
A Appendix

A.1 Open-source notebook and data

Colab notebook for producing and analyzing performance profiles, robust aggregate metrics, and
interval estimates based on stratified bootstrap CIs, as well as replicating the results in the paper can
be found at bit.ly/statistical_precipice_colab.

Individual runs for Atari 100k. We released the 100 runs per game for each of the 6 algorithms in
the case study in a public cloud bucket at gs://rl-benchmark-data/atari_100k.

Individual runs for ALE, Procgen and DM Control. For ALE, we used the individual runs
from Dopamine [14] baselines except for DreamerV2 [38], REM [1] and M-IQN [109], for which
the individual run scores were obtained from the corresponding authors. We release all the indi-
vidual run scores as well as final scores for ALE at gs://rl-benchmark-data/ALE. The Proc-
gen results were obtained from the authors of IDAAC [80] and MixReg [48] and are released at
gs://rl-benchmark-data/procgen. For DM Control11, all the runs were obtained from the
corresponding authors and are released at gs://rl-benchmark-data/dm_control.

See agarwl.github.io/rliable for a website for the paper.

A.2 Atari 100k: Additional Details and Results

Craz
yC

lim
be

r

Sea
qu

es
t

Dem
on

Atta
ck

Qbe
rt

Brea
ko

ut
Hero

Fros
tbi

te

Ja
mes

bo
nd

Pon
g

Ass
au

lt

Amida
r

Roa
dR

un
ne

r

Aste
rix Krul

l

MsP
ac

man

Box
ing

Ban
kH

eis
t

Gop
he

r

UpN
Dow

n

Priv
ate

Eye

Kun
gF

uM
as

ter

Batt
leZ

on
e

Alie
n

Kan
ga

roo

Cho
pp

erC
om

man
d

Free
way

−0.2

−0.1

0.0

0.1

0.2

0.3

Pe
ar

so
n 

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t Correlation in scores from 2 independent sets of 100 runs/game with same seeds

Figure A.13: Runs can be different from using fixed random seeds. We find that correlation between two
sets of 100 runs of DER on Atari 100k using the same set of random seeds, that is, using a fixed random seed per
run for Python, NumPy and JAX, is quite small. Small values of correlation coefficient highlight that fixing
seeds does not ensure deterministic results due to non-determinism in GPUs. Similarly, setting random seed in
PyTorch ensures reproducibility only on the same hardware.

Code. Due to unavailability of open-source code for DER, and OTR for Atari 100k, we re-implemented
these algorithms using Dopamine [14], a reproducible deep RL framework. For CURL and SPR, we
used the open-source code released by the authors while for DrQ, we used the source-code obtained
from the authors. Our code for Atari 100k experiments is open-sourced as part of the Dopamine
library under the labs/atari_100k folder. We also released a JAX [13] implementation of the full
Rainbow [42] in Dopamine.

Hyperparameters. All algorithms build upon the Rainbow [42] architecture and we use the exact
same hyperparameters specified in the corresponding publication unless specified otherwise. Akin to
DrQ and SPR, we used n-step returns with n = 10 instead of n = 20 for DER. DrQ codebase uses
non-standard evaluation hyperparameters, such as a 5% probability of selecting random actions during
evaluation (ε-eval= 0.05). DrQ(ε) differs DrQ in terms of using standard ε-greedy parameters [14,
Table 1] including training ε decayed to 0.01 rather than 0.1 and evaluation ε set to 0.001 instead of
0.05. Refer to the gin configurations in labs/atari_100k/configs for more details.

11Dreamer [37] results on DM control, obtained from the corresponding author, are based on hyperparameters
tuned for sample-efficiency. Compared to the original paper [37], the actor-critic learning rates were increased to
3e− 4, the amount of free bits to 1.5, the training frequency, and the amount of pre-training to 1k steps on 10k
randomly collected frames. The imagination horizon was decreased to 10.

