accumulation ratio of singular values,
which implies large matrix approximation error. In the meantime, the complexity is still about
O(d2d1) and there is no enhancement of speed.

Even though the matrices in the model are not low-rank, we now provide an illustrative example to
show that a low-rank computation could still exist when data distribution lies in a lower intrinsic
dimension. Suppose we have a matrix W defined as below and the input x lies in a subspace:

W =


7 0 2 3 1
9 6 7 5 0
6 1 8 0 3
4 3 2 1 4
1 2 2 1 2

 , x ∈ span




2
2
5
5
4

 ,


1
1
2
2
6


 .
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In this case, W is a full-rank matrix so there is no lossless low-rank approximation of W . On the
other hand, the input data x lies in a 2-dimensional subspace so that we could construct the following
low-rank approximation:

7 0 2 3 1
9 6 7 5 0
6 1 8 0 3
4 3 2 1 4
1 2 2 1 2


︸ ︷︷ ︸

W


2 1
2 1
5 2
5 2
4 6


[
a
b

]
︸ ︷︷ ︸

x

=


43 23
90 39
66 41
45 37
29 21


︸ ︷︷ ︸

U

[
−1 −1 0.5 0.5 0
−0.5 0 0 0 0.25

]
︸ ︷︷ ︸

V T


2 1
2 1
5 2
5 2
4 6


[
a
b

]
︸ ︷︷ ︸

x

,

which gives a rank-2 matrix UV T where W 6= UV T but Wx = UV Tx for any x in the low
dimensional space. This shows that even if W cannot be approximated, it is still possible to construct
a good low-rank decomposition, and the key is to exploit the space of input vectors.

3.1 DRONE: Data-aware Low-rank Compression

Assuming the input x of the FF layer follows some distribution, instead of minimizing the approxima-
tion error of the weight matrix (for which SVD is optimal), we want to minimize the approximation
error of the outputs. Denoting X as the Rd1×n matrix where columns of X capture the empirical
distribution of the input (when n is large), our goal is to find projection matrix VX,k ∈ Rd1×k and
recovery matrix UX,k ∈ Rd2×k such that the output is well approximated. We rewrite (1) as:

h = WX + b ≈WUx,kVx,k
TX + b

= (WUx,k)Vx,k
TX + b = WX,kVx,k

TX + b,

where WX,k = WUx,k. Intuitively, when X lies in a lower-dimensional space, we could find such a
pair by PCA decomposition on X to project X onto the subspace that explains the most variance.
In this way, instead of considering the decomposition of W , we leverage the distribution of X to
complete the low-rank approximation.

However, the best way is to consider the properties of both W and X simultaneously, and we can
mathematically present this desideratum by the following optimization problem:

min
M
‖WX −WMX‖2F , s.t. rank(M ) = k, (3)

where M is the desired rank-k transformation which maximally preserves the results of the matrix
multiplication. In the theorem below, we show that there exists a closed-form, optimal solution for the
above optimization problem. Before stating the theorem, we first introduce some notation. Assuming
rank(W ) = r and rank(X) = t, we can write W = UWSWV T

W and X = UXSXV
T
X such that

UW =
[
UW,r ŪW,r

]
, SW =

[
SW,r 0

0 0

]
, VW =

[
VW,r V̄W,r

]
UX =

[
UX,t ŪX,t

]
, SX =

[
SX,t 0

0 0

]
, VX =

[
VX,t V̄X,t

]
.

In other words, the decomposition UWSWV T
W and UXSXV

T
X are the full-SVD decompositions of

W and X , respectively. The matrices UW,r,VW,r, UX,t,VX,t denote corresponding row spaces and
column spaces, while ŪW,r , V̄W,r, ŪX,t and V̄X,t are null spaces. With this notation, we are ready to
state the theorem.

Theorem 1. Assume rank(W ) = r and rank(X) = t. The closed form solutionM∗ of the optimization
problem (3) is

M∗ = VW,rS
−1
W,rZkS

−1
X,tU

T
X,t, (4)

where Zk is the rank-k truncated SVD of Z = SW,rV
T
W,rUX,tSX,t.
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The proof of Theorem 1 is provided in Appendix A. We note that since Zk is the rank-k truncated
SVD of Z, we could also write Zk as UZ,kV

T
Z,k by distributing the top-k singular values of Z into

left or right singular matrices. Thus the original computation can be rewritten as:

WX ≈ (WVW,rS
−1
W,rUZ,k)(V T

Z,kS
−1
X,tU

T
X,t)X = U∗V ∗TX, (5)

where U∗ = WVW,rS
−1
W,rUZ,k and V ∗T = V T

Z,kS
−1
X,tU

T
X,t are two rank-k matrices, and we will

replace W by U∗V ∗T .

