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A Proof of the asymptotic normality of CADR

Proof of theorem 1. Recalling the definition of our estimator, we have that
√
T (Ψ̂T −Ψ(Q̄0, Q0,X))

=ΓT
1√
T

T∑
t=1

σ̂−1
t

(
Ψ( ̂̄Qt−1, Q̂X,t−1)−Ψ(Q̄0, Q0,X) +D(gt,

̂̄Qt−1, Q̂X,t−1)(O(t))
)

=ΓT
1√
T

T∑
t=1

σ̂−1
t

(
D(gt,

̂̄Qt−1)(O(t))− PQ0,gtD(gt,
̂̄Qt−1)(O(t))

)
=ΓT

1√
T

T∑
t=1

(δO(t) − PQ0,gt)σ̂
−1
t (D′)(gt,

̂̄Qt−1),

where

(D′)(g, Q̄) :=D(g, Q̄,Q0,X) + Ψ(Q̄,Q0,X)

=
g∗

g
(ỹ − Q̄) +

∫
g∗(a | ·)Q̄(a, ·)dµA(a).

Note that

VarQ0,gt((D
′)(gt,

̂̄Qt−1)(O(t)) | Ō(t− 1))

= VarQ0,gt(D(gt,
̂̄Qt−1, Q̂X,t−1)(O(t)) | Ō(t− 1))

=σ2
0,t.

Let Zt,T := T−1/2σ̂−1
t (δO(t) − PQ0,gt)(D

′)(gt,
̂̄Qt−1).

Observe that {Zt,T : t = 1, . . . , T, T ≥ 1} is a martingale triangular array where, for every T ≥ 1,
t ∈ [T ], Zt,T is Ō(t)-measurable. We will apply a martingale central limit theorem for triangular

arrays to prove that
∑T
t=1 Zt,T

d−→ N (0, 1). This will hold if we can check that

• the sum of conditional variances VT :=
∑T
t=1 VarQ0,gt(Zt,T | Ō(t − 1)) converges in

probability to 1,

• the Lindeberg condition is satisfied, that is, for any ε > 0,

T∑
t=1

E[Z2
t,T 1(Zt,T > ε) | Ō(t− 1)]

p−→ 0.

Convergence of the sum of conditional variances. We have that

VT :=

T∑
t=1

VarQ0,gt(ZT,t | Ō(t− 1)) =
1

T

T∑
t=1

σ2
0,t

σ̂2
t

= 1 +
1

T

T∑
t=1

σ2
0,t − σ̂2

t

σ2
0,t + (σ2

0,t − σ̂2
t )
.

We now show that the terms of the right-hand side of the last equality above are o(1) a.s. As
σ2

0,t − σ̂2
t = o(1) a.s. by assumption, it suffices to show that σ0,t is lower bounded by a positive

constant.
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For any fixed QX , Q̄, g, we have that, D(g, Q̄,QX) = D(g, Q̄0, Q0,X) + (D(g, Q̄,QX) −
D(g, Q̄0, Q0,X)). It is straightforward to check that D(g, Q̄0, Q0,X) lies in the Hilbert space
T1(Q0) := L0

2(Q0,Y )⊕ L0
2(Q0,X), where

L0
2(Q0,Y ) :=

{
h : O → R : ∀(x, a) ∈ X ×A,

∫
h(x, a, y)dQ0,Y (y | a, x) = 0

}
,

and L0
2(Q0,X) :=

{
h : X → R :

∫
h(x)dQ0,X(x) = 0

}
,

while D(g, Q̄,QX)−D(g, Q̄0, Q0,X) lies in the Hilbert space

T2(g) := L0
2(g) :=

{
h : X ×A → R : ∀x ∈ X ,

∫
h(x, a)g(a | x)dµA(a) = 0

}
.