18

https://colab.research.google.com/drive/1ZmIhLVfxbj6ATIBg97RBJhFNs-6QWrik#scrollTo=CJzoQDw3zXtN
https://console.cloud.google.com/storage/browser/rl-benchmark-data/atari_100k
https://console.cloud.google.com/storage/browser/rl-benchmark-data/ALE
https://console.cloud.google.com/storage/browser/rl-benchmark-data/procgen
https://console.cloud.google.com/storage/browser/rl-benchmark-data/dm_control
https://agarwl.github.io/rliable
https://github.com/google/dopamine/tree/master/dopamine/labs/atari_100k
https://github.com/google/dopamine/blob/master/dopamine/jax/agents/full_rainbow/full_rainbow_agent.py
https://github.com/google/dopamine/blob/master/dopamine/jax/agents/full_rainbow/full_rainbow_agent.py
https://github.com/google/dopamine/tree/master/dopamine/labs/atari_100k/configs


0.04 0.08 0.12 0.16
0

10

Co
un

t

Alien

0.03 0.06 0.09 0.12
0

10
Amidar

0.45 0.60 0.75 0.90
0

10
Assault

0.02 0.04 0.06
0

10

Asterix

0.0 0.3 0.6 0.9
0

20
BankHeist

0.00 0.15 0.30 0.45
0

10
BattleZone

−0.50 −0.25 0.00 0.25
0

10
Co

un
t

Boxing

0.16 0.24 0.32 0.40
0

10
Breakout

−0.06 0.00 0.06 0.12
0

10
ChopperCommand

0.0 0.8 1.6
0

10
CrazyClimber

0.15 0.30 0.45
0

10
DemonAttack

0.0 0.3 0.6 0.9
0

20
Freeway

0.15 0.30 0.45
0

20

Co
un

t

Frostbite

0.00 0.08 0.16 0.24
0

10
Gopher

0.08 0.16 0.24 0.32
0

20
Hero

0.50 0.75 1.00 1.25
0

10
Jamesbond

0.00 0.15 0.30
0

20
Kangaroo

0.8 1.6 2.4 3.2
0

10
Krull

0.0 0.2 0.4 0.6
0

10

Co
un

t

KungFuMaster

0.08 0.16 0.24
0

10
MsPacman

0.0 0.4 0.8
0

10

Pong

0.000 0.015 0.030
0

50

PrivateEye

0.1 0.2 0.3
0

10

Qbert

0.5 1.0 1.5 2.0
0

10
RoadRunner

0.00250.00500.00750.0100
0

10

Co
un

t

Seaquest

0.1 0.2 0.3 0.4
0

10
UpNDown

Figure A.14: Per-game score distributions. Histogram plot with kernel density estimate of human-normalized
scores of DER on 26 games in the Atari 100k benchmark. Each histogram plot is based on 100 runs per game.
For most games, the distributions are either skewed (e.g., KUNGFUMASTER), heavy-tailed (e.g., BANKHEIST,
FROSTBITE) or multimodal (e.g., HERO)

.

3 5 10 25 50 100
Number of Runs (K)

−0.1

0.0

0.1

0.2

95
%

 C
Is 

fo
r S

co
re

 D
iff

er
en

ce
(S
co
re

X
−
Sc
or
e Y

)

Median Difference

3 5 10 25 50 100
Number of Runs (K)

−0.1

0.0

0.1

0.2

IQM Difference

X,Y = DER,CURL
X,Y = DER,CURL

X,Y = DrQ(ε),DER
X,Y = DrQ(ε),DER

X,Y = SPR,DrQ(ε)
X,Y = SPR,DrQ(ε)

Figure A.15: Detecting score differences. Left. 95% CIs for
differences in median scores. Right. 95% CIs for differences
in IQM scores. Median requires many more runs than IQM for
small uncertainty.

0% 25% 50%
Trim fraction (α)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

M
SE

 fo
r α

%
 tr

im
m

ed
 m

ea
n 

es
tim

at
or

DER
OTR
CURL

DrQ(ε)
DrQ
SPR

Figure A.16: Statistical Efficiency of
IQM. Efficiency of an estimator is typ-
ically measured in terms of its mean
squared error (MSE). We estimate MSE
for trimmed estimators with 10 runs by
subsampling 20,000 sets of 10 runs with
replacement from 100 runs.

Compute. For the case study on Atari 100k, we used Tesla P100 GPUs for all the runs. Each run
spanned about 3-5 hours depending on the algorithm, and we ran a total of 100 runs / game × 26
games/algorithm × 6 algorithms = 15,600 runs. Additionally, we ran an additional 100 runs per game
for DER to compute a good approximation of point estimates for aggregate scores, which increases
the total number of runs by 2600. Overall, we trained and evaluated 18,200 runs, which roughly
amounts to 2400 days – 3600 days of GPU training.