3.2 Extension to Dot-product Attention

Although the optimization problem in (3) is proposed for feed-forward computation, in this section we
show that it can also be applied to the dot-product part of the attention module. The key computation
in the attention layer is to compute pairwise similarity between queries and keys of the sequence:

O = (QȲ )T (KY ), (6)

where Ȳ ∈ Rd1×n is the batch query data, Q ∈ Rd2×d1 is the query transformation matrix, Y ∈
Rd1×m is the batch key data, K ∈ Rd2×d1 is the key transformation matrix and n,m are query and
key batch sizes, respectively. We can again see that the desired low-rank approximation is the solution
of the following optimization problem:

min
M
‖(QȲ )T (KY )− (QȲ )TM(KY )‖2F , s.t. rank(M ) = k. (7)

With QȲ = W and KȲ = X , we get the following corollary from Theorem 1 directly.

Corollary 1. Assume rank(QȲ ) = r and rank(KY ) = t. Let QȲ = UWSWV T
W and KY =

UXSXV
T
X be the SVD decomposition of QȲ and KY respectively. The closed form solution M∗ of

the optimization problem (7) is given by

M∗ = VW,rS
−1
W,rZkS

−1
X,rU

T
X,r, (8)

where Zk is the rank-k truncated SVD of Z = SW,rV
T
W,rUX,tSX,t .

3.3 Overall Algorithm

We have shown that the proposed DRONE method is a generic acceleration module applicable to all
parts of neural language models. We summarize the DRONE on feed-forward layer in Algorithm
1. Since in practice we don’t have the exact distribution of X , we use training data to calculate the
low-rank approximations as described in Algorithm 1. The attention map calculation can be done by
the same procedure with W = (QȲ )T and X = KY as given by the Corollary 1.

To accelerate the whole model, we need to select appropriate ranks for each component. However,
since the approximation of one component affects the distribution of overall representations, the
optimal rank for the model requires a complete search of all possible combinations of rank values,
which is infeasible in practice. We thus resort to a simplified approach as shown in Algorithm 2.
A more detailed description is provided in the Appendix B. In short, as the changes of lower layer
parameters will cause the distribution of representation shifts in upper layers, we approximate each
component one-by-one in their topological order of the model. In another words, we approximate the
model from the lower layers toward the higher layers. Within each layer, we follow the topological
order of underlying modules. We provide a total allowed increase of loss ratio r as an input to the
Algorithm 2. The hyper-parameter r depends on the efficiency and efficacy trade-off which users are
willing to pay. The larger the value r, the faster approximation we get at the cost of lower accuracy.
We then distribute r into each module Rl,i (allowed loss increase ratio of i-th module of l-th layer in
Algorithm 2). The distribution from r to each Rl,i is based on the observed inference time of each
module El,i (observed empirical inference time of i-th module of l-th layer in Algorithm 2). The
longer a module takes to compute, the more budget is allocated. Overall, total allowed loss r and the
distributed loss ratio for each module Rl,i fulfil the equality (1 + r) =

∏
l

∏
i(1 +Rl,i). For each

module, if the approximation with certain rank used won’t increase the loss over the ratio (1 + Rl,i),
we will use that rank to approximate the module and move on to the next module. The pseudo code is
also provided in the Appendix to illustrate the process.
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Algorithm 1 Data-Aware Low-rank Compression of feed-forward layer.

Input: rank k, training data Dtrain, Original weight matrix W , Prediction Model M .
Output: Low-rank Approximation U∗, V ∗.
X = {}
for all batches xb in Dtrain do

Feed the batch of training data xb intoM and extract the representation x. x is the representation
which will be multiplied with W as in (1).

Append x to X.
end for
Given X ,k and W , solve the optimal low-rank matrices U∗,V ∗ by (5).

Algorithm 2 Overall Low-rank Model Approximation Algorithm

Input: training data Dtrain, original weight matrix W . prediction Model M , total allowed loss
increase ratio r, Observed inference time E, Search grids of ranks for each module G, original
Training loss L.
Output: Low-rank Model M̂ .