It is straightforward to check that T1(Q0) and T2(g) are orthogonal subspaces of L2(PQ0,g). We
have

σ2
0(g, Q̄) =

∥∥D(g, Q̄,QX)
∥∥2

2,Q0,g
−
(
PQ0,gD(g, Q̄,QX)

)2
≥
∥∥D(g, Q̄,QX)

∥∥2

2,Q0,g

=
∥∥D(g, Q̄0, Q0,X)

∥∥2

2,Q0,g
+
∥∥D(g, Q̄,QX)−D(g, Q̄0, Q0,X)

∥∥2

2,Q0,g

≥
∥∥D(g, Q̄0, Q0,X)

∥∥2

2,Q0,g
.

where we have used in the third line above thatD(g, Q̄0, Q0,X) andD(g, Q̄,QX)−D(g, Q̄0, Q0,X)
lie in the orthogonal subspaces T1(Q0) and T2(g). Therefore,

inf
t≥1

σ2
0,t := inf

t≥1
σ2

0(gt,
̂̄Qt−1)

≥ inf
g

∥∥D(g, Q̄0, Q0,X)
∥∥2

2,Q0,g

>0,

where the last inequality is exactly assumption 1.

Therefore, ∣∣∣∣∣ σ2
0,t − σ̂2

t

σ2
0,t + (σ2

0,t − σ̂2
t )

∣∣∣∣∣ ≤
∣∣σ2

0,t − σ̂2
t

∣∣
infs≥1 σ2

0,s + o(1)
= o(1)

almost surely. Therefore, by Cesaro summation, VT − 1 = o(1) a.s.

Checking Lindeberg’s condition. Let ε > 0. We want to show that

T∑
t=1

E[Z2
t,T 1(Zt,T ≥ ε)]

p−→ 0.

Let δt := infa∈A,x∈X gt(a | x). From assumption 3, ‖δ−1
t ‖∞ = ω(t1/2). We have that Zt,T =

O(δ−1
t T−1/2σ̂−1

t ). Notice that σ̂−1
t = (σ2

0,t + σ̂2
t − σ2

0,t)
−1/2 = O(1) a.s. since σ2

0,t ≥ C > 0

and σ̂2
t − σ2

0,t = o(1). Therefore, Zt,T = O(δ−1
t T−1/2) = o(1) a.s. and therefore, a.s., there exists

T0(ε) such that, for any T ≥ T0(ε), all the terms in the sum of the Lindeberg condition, are zero,
which implies that the sum converges to zero almost surely.

Therefore, from the central limit theorem for martingale triangular arrays,
√
TΓ−1

T (Ψ̂T −Ψ0)
d−→ N (0, 1).
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B Estimation of σ2
0,t via sequential importance sampling.

B.1 Errors decomposition

In the following lemma, we provide a useful decomposition of the IS-weighted integrands that ap-
pear in the expressions of Φ0,1(g, Q̄) and Φ0,2(g, Q̄).
Lemma 1. It holds that

g

gs
D2

1(g, Q̄) =
gref

gs
f1(g, Q̄) +

gref

gs
f2(Q̄) +

gref

gs
f3(g, Q̄)

and
g

gs
D1(g, Q̄) =

gref

gs
f4(Q̄) +

gref

gs
f5(g, Q̄),

where

f1(g, Q̄) :=
(g∗/gref)2

(g/gref)
(ỹ − Q̄)2,

f2(Q̄) :=2(g∗/gref)(ỹ − Q̄)

∫
g∗(a | ·)Q̄(a, ·)dµA(a),

f3(g, Q̄) :=(g/gref)

(∫
g∗(a | ·)Q̄(a, ·)dµA(a)

)2

,

f4(Q̄) :=(g∗/gref)(ỹ − Q̄),

f5(g, Q̄) :=(g/gref)

∫
g∗(a | ·)Q̄(a, ·)dµA(a).

The decomposition above motivates the following definitions.