Comparing performance of two algorithms. When confidence intervals (CIs) overlap for two
random variables X and Y overlap, we estimate the 95% CIs for X − Y to account for uncertainty
in their difference (Figure A.15). For example, when using 5 runs, the median score improvement
from DrQ(ε) over DER is estimated to lie within (0.01, 0.21) while that of SPR over DrQ lies within
(−0.09, 0.18). Furthermore, while improvement from SPR over DER with 5 to 15 runs is not
statistically significant, claiming “no improvement” would be misleading as evaluating more runs
indeed shows that the improvement is significant.

Analyzing efficiency and bias of IQM. Theoretically, trimmed means, are known to have higher
statistical efficiency for mixed distributions and heavy-tailed distributions (Cauchy distribution), at
the cost of lower efficiency for some other less heavily-tailed distributions (normal distribution) than
mean, as shown by the seminal work of Tukey [106]. Empirically, on Atari 100k, IQM provides good
statistically efficiency among trimmed estimators across different algorithms (Figure A.16) as well as
has considerably small bias than median (c.f. Figure A.17 vs. Figure 3).

19



3 5 102550100

0.176
0.180
0.184
0.188

Ex
pe

ct
ed

 IQ
M

 
 w

ith
 N

 ru
ns

DER

3 5 102550100
0.108

0.112

0.116

0.120

OTR

3 5 102550100

0.105

0.110

0.115

0.120
CURL

3 5 102550100

0.272
0.276
0.280
0.284

DrQ(ε)

3 5 102550100

0.330

0.335

0.340

0.345
SPR

Number of Runs (N)
Figure A.17: Negligible bias in IQM scores. Expected IQM scores with varying number of runs. The expected
score for N runs is computed by repeatedly subsampling N runs with replacement out of 100 runs for 100,000
times. Compared to expected median score differences (Figure 3), the difference in expected IQM scores with 3
runs and 100 runs is typically an order of magnitude smaller. For example, the expected median differences for
SPR is 0.05 points while expected IQM differences are only 0.006 points.

A.3 Related work on rigorous evaluation in deep RL

While prior work [41, 46, 68] highlights various reproducibility issues in policy-gradient methods,
this paper focuses specifically on the reliability of evaluation procedures on RL benchmarks and
provides an extensive analysis on common deep RL algorithms on widely-used benchmarks.

For more rigorous performance comparisons on a single RL task, Colas et al. [21], Henderson
et al. [41] provide guidelines for statistical significance testing while Colas et al. [20] focuses on
determining the minimum number of runs needed for such comparisons to be statistically significant.
Instead, this paper focuses on reliable comparisons on a suite of tasks and mainly recommends
reporting stratified bootstrap CIs due to the dichotomous nature and wide misinterpretation of
statistical significance tests (see Remark in Section 2). Colas et al. [20, 21], Henderson et al. [41]
also discuss bootstrap CIs but for reporting single task mean scores – however, 3-5 runs is a small
sample size for bootstrapping: on Atari 100k, for achieving true coverage close to 95%, such CIs
require at least 20-30 runs per task (Figure A.18) as opposed to 5-10 runs for stratified bootstrap CIs
for aggregate metrics like median, mean and IQM (Figure A.19).

Chan et al. [16] propose metrics to measure the reliability of RL algorithms in terms of their stability
during training and their variability and risk in returns across multiple episodes. While this paper
focuses on reliability of evaluation itself, performance profiles showing the tail distribution of episodic
returns, applicable for even a single task with multiple runs, can be useful for measuring reliability of
an algorithm’s performance.

Jordan et al. [49] propose a game-theoretic evaluation procedure for “complete” algorithms that do
not require any hyperparameter tuning and recommend evaluating between 1,000 to 10,000 runs
per task to detect statistically significant results. Instead, this work focuses on reliably evaluating
performance obtained after the hyperparameter tuning phase, even with just a handful of runs. That
said, run-score distributions based on runs with different hyperparameter configurations might reveal
sensitivity to hyperparameter tuning.

An alternative to score distributions, proposed by Recht [83], is to replace scores in a performance
profile [26] by the probability that average task scores of a given method outperforms the best
method (among a given set of methods), computed using the Welsh’s t-test [113]. However, this
profile is (1) also a biased estimate, (2) less robust to outlier runs, (3) is insensitive to the size of
performance differences, i.e., two methods that are uniformly 1% and 100% worse than the best
method are assigned the same probability, (4) is only sensible when task score distributions are
Gaussian, as required by Welsh’s t-test, and finally, (5) the ranking of methods depends on the specific
set of methods being compared in such profiles.