# Distribute allowed ratio r into each module by E
Emin ← arg minl,iEl,i

El,i ← El,i

Emin

Eb ← exp( log(1+r)∑
l,i El,i

)

Rl,i ← E
El,i

b − 1
for l = 1, · · · , total layers do

for each module mi ∈Ml do
Wl,i ← l-th layer parameter of module mi

(e.g., 2nd feed-forward matrix in first layer.)
for i = 1, · · · , |Gl,i| do

k ← Gl,i

U, V ← Algorithm 1 (k,Dtrain,Wl,i,M )
M̂ ←M with Wl,i replaced by U, V .
Evaluate new loss Lnew = M̂(Dtrain)
if Lnew/L < 1 +Rl,i then

M ← M̂
break;

end if
end for

end for

4 Experimental Results

4.1 Experimental Setup

We evaluate DRONE on both LSTM and transformer-based BERT models. For LSTMs, we train
a 2-layer LSTM-based language model from scratch with hidden sizes 1500 on Penn Treebank
Bank (PTB) dataset. For BERT models, we evaluate the pre-trained BERT models on GLUE tasks.
Various pre-trained models are offered in the open source platform [40]. For BERT models, we use
BERT-base models and it contains 12 layers of the same model structure without sharing parameters.
Each layer contains an attention module with hidden size 768 and 12 channels, a small 768× 768
Feed-forward (FF) layer followed by 2 larger FF layers (768× 3072 and 3072× 768). As shown in
Figure 1, these four components consume the most computational time in the BERT-base models.

For the baseline methods, most of the existing work pertaining to low-rank approximation [21, 32]
leverages SVD in part of the compression procedure. Therefore, our baseline comparison will be the
SVD approximation, and our work aims to provide an improvement over SVD. We also include the
state-of-the-art distillation methods TinyBERT [15] in the comparison and show that the proposed
method can be combined with it to further improve the performance. TinyBERT reduces the model
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Table 1: The experimental results of running pret-rained BERT-base model on natural language
inference tasks (Glue dataset). Each task has its own metric for performance measurement. Accuracy
(SST-2, QNLI, RTE and WNLI), F1/Accuracy (MRPC and QQP), Matthew’s correlation (CoLA),
Matched accuracy/Mismatched accuracy (MNLI) and Person/Spearman correlation (STS-B) are
used respectively. All the DRONE results are within 3% accuracy loss and show that DRONE can
accelerate the whole BERT model across different tasks and devices.

Methods MNLI QQP SST-2 QNLI MRPC RTE CoLA STS-B
Original 84.3 90.9 92.3 91.4 89.5 72.6 53.4 87.8

SVD 74.4 50.8 73.1 52.2 63.8 47.3 12.4 33.6
DRONE 82.0 89.4 90.0 88.5 86.7 70.0 52.5 85.8

DRONE-Retrain 82.6 90.1 90.8 89.3 88.0 71.5 53.2 87.8
CPU Speedup Ratio 1.60x 1.25x 1.64x 1.20x 1.92x 1.31x 1.33x 1.52x
GPU Speedup Ratio 1.28x 1.38x 1.45x 1.28x 1.56x 1.33x 1.29x 1.57x

into 4 layers of attention dimension 312 with 12 channels, and the FF layers are downsized to
312× 1200. As we mentioned above, all the approximation methods need to consider efficiency and
efficacy trade-off. In this paper, we follow previous literature [15, 5] and report the approximation
results with about 3% loss in accuracy to compare the performance of all methods.

In real-world applications, NLP models are mostly evaluated on mobile devices or servers with
multiple hardware accelerators. Thus, we measure the inference speed on both CPU (Intel(R) Xeon(R)
CPU E5-2640 v4 @ 2.40GHz) and GPU (GeForce GTX 1080 Ti) devices. All the experiments are
repeated 10 times. The average single sequence prediction inference time in milliseconds is reported
in the results. We want to emphasize that unlike many of the literature [38, 17, 7], which reported
speedup only in the attention layers, our results reflect end-to-end speedup including both attention
module and feed-forward layers. To perform the approximation, empirically we found randomly
sub-sample 10% of the training data suffices to provide good results. Using more data can only
provide limited performance boost but comes at a higher cost of longer preprocessing time. Thus,
we will use 10% random sample of the training data to perform the experiments. After the proposed
data-aware low-rank distribution, we slightly fine-tune the model to further improve the performance.
We use a relatively smaller learning rate 10−7 and retrain 1 epoch on the sub-sampled training data to
complete the fine-tuning procedure.