Φ̂
(1)
1,t (g) :=

1

t− 1

t−1∑
s=1

δO(s)
gref

gs
f1(g, ̂̄Qs−1),

Φ̂
(2)
1,t :=

1

t− 1

t−1∑
s=1

δO(s)
gref

gs
f2( ̂̄Qs−1),

Φ̂
(3)
1,t (g) :=

1

t− 1

t−1∑
s=1

δO(s)
gref

gs
f3(g, ̂̄Qs−1),

Φ̂
(1)
2,t :=

1

t− 1

t−1∑
s=1

δO(s)
gref

gs
f4( ̂̄Qs−1),

Φ̂
(2)
2,t (g) :=

1

t− 1

t−1∑
s=1

δO(s)
gref

gs
f5(g, ̂̄Qs−1),

and

Φ̄
(1)
0,1,t(g) :=

1

t− 1

t−1∑
s=1

PQ0,gs

gref

gs
f1(g, ̂̄Qs−1),

Φ̄
(2)
0,1,t :=

1

t− 1

t−1∑
s=1

PQ0,gs

gref

gs
f2( ̂̄Qs−1),

Φ̄
(3)
0,1,t(g) :=

1

t− 1

t−1∑
s=1

PQ0,gs

gref

gs
f3(g, ̂̄Qs−1),

Φ̄
(1)
0,2,t :=

1

t− 1

t−1∑
s=1

PQ0,gs

gref

gs
f4( ̂̄Qs−1),

Φ̄
(2)
0,2,t(g) :=

1

t− 1

t−1∑
s=1

PQ0,gs

gref

gs
f5(g, ̂̄Qs−1),

15



and

Φ
(1)
0,1(g, ̂̄Qt−1) :=PQ0,gt

gref

gs
f1(g, ̂̄Qt−1),

Φ
(2)
0,1( ̂̄Qt−1) :=PQ0,gt

gref

gs
f2( ̂̄Qt−1),

Φ
(3)
0,1(g, ̂̄Qt−1) :=PQ0,gt

gref

gs
f3(g, ̂̄Qt−1),

Φ
(1)
0,2( ̂̄Qt−1) :=PQ0,gt

gref

gs
f4( ̂̄Qt−1),

Φ
(3)
0,2(g, ̂̄Qt−1) :=PQ0,gt

gref

gs
f5(g, ̂̄Qt−1),

We have that

Φ̂1,t =Φ̂
(1)
1,t + Φ̂

(2)
1,t + Φ̂

(3)
1,t , and Φ̂2,t = Φ̂

(1)
2,t + Φ̂

(2)
2,t ,

Φ̄0,1,t(g) =Φ̄
(1)
0,1,t(g) + Φ̄

(2)
0,1,t + Φ̄

(3)
0,1,t(g), and Φ̄0,2,t(g) = Φ̄

(1)
0,1,t + Φ̄

(2)
0,2,t(g),

Φ0,1(g, ̂̄Qt−1) =Φ
(1)
0,1(g, ̂̄Qt−1) + Φ

(2)
0,1( ̂̄Qt−1) + Φ

(3)
0,1( ̂̄Qt−1),

Φ0,2(g, ̂̄Qt−1) =Φ
(1)
0,2( ̂̄Qt−1) + Φ

(2)
0,2(g, ̂̄Qt−1).

We recall the decomposition of the errors Φ̂i,t(gt)− Φ0,i(gt),
̂̄Qt−1) in a martingale empirical pro-

cess term and an approximation term:

Φ̂i,t(gt)− Φ0,i(gt),
̂̄Qt−1) =(Φ̂i,t(gt)− Φ̄0,i,t(gt)) + (Φ̄0,i,t(gt)− Φ0,i(gt,

̂̄Qt−1)).

We treat the approximation terms in subsection B.4 further down. We further decompose the mar-
tingale empirical process terms here. We have that

Φ̂1,t(gt)− Φ̄0,1,t(gt) =(Φ̂
(1)
1,t (gt)− Φ̄

(1)
0,1,t(gt)) + (Φ̂

(2)
1,t − Φ̄

(2)
0,1,t)

+ (Φ̂
(3)
1,t (gt)− Φ̄

(3)
0,1,t(gt)),

and Φ̂2,t(gt)− Φ̄0,2,t(gt) =(Φ̂
(1)
2,t − Φ̄

(1)
0,2,t) + (Φ̂

(2)
2,t (gt)− Φ̄

(2)
0,2,t(gt)).