A.4 Non-standard Evaluation Protocols Involving Maximum

Even when adequate number of runs are used, the use of non-standard evaluation protocols can result
in misleading comparisons. Such protocols commonly involve the insertion of a maximum operation
inside evaluation, across or within runs, leading to a positive bias in reported scores compared to the
standard approach without the maximum.

One seemingly reasonable but faulty argument [10] for maximum across runs is that in a real-world
application, one might wish to run an stochastic algorithm A for N runs and then select the best
result. However, in this case, we are not discussing A but another algorithm AN , which evaluates N

20



3 5 10 2030 50 100
Number of Runs

50%

60%

70%

80%

90%

100%

M
ea

n 
sc

or
e 

Bo
ot

st
ra

p 
C

Is
 

 T
ru

e 
C

ov
er

ag
e 

%

Method: percentile

3 5 10 2030 50 100
Number of Runs

50%

60%

70%

80%

90%

100%
Method: basic

3 5 10 2030 50 100
Number of Runs

50%

60%

70%

80%

90%

100%
Method: bc

3 5 10 2030 50 100
Number of Runs

50%

60%

70%

80%

90%

100%
Method: bca

Figure A.18: Validating 95% bootstrap CIs for per-game mean scores for a varying number of runs for DER,
shown as a scatter plot where each point corresponds to one of the 26 games in Atari 100k. For a given game,
the true coverage % is computed by sampling 10,000 sets of K runs without replacement from 200 runs and
checking the fraction of 95% CIs that contains the true mean score for that game based on 200 runs. For many
games, the true coverage for per-game CIs is below the nominal coverage of 95% even with 30 runs per game.

75

85

95

Tr
ue

 C
ov

er
ag

e 
%

95% Median CIs

75

85

95

95% Mean CIs

75

85

95

95% IQM CIs

3 5 10 20 50100
Number of Runs

0.00

0.05

0.10

Av
er

ag
e

 C
I W

id
th

3 5 10 20 50100
Number of Runs

0.00

0.05

0.10

3 5 10 20 50100
Number of Runs

0.00

0.05

0.10

basic bc bca percentile

Figure A.19: Validating 95% stratified bootstrap CIs for aggregate scores for a varying number of runs.
We show CIs for median, mean and IQM scores, aggregated using scores across 26 games, for DER. The true
coverage % is computed by sampling 10,000 sets of K runs without replacement from 200 runs and checking the
fraction of 95% CIs that contains the true estimate approximation based on 200 runs. Please note that coverage
above 95%, even with 50+ runs, is likely due to approximation error in the true estimate using finite runs.

random runs of A. If we are interested in AN , taking maximum over N runs only considers a single
run of AN . Since AN is itself stochastic, proper experimental methodology requires multiple runs
of AN . Furthermore, because learning curves are not in general monotonic, results produced under
the maximum-during-training protocol are in general incomparable with end-performance reported
results. In addition, such protocols introduces an additional source of positive statistical bias, since
the maximum of a set of random variables is a biased estimate of their true maximum.

On Atari 100k, CURL [56] and SUNRISE [59] used non-standard evaluation protocols. CURL reported
the maximum performance over 10 different evaluations during training. As a result, natural variability
in both evaluation itself and in the agent’s performance during training contribute to overestimation.
Applying the same procedure to CURL’s baseline DER leads to scores far above those reported for
CURL (Figure 5, “DER (CURL’s protocol)”). In the case of SUNRISE, the maximum was taken over
eight hyperparameter configurations separately for each game, with three runs each. We simulate
this procedure for DER (also SUNRISE’s baseline), using a dummy hyperparameter. We find that
a lot of SUNRISE’s improvement over DER can be explained by this evaluation scheme (Figure 5,
“DER (SUNRISE’s protocol)”).