4.2 Results of BERT Models on GLUE Dataset
We summarize the results of DRONE on GLUE tasks in Table 1. Detailed inference time of each
component of the compressed Transformer model is listed in the Appendix. Detailed inference time
of an uncompressed BERT-BASE model can be found in Figure 1. We observe that each task exhibits
different difficulty. The best acceleration we can achieve is nearly twice as fast (1.92x) with less than
2% accuracy loss after retraining (on the MRPC). In addition, DRONE achieves 1.52x acceleration
without accuracy loss on the STS-B task. By applying the same selected rank for each module
with SVD method, we can observe that the performance drops significantly. This shows that the
matrices within the model is generally not low-rank; thus the direct low-rank approximation without
considering data distribution does not work. On GPU, we see that the acceleration is more or less
the same as on CPU except MNLI and MRPC tasks. This is due to the fact that GPU uses massive
parallelism and low-rank approximation introduces a sequential computation which might hinder the
speedup depending on the size of the matrices and ranks used. To resolve this problem, low-level
cuda code optimization is needed and system researchers have studied the problem [29], which is out
of the scope of the present work. Despite this, we can still observe that DRONE performs better on
QQP, RTE and STS-B and it provides about 1.5x acceleration for various tasks on GPU. An example
of ranks used in SST-2 is listed in Appendix F.

4.3 Combination with Model Size Reduction Methods

Our proposed DRONE is a general low-rank approximation technique, and it is complementary to
many other model compression methods. To illustrative its power, we now demonstrate that DRONE
can be combined together distillation. The discussion of combination with Quantization is left in the
Appendix. Distillation methods compress the underlying model into a smaller one without losing
much accuracy. Distilled models are much smaller in number of layers or hidden dimension, resulting
in a smaller model size and faster inference time. As shown in the Table 2, TinyBERT, one of the
most competitive distillation methods, indeed achieves good performance within 3% accuracy loss
for some of the GLUE tasks. Due to the fact that the computation inside the distilled model is still
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full matrix computation, DRONE can be applied to find data-aware low-rank approximation of these
smaller matrices. Results are summarized in Table 2. As we can see combining DRONE with the
distillation method further reduces the inference time without sacrificing accuracy. In particular,
on the SST-2 task DRONE + TinyBERT speeds the inference time from 11.7x to 15.3x on CPU
while achieving the same accuracy as the TinyBERT. Similarly, DRONE + TinyBERT speedups GPU
results with 10.9x STS-B and 9.7x on SST-2 with competitive performance. These results again
show that the proposed method has the potential to be applied under various scenarios and hardware
devices to achieve a better model inference time speedup.

Table 2: The average inference time (in milliseconds) in comparison to distilled models on CPU and
GPU. The unit is in millisecond. The results show that DRONE can be combined with distillation to
further improve the performance. Compared to the state-of-the-art distillation method, the speedup
ratio increases from 11.4x to 14.2x on STS-B and from 11.7x to 15.3x on SST-2.

Tasks Models CPU-speedup GPU-speedup Accuracy (%)
BERT 1x 1x 87.8

STS-B TinyBERT 11.4x 8.6x 86.9
DRONE +TinyBERT 14.2x 10.9x 87.0

BERT 1x 1x 72.6
RTE TinyBERT 1.8x 1.9x 70.8

DRONE +TinyBERT 2.1x 2.2x 71.7
BERT 1x 1x 89.5

MRPC TinyBERT 11.6x 7.8x 86.3
DRONE +TinyBERT 12.3x 8.6x 86.7

BERT 1x 1x 92.3
SST-2 TinyBERT 11.7x 8.4x 90.7

DRONE +TinyBERT 15.3x 9.7x 90.7

Table 3: Illustration of SVD fine-tuning on MRPC, RTE, CoLA and STS-B. Using the same rank as
the proposed DRONE method, SVD accuracy will drop significantly after the approximation. After
fine-tuning done on the SVD approximation, the accuracy could be recovered for some tasks (e.g.,
MRPC), but SVD + Retrain still perform much worse than DRONE across all the tasks.

Models MRPC RTE CoLA STS-B
BERT 89.5 72.6 53.4 87.8

DRONE-Retrain 88.0 71.5 53.2 87.8
SVD 63.8 47.3 12.4 33.6

SVD-Retrain 85.8 63.5 24.4 66.3

4.4 Comparison to Structured Pruning Methods.

Instead of compressing model after training to accelerate inference time, another line of research
called Structured Pruning tried to learn the low-rank structure during training of the model to save
both training and inference time simultaneously. This raises the question if post-processing such
as DRONE is necessary if no further compression is required once we can get a small model after
training. Thus, it’s worth comparing DRONE with the state-of-the-art Structure Pruning method [39].
In [39], attention modules are not approximated by low-rank matrices. To make the comparison fair,
we apply DRONE on base models except the attention module and keep others the same. For MRPC,
DRONE achieves 1.58x speedup with performance drop from 89.5 to 89.4. [39] achieves 1.43x with
performance 88.61. For SST-2, DRONE achieves 1.41x speedup without sacrificing performance
(92.3). [39] also achieves about 1.41x speedup with the performance 92.09. Thus, we can see that
DRONE performs better than structured pruning.