The two differences Φ̂
(2)
1,t − Φ̄

(2)
0,1,t and Φ̂

(1)
2,t − Φ̄

(1)
0,2,t are averages of martingale difference sequences,

and can be analyzed with a martingale version of Bernstein’s inequality. We bound the three other
differences by the supremum of martingale empirical processes

B.2 Control of the martingale empirical processes

Let, for any δ > 0, G̃(δ) := {g ∈ G : infa,x g(a | x) ≥ δ}. In the following lemma, we bound the
sequential bracketing entropy of the classes of sequences of functions

Fk,t(δ) :=
{

(f1(g, ̂̄Qs−1))t−1
s=1 : g ∈ G̃(δ)

}
,

for k = 1, 3, 5.
Lemma 2 (Sequential bracketing entropy bound). Suppose that assumption 5 holds. Then, for
i = 3, 5,

N[ ](ε,F1,t(δ), L2(PQ0,gref )) ≤ N[ ](G
−2δ2ε,G, L2(PQ0,gref )).

Suppose in addition that assumption 6 also holds. For k = 3, 5, we then have that

N[ ](ε,Fk,t(δ), L2(PQ0,g∗)) ≤ N[ ](ε,G, L2(PQ0,gref )).

Proof of lemma 2. Observe that

0 ≤
∫
g∗(a | ·)Q̄(a, ·)dµA(a) ≤ 1, and 0 ≤(g∗/gref)2(ỹ − Q̄)2 ≤ G2.
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Let {(lj , uj) : j ∈ [N ]} be an ε-bracketing of G̃(δ)/gref in L2(PQ0,gref ). Without loss of generality,
we can assume that uj ≥ lj ≥ δgref for every j. Let g ∈ G̃(δ). There exists j such that lj ≤ g ≤ uj ,
and therefore,

f1(uj , Q̄) ≤f1(g, Q̄) ≤ f1(lj , Q̄)

and fk(lj , Q̄) ≤fk(g, Q̄) ≤ fk(uj , Q̄), for k = 3, 5.

We have that ∥∥f1(lj , Q̄)− f1(uj , Q̄)
∥∥

2,Q0,gref

=

∥∥∥∥(g∗/gref)
(uj/gref)− (lj/gref)

(uj/gref)(lj/gref)
(ỹ − Q̄)2

∥∥∥∥
2,Q0,gref

≤δ−2G2ε

and for k = 3, 5, denoting i3 := 2 and i5 := 1, we have that∥∥fk(uj , Q̄)− fk(lj , Q̄)
∥∥

2,Q0,gref

=

∥∥∥∥((uj/gref)− (lj/gref))

∫
g∗(a | ·)Q̄(a, ·)dµA(a)

∥∥∥∥
2,Q0,gref

≤ε.

Therefore,

ρ((f1(lj , ̂̄Qs−1)− f1(uj , ̂̄Qs−1))t−1
s=1) ≤ δ−2G2ε.

and, for k = 3, 5,

ρ((fk(lj , ̂̄Qs−1)− fk(uj , ̂̄Qs−1))t−1
s=1) ≤ ε.

We have thus shown that an ε-bracketing in L2(PQ0,X ,gref ) norm of G/gref induces an
(G2δ−1, L2(PQ0,gref )) sequential bracketing of F1,t(δ), and (ε, L2(PQ0,gref )) sequential bracket-
ings of F3,t(δ) and F5,t(δ), which yields the claims.

Lemma 3 (Uniform convergence of the martingale empirical process). Suppose that assumptions 5
and 6 hold. Then, for any (i, j) ∈ {(1, 1), (1, 3), (2, 2)}

sup
g∈G
|Φ̂(j)
i,t (g)− Φ̄

(j)
0,i,t(g)| = o(1) a.s.

Proof. Let δ := mins∈[t−1] inf(a,x)∈A×X gs(a | x). In this proof, we treat G as a constant, and we
absorb it in the symbols ., O, o, and Õ whenever we use them.

We treat the case (i, j) = (1, 1) and the case (i, j) ∈ {(1, 3), (2, 2)} separately.