A.5 Bootstrap Confidence Intervals

Bootstrap CIs for a real parameter θ are based on re-sampling with replacement from a fixed set of K
samples to create a bootstrap sample of size K and compute the bootstrap parameter θ∗ and repeating

21



DQN (Nature) DQN (Adam) C51 REM IQN Rainbow M-IQN DreamerV2

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

2.0
M

ed
ia

n 
Hu

m
an

 N
or

m
al

ize
d 

Sc
or

e

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

2.0

IQ
M

 H
um

an
 N

or
m

al
ize

d 
Sc

or
e

Figure A.20: Comparing Median vs IQM on Atari 200M. Sample-efficiency of agents as a function of
number of frames measured via median (left) and IQM (right) human-normalized scores. Shaded regions show
pointwise 95% percentile stratified bootstrap CIs. IQM results in significantly smaller CIs than median scores.

this process a numerous to create the bootstrap distribution over θ∗. In this paper, we evaluate the
following non-parametric methods for constructing CIs for θ using this bootstrap distribution:

1. Basic bootstrap, also known as the reverse percentile interval, uses the empirical quantiles
from the bootstrap distribution of the parameter δ̂ = θ̂ − θ for defining the α × 100% CI:
(2θ̂ −θ∗(α/2), 2θ̂ −θ

∗
(1−α/2)), where θ∗(1−α/2) denotes the 1−α/2 percentile of the bootstrapped

parameters θ∗ and θ̂ is the empirical estimate of the parameter based on finite samples.
2. Percentile bootstrap. The percentile bootstrap proceeds in a similar way to the basic bootstrap,

using percentiles of the bootstrap distribution, but with a different formula: (θ∗(1−α/2), θ
∗
(α/2))

for defining the α× 100% CI.
3. Bias-corrected (bc) bootstrap – adjusts for bias in the bootstrap distribution.
4. Bias-corrected and accelerated (bca) bootstrap, by Efron [29], adjusts for both bias and skew-

ness in the bootstrap distribution. This approach is typically considered to be more accurate
and has better asymptotic properties. However, we find that it is not as effective as percentile
methods in the few-run deep RL regime.

More technical details about bootstrap CIs can be found in [40]. We find that bootstrap CIs for
mean scores per game (computed using N random samples) require many more runs than aggregate
scores (computed using MN random samples) for achieving true coverage close to the nominal
coverage of 95% (c.f. Figure A.18 vs. Figure A.19).

Number of bootstrap re-samples. Unless specified otherwise, for computing uncertainty estimates
using stratified bootstrap, we use 50,000 samples for aggregate metrics and 2000 samples for
pointwise confidence bands and average probability of improvement. Using larger number of samples
then the above specified values might result in more accurate uncertainty estimates but would be
slower to compute.

Stratified bootstrap over tasks and runs12. With access to only 1-2 runs per task, stratified
bootstrapping can be done over tasks (Figure A.22), to answer the question: “If I repeat the experiment
with a different set of tasks, what performance an algorithm is I expected to get?” It shows the
sensitivity of the aggregate score to a given task and can also be viewed as an estimate of performance
if we had used a larger unknown population of tasks [e.g., 90, 94]. Compared to the interval estimates
in Figure 9, bootstraping over tasks results in much larger uncertainty due to high variations in
performance across different tasks (e.g., easy vs hard exploration tasks).

A.6 Visualizing score distributions

Choice of Normalization. We used existing normalization schemes which are prevalent on bench-
marks including human normalized scores for Atari 100k and ALE, PPO normalized scores and
Min-Max normalized scores for Procgen, and Min-Max Normalized scores (minimum scores set

12Thanks to David Silver and Tom Schaul for suggesting stratified bootstrapping over tasks.

22



0.5 1.0 1.5 2.0 2.5 3.0 3.5
PPO Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 R

un
s w

ith
 S

co
re

 >
 τ

0.0 0.2 0.4 0.6 0.8 1.0
Min-Max Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 R

un
s w

ith
 S

co
re

 >
 τ

PPO MixReg UCB-DrAC PLR PPG IDAAC

Figure A.21: Score Distributions on the Procgen benchmark [18] based on results in the easy mode set-
ting [80]. Shaded regions indicate 95% CIs estimated using the percentile bootstrap with stratified sampling. We
compare PPO [92], MixReg [111], UCB-DrAC [81], PLR [48], PPG [19] and IDAAC [80]. We recommend
using min-max normalized scores as opposed to PPO normalized scores.