One further question is that if we can use the idea of DRONE to do fast training? We conducted
DRONE on the pre-trained RTE task before fine-tuning to get a low-rank structure, and then apply the
regular end-to-end training over this compressed model. We found out this procedure with directly
using the same rank as in our experiments ( with 1.38x speedup) can only achieve 68.2 accuracy.
But if we reduce the compression ratio into 1.2x training time speedup, this procedure can give us
72.9 accuracy. On the other hand, the same procedure with SVD as the initilialization of low-rank
structure can only get 52.1 accuracy. This preliminary experiment shows that in addition to inference
time acceleration, DRONE also has the potential to be applied in the training, but directly transport
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DRONE into training can not lead to the optimal result. How to improve low-rank training is an
interesting future direction.

4.5 Additional Experiments on Large-Scale Models and Language Generation Tasks

Concerns might be raised that if DRONE can also be generalized to other scenarios such as larger
models or other NLP tasks. To validate DRONE on larger models. We conduct experiments on RTE
dataset with BERT-LARGE model. BERT-LARGE doubled number of layers and the dimension is
increased from 768 to 1024. Average inference time for a data increased to 1405ms and it achieves
accuracy 74. The overall result is 72.9 with inference time 1018ms (1.38x speedup). This result is
comparable to our BERT-BASE result (1.31x speedup). To validate DRONE on other NLP tasks,
We conducted the method on the machine translation task via OpenNMT. It provides a 2-layer
transformer model on en-de translation. On the transformer part, DRONE achieves 1.76x speedup
with BLEU from 33.47 to 33.26. Through these two additional experiments, we can validate that the
proposed DRONE is generic in the sense that so long as the underlying model is composed of matrix
computation, DRONE can compress the model regardless of model sizes and target tasks.

4.6 Can we directly learn low-rank structures by end-to-end training?

From an optimization perspective, a natural question to ask is whether the same optimal low-rank
structure could be learned by end-to-end fine-tuning once the rank is decided. We conduct experiments
on 4 tasks to verify this, and the results are summarized in Table 3. We start by performing DRONE
on the task to achieve the desired accuracy, and perform SVD with the same set of ranks. Accuracy of
SVD drops significantly for all tasks. We then fine-tune hyper-parameters as in [40]1 to fine-tune the
above SVD results. After fine-tuning, the accuracy improves across all tasks, but none of it can reach
the same performance as DRONE. This shows that due to the difficulty of optimizing a non-convex
objective function, fine-tuning the SVD result may not achieve the best low-rank result. On the other
hand, the proposed DRONE method under the the optimization problem (3) can obtain the provably
optimal low-rank approximation at a much lower computational cost than the fine-tuned SVD.

4.7 Pre-processing of DRONE is not too costly

DRONE accelerates inference speed at the cost of a pre-processing step. Thus, It’s natural to ask
if DRONE will take long pre-processing time. Given the rank, prep-rocessing of DRONE has a
one-time distribution extraction plus low-rank solving of equation (3). Depending on training data
size, first stage takes 2 mins (RTE) to 20 mins (MNLI). Second stage has 2 SVD computations and is
about 5-10 mins. The matrix size involved is limited as we subsample training data. SVD costs about
3 mins and retrain costs from 5 mins to 2 hours depending on training data size. Thus, pre-processing
of DRONE is about the same order as SVD but with much better performance. Distillation such as
TinyBERT firstly has a general distillation of BERT-base on large data used to train original BERT,
followed by task-specific distillation. Despite task-specific one is rather fast (15 mins to 2hrs), first
stage takes a few days for a single GPU. Overall, DRONE is not costly compared to other methods.

5 Conclusions

In this paper, we propose DRONE, a data-aware low-rank approximation, to achieve a better low-rank
approximation in BERT models. DRONE leverages the fact that data distribution in NLP tasks usually
lies in a lower-dimensional subspace. By considering the data distribution, we propose a data-aware
low-rank approximation problem and provide a closed-form solution. Empirical results validate
that DRONE can significantly outperform the vanilla-SVD method, and can achieve at least 20%
acceleration with less than 3% accuracy loss. When DRONE is combined with distillation methods,
it further achieves up to 15.3 times acceleration with less than 2% accuracy loss.

1https://huggingface.co/transformers/v2.1.1/examples.html#glue
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