Case (i, j) = (1, 1). For any g ∈ G, we have that s ∈ [t − 1], ‖f1(g, ̂̄Qs−1)‖∞ ≤ G2δ−1.
Therefore, from theorem 3, for any r− ∈ (0, δ−1/2], it holds with probability at least 1− 2e−x that

sup
g∈G̃

∣∣∣Φ̂(1)
1,t (g)− Φ̄

(1)
0,1,t(g)

∣∣∣
.r− +

1√
δt

∫ G2δ−1

r−

√
log(1 +N[ ](ε,F1,t(δ), L2(PQ0,gref )))dε

+
G2δ−1

δt
logN[ ](G

2δ−1,F1,t(δ), L2(PQ0,gref ))

+G2δ−3/2t−1/2
√
x+G2δ−2t−1x.

Let xt := (log t)2 and let Bt the right-hand side above where we set x to xt. From Borel-Cantelli,
we have that supg∈G̃ |Φ̂

(1)
1,t (g)− Φ̄

(1)
0,1,t(g)| = o(Bt) almost surely. Let us make Bt explicit.
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From lemma 2 and from assumption 5, we have that

G2δ−1

δt
log(1 +N[ ](G

2δ−1,F1,t(δ), L2(PQ0,gref )))

≤G
2δ−1

δt
log(1 +N[ ](δ,G/gref , L2(PQ0,gref )))

.G2δ−(2+p)t−1.

Let us now focus on the entropy integral. We have that∫ G2δ−1

r−

√
log(1 +N[ ](ε,F1,t(δ), L2(PQ0,gref )))dε

≤
∫ G2δ−1

r−

√
log(1 +N[ ](G−2δ2ε,G/gref , L2(PQ0,gref )))dε

=G2δ−2

∫ δ

G−2δ2r−

√
log(1 +N[ ](u,G/gref , L2(PQ0,gref )))du

=G2δ−2

∫ δ

G−2δ2r−
u−p/2du

=
G2δ−2

1− p/2
(δ1−p/2 − (G−2δ2r−)1−p/2,

for any p 6= 2. We choose r− so as to minimize the rate of r− +

(δt)−1/2
∫ G2δ−1

r−

√
log(1 +N[ ](ε,F1,t(δ), L2(PQ0,gref )))dε. We distinguish the cases p < 2

and p > 2.

Case p < 2. We just set r− = 0, and we obtain

r− + (δt)−1/2

∫ G2δ−1

r−

√
log(1 +N[ ](ε,F1,t(δ), L2(PQ0,gref )))dε . δ−

1
2 (3+p)t−

1
2 .

Collecting the other terms yields that Bt = Õ(δ−(3+p)/2t−1/2 + t−1δ−(2+p)). From assumption 6,
δ & t−α, with α < min(1/(3 + p), 1/(1 + 2p)), and we therefore have Bt = o(1).

Case p > 2. We pick r− so as to balance both terms of r− +

(δt)−1/2
∫ G2δ−1

r−

√
log(1 +N[ ](ε,F1,t(δ), L2(PQ0,gref )))dε. , that is we pick r− such that

r− = t−1/2Gpδ−
1
2 (1+2p) ⇐⇒ r− = G2δ−

1
p (1+2p)t−

1
p .

Collecting the other terms then yields Bt = Õ(δ−
1
p (1+2p)t−

1
p + δ−(2+p)t−1). From assumption 6,

δ & t−α, with α < min(1/(3 + p), 1/(1 + 2p)), and we therefore have Bt = o(1).

Case (i, j) ∈ {(1, 3), (2, 2)}. For any g ∈ G, s ∈ [t−1], k = 3, 5, we have that ‖fk(g, ̂̄Qs−1)‖∞ ≤
G. Therefore, from theorem 3, for any (i, j, k) ∈ {(1, 3, 3), (2, 2, 5)}, for any x > 0, it holds with
probability at least 1− 2e−x that

sup
g∈G

∣∣∣Φ̂(j)
i,t − Φ̄

(j)
0,i,t

∣∣∣ .r− +
1√
δt

∫ G

r−

√
log(1 +N[ ](ε,Fk,t(δ), L2(PQ0,gref )))dε

+
G

δt
log(1 +N[ ](G,Fk,t(δ), L2(PQ0,gref )))