5 10 15 20
DQN (Nature)
DQN (Adam)

C51
REM
IQN

Rainbow
M-IQN

DreamerV2
MuZero
Muesli

Median

8 16 24

IQM

15 30

Mean

0.15 0.30 0.45

Optimality Gap

Human Normalized Score

Figure A.22: Stratified Bootstrap across tasks and runs. Aggregate metrics on Atari 200M with 95% CIs
based on 55 games with sticky actions [69]. Higher mean, median and IQM scores and lower optimality gap
are better. The CIs are estimated using the percentile bootstrap with stratified sampling across tasks and runs.
MuZero [91] results use 1 run/game while Muesli [43] uses 2 runs/game, as provided by the corresponding
authors. All other results are based on 5 runs per game except for M-IQN and DreamerV2 which report results
with 3 and 11 runs. These estimates are much wider than that obtained via bootstrap over runs (Figure 9).

0 2 4 6 8
Human Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 sc

or
e 

>
τ

Score Distributions: ALE

0.0 0.5 1.0 2.0 4.0 8.0
Human Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 sc

or
e 

>
τ

Score Distributions with Non Linear Scaling

DQN (Nature) DQN (Adam) C51 REM IQN Rainbow M-IQN DreamerV2

Figure A.23: Score distributions with linear and with non-linear scaling on Atari 200M. In the plots above,
the x-axis is scaled such that spacing between any two τ values, τ1 and τ2, is proportional to the fraction of runs
averaged across algorithms between those two τ values. This scaling shows the regions of the score distribution
where most of the runs lie as opposed to comparing tail ends of the distribution. However, this scaling implies
sub-linear utility of achieving higher scores, which may not be accurate as the utility depends on the difficulty of
obtaining higher scores – it is much higher to obtain higher scores on hard exploration games. Furthermore, we
cannot visually inspect mean/IQM scores based on the area under the curve due to the non-linear scaling.

to zero) scores for DM Control. We do not use record normalized scores for ALE (Figure A.27)
in the main text as ALE results are reported by evaluating agents for 30 minutes of game-play as
opposed to record scores which were obtained using game play spanning numerous hours (e.g.,
Toromanoff et al. [105] recommend evaluating agents for 100 hours). Furthermore, we recommend

23



0.0 0.5 1.0 1.5 2.0
Human Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n 
of

 ru
ns

 w
ith

 sc
or

e 
>
τ Score Distributions 

0.0 0.1 0.2 0.5 1.0 2.0
Human Normalized Score (τ)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 sc

or
e 

>
τ Score Distributions with Non Linear Scaling

SimPLe DER OTR CURL DrQ(ε) SPR

Figure A.24: Score distributions with linear and with non-linear scaling on Atari 100k. In the plots above,
the x-axis is scaled such that spacing between any two τ values, τ1 and τ2, is proportional to the fraction of runs
averaged across algorithms between those two τ values.

0.08 0.16 0.24
DQN (Nature)
DQN (Adam)

C51
REM

Rainbow
IQN

M-IQN
DreamerV2

Difficulty Progress (25%)

0.30 0.45 0.60

Difficulty Progress (50%)

0.4 0.5 0.6 0.7

Superhuman Probability

Human Normalized Score

Figure A.25: Alternative aggregate metrics on ALE based on 55 games with 95% CIs. Higher metrics are
better. The CIs are estimated using the percentile bootstrap with stratified sampling.

using Min-Max Normalized scores for Procgen instead of PPO Normalized scores (Figure A.21) to
allow for comparisons to methods which do not build upon PPO [92].

Scaling x-axis in score distributions. Figure A.23 (right) and Figure A.24 (right) shows an alterna-
tive for visualizing score distributions where we simply scale the x-axis depending on the fraction of
runs in a given region. This scaling more clearly shows the differences in algorithms by focusing on
the regions where most of the runs lie13.

A.7 Aggregate metrics: Additional visualizations and details

Alternative aggregate metrics. Different aggregate metrics emphasize different characteristics and
no single metric would be sufficient for evaluating progress. While score distributions provide a full
picture of evaluation results, we provide suggestions for alternative aggregate metrics to highlight
other important aspects of performance across different tasks and runs.

• Difficulty Progress: One might be more interested in evaluating progress on the hardest
tasks on a benchmark [3]. In addition to optimality gap which emphasizes all tasks below a
certain performance level, a possible aggregate measure to consider is the mean scores of
the bottom 25% of the runs (Figure A.25, left), which we call Difficulty Progress (DP-25).

• Superhuman Probability: We also recommend reporting probability of being superhuman,
P (X > 1), given by the number of runs above average human performance (Figure A.25,
right) instead of number of games above average human performance [42, 93], a commonly
used metric on ALE.

13Thanks to Mateo Hessel for suggesting this visualization scheme and the difficulty progress metric.

24



DQN (Nature) DQN (Adam) C51 REM Rainbow IQN M-IQN DreamerV2

0.25 0.5 1.0 2.0 4.0
Human Normalized Score (γ)

0.0

0.2

0.4

0.6
Op

tim
al

ity
 G

ap
 (γ

)/γ

Atari 200M

Figure A.26: Optimality gap (γ) divided by γ as a
function of γ. Lower curves are better.

0.0 0.2 0.4 0.6 0.8 1.0
Record Normalized Score (τ)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 sc

or
e 

≥
τ Atari 200M

Figure A.27: Score distributions using record nor-
malized scores.

Al
go

rit
hm

 X
Al

go
rit

hm
 X

0.15 0.30 0.45

D41 (1Dture)
D41 (AdDP)

C51
5(0
I41

5DiQERw
0-I41

DreDPerV2
3(D41 (1Dture) > X)

0.2 0.4 0.6 0.8

3(D41 (AdDP) > X)

0.2 0.4 0.6 0.8

3(C51 > X)

0.2 0.4 0.6 0.8

3(5(0 > X)

0.4 0.6 0.8

D41 (1Dture)
D41 (AdDP)

C51
5(0
I41

5DiQERw
0-I41

DreDPerV2
3(I41 > X)

0.4 0.6 0.8

3(5DiQERw > X)

0.4 0.6 0.8

3(0-I41 > X)

0.60 0.75

3(DreDPerV2 > X)

Figure A.28: Average Probability of Improvement on ALE. Each subplot shows the probability of improve-
ment of a given algorithm compared to all other algorithms. The interval estimates are based on stratified
bootstrap with independent sampling with 2000 bootstrap re-samples

Choice of γ for optimality gap. When using min-max normalized scores or human-normalized
scores, setting a score threshold of γ = 1 is sensible as it considers performance on games below
maximum performance or human performance respectively. If there is no preference for a specific
threshold, an alternative is to consider a curve of optimality gap as the threshold is varied, as shown
in Figure A.26, which shows how far from optimality an algorithm is given any threshold – a small
value of optimality gaps for all achievable score thresholds is desirable.

Probability of improvement. To compute the probability of improvement for a taskm for algorithms
X and Y with N and K runs respectively, we use the Mann-Whitney U-statistic [71], that is,

P (Xm > Ym) =
1

NK

N∑
i=1

K∑
j=1

S(xm,i, ym,j) where S(x, y) =


1, if y < x,
1
2 , if y = x,

0, if y > x.

(A.2)

Please note that if the probability of improvement is higher than 0.5 and the CIs do not contain 0.5,
then the results are statistically significant. Furthermore, if the upper CI is higher than a threshold of
0.75, then the results are said to be statistically meaningful as per the Neyman-Pearson statistical
testing criterion by Bouthillier et al. [12]. We show the average probability of improvement metrics

25



0.30 0.45 0.60

6LP3Le
D(5
O75

CU5L
DU4(ε)

635
3(6LP3Le > X)

0.300.450.600.75

3(D(5 > X)

0.15 0.30 0.45

3(O75 > X)

0.15 0.30 0.45 0.60

6LP3Le
D(5
O75

CU5L
DU4(ε)

635
3(CU5L > X)

0.450.600.75

3(DU4(ε) > X)

0.45 0.60 0.75 0.90

3(635 > X)

Al
go

rit
hm

 X
Al

go
rit

hm
 X

Figure A.29: Average Probability of Improvement on Atari 100k. Each subplot shows the probability of
improvement of a given algorithm compared to all other algorithms. The interval estimates are based on stratified
bootstrap with independent sampling with 2000 bootstrap re-samples.

for Atari 100k and ALE in Figure A.29 and Figure A.28. These estimates show how likely an
algorithm improves upon another algorithm.

Aggregate metrics on Atari 100k, Procgen and DM Control as well as ranking on individual tasks
on DM Control are visualized in Figures A.30–A.33.

0.15 0.30 0.45
SimPLe

DER
OTR

CURL
DrQ

DrQ(ε)
SPR

Median

0.1 0.2 0.3 0.4

IQM

0.2 0.4 0.6 0.8

Mean

0.56 0.64 0.72 0.80

Optimality Gap

Human Normalized Score

Figure A.30: Aggregate metrics on Atari 100k based on 26 games with 95% CIs. Higher mean, median and
IQM scores and lower optimality gap are better. The CIs are estimated using the percentile bootstrap with
stratified sampling. All results are based on 10 runs per game except SimPLe, for which we use the 5 runs from
their reported results. IQM results in smaller CIs than median scores while optimality gap results in smaller CIs
than mean scores. Mean scores are higher than IQM and median scores, indicating that they might be dominated
by performance on outlier tasks.

26



0.4 0.6 0.8
SLAC

SAC+AE
Dreamer

PISAC
RAD
DrQ

Median

0.30 0.45 0.60 0.75

IQM

0.45 0.60 0.75

Mean

0.30 0.45 0.60

Optimality Gap

Max Normalized Score

(a) 100k step benchmark.

0.72 0.80 0.88 0.96
SLAC

SAC+AE
Dreamer

PISAC
RAD
DrQ

Median

0.78 0.84 0.90

IQM

0.72 0.78 0.84 0.90

Mean

0.12 0.18 0.24

Optimality Gap

Max Normalized Score

(b) 500k step benchmark.

Figure A.31: Aggregate metrics on DM Control based on 6 tasks with 95% CIs. Higher mean, median and
IQM scores and lower optimality gap are better. The CIs are estimated using the percentile bootstrap with
stratified sampling with 50,000 bootstrap resamples. All results are based on 10 runs per game. All scores are
bounded above by 1, so 1 - optimality gap corresponds to mean scores.

1.05 1.20 1.35
PPO

MixReg
UCB-DrAC

PLR
PPG

IDAAC
Median

1.05 1.20 1.35

IQM

1.00 1.25 1.50 1.75

Mean

0.02 0.04 0.06

Optimality Gap

PPO Normalized Score

(a) Aggregate metrics based on PPO normalized scores. Mean is dominated by outliers while median has
large CIs compared to IQM. All algorithms perform better than PPO, resulting in a small optimality gap.

0.32 0.40 0.48 0.56
PPO

MixReg
UCB-DrAC

PLR
PPG

IDAAC
Median

0.3 0.4 0.5 0.6

IQM

0.32 0.40 0.48

Mean

0.48 0.56 0.64

Optimality Gap

Min-Max Normalized Score

(b) Aggregate metrics based on min-max normalized scores. IQM results in smaller CIs than median
scores. With min-max normalization, scores are below 1, so optimality gap corresponds to 1 - mean scores.

Figure A.32: Aggregate metrics on Procgen based on 16 tasks with 95% CIs. Higher mean, median and IQM
scores and lower optimality gap are better. The CIs are estimated using the percentile bootstrap with stratified
sampling with 50,000 bootstrap resamples. We compare PPO [92], MixReg [111], UCB-DrAC [81], PLR [48],
PPG [19] and IDAAC [80]. All results are based on 10 runs per game.

27



1 2 3 4 5 6
Ranking

Di
st
rib

ut
io
n

ball_in_cup_catch

1 2 3 4 5 6
Ranking

cartpole_swingup

1 2 3 4 5 6
Ranking

cheetah_run

1 2 3 4 5 6
Ranking

finger_spin

1 2 3 4 5 6
Ranking

reacher_easy

1 2 3 4 5 6
Ranking

walker_walk

SLAC SAC+AE Dreamer PISAC RAD DrQ

(a) 100k step benchmark.

1 2 3 4 5 6
Ranking

Di
st
rib

ut
io
n

ball_in_cup_catch

1 2 3 4 5 6
Ranking

cartpole_swingup

1 2 3 4 5 6
Ranking

cheetah_run

1 2 3 4 5 6
Ranking

finger_spin

1 2 3 4 5 6
Ranking

reacher_easy

1 2 3 4 5 6
Ranking

walker_walk

SLAC SAC+AE Dreamer PISAC RAD DrQ

(b) 500k step benchmark.

Figure A.33: Ranking on individual tasks on DM Control 100k and 500k step benchmark. The ith column
in the rank distribution plots show the probability that a given method is assigned rank i, when compared to
other methods. These distributions are estimated using stratified bootstrap with 200,000 repetitions. We observe
that no single algorithm consistently ranks above other algorithms on all tasks, making comparisons difficult
without aggregating results across tasks.

28