+G

√
x

δt
+G

x

δt

.r− +
1

1− p/2
1√
δt

(G1−p/2 − (r−)1−p/2) +
G1−p

δt
+G

√
x

δt
+G

x

δt
,
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where we have used that, from lemma 2 and assumption 5, log(1+N[ ](ε,Fk,t(δ), L2(PQ0,gref ))) ≤
log(1 + N[ ](ε,G/gref , L2(PQ0,gref )) . ε−p. Setting x to xt := (log t)2 in the bound
above and denote Bt the resulting quantity. Applying Borel-Cantelli’s lemma yields that
supg∈G

∣∣∣Φ̂(j)
i,t − Φ̄

(j)
0,i,t

∣∣∣ = o(Bt) almost surely. We now give an explicit bound on Bt.

Case p ∈ (0, 2). We set r− = 0. We obtain Bt = Õ((δt)−1/2 + (δt)−1). Since from assumption
6, δ & t−α with α < 1, we have that Bt = o(1).

Case p > 2. We set r− = (δt)−1/p. We haveBt = Õ((δt)−1/p+(δt)−1). Since from assumption
6, δ & t−α with α < 1, we have that Bt = o(1).

B.3 High probability bound for the martingale terms

Lemma 4. Suppose that there exists δ > 0 such that ‖g∗/gs‖∞ ≤ δ−1 for every s ∈ [t− 1]. Then
For (i, j) ∈ {(1, 2), (2, 1)}, for any x > 0, it holds with probability 1− 2e−x that∣∣∣Φ̂(j)

i,t − Φ̄
(j)
0,i,t

∣∣∣ .√ x

δt
+
x

δt
, (4)

and for (i, j) ∈ {(1, 3), (2, 2)}, it holds with probability at least 1− 2e−x that∣∣∣Φ̂(j)
i,t − Φ̄

(j)
0,i,t

∣∣∣ .√x

t
+
x

t
. (5)

Proof of lemma 4. We have that

Φ̂
(2)
1,t − Φ̄

(2)
0,1,t =

1

t− 1

t−1∑
s=1

(δO(s) − PQ0,gs)
g∗

gs
f2( ̂̄Qs−1)

and Φ̂
(1)
2,t − Φ̄

(1)
0,2,t =

1

t− 1

t−1∑
s=1

(δO(s) − PQ0,gs)
g∗

gs
f4( ̂̄Qs−1).

Therefore, both differences are the average of martingale difference sequences. For k = 2, 4, we
have that ‖ g

∗

gs
fk( ̂̄Qs−1)‖∞ ≤ δ−1 and ‖ g

∗

gs
fk( ̂̄Qs−1)‖2,Q0,g∗ ≤ δ−1/2. Bernstein’s inequality for

martingale difference sequences then yields (4).

Concerning the other two differences, we have that

Φ̂
(3)
1,t − Φ̄

(3)
0,1,t =

1

t− 1

t−1∑
s=1

Q0,Xf3( ̂̄Qs−1)2

and Φ̂
(2)
2,t − Φ̄

(2)
0,2,t =

1

t− 1

t−1∑
s=1

Q0,Xf3( ̂̄Qs−1).

These two terms are the average of martingale sequences too, and since ‖f3( ̂̄Qs−1)‖∞ ≤ 1, Bern-
stein’s inequality for martingale difference sequences yields (5).

B.4 Approximation error lemma

Lemma 5. For any Q̄, Q̄1 : A×X → R, it holds that

max
{∣∣∣Φ(j)

0,i (Q̄)− Φ
(j)
0,i (Q̄1)

∣∣∣ : (i, j) ∈ {(1, 2), (1, 3), (2, 1), (2, 2)}
}
≤ 4

∥∥Q̄− Q̄1

∥∥
2,Q0,g∗

and for any conditional densities (a, x) 7→ g(a | x), and (a, x) 7→ g1(a | x) such that g1, g ≥ δ for
some δ > 0, it holds that∣∣∣Φ(1)

0,1(Q̄)− Φ
(1)
0,1(Q̄1)

∣∣∣ ≤ δ−2 ‖g − g1‖1,Q0,X ,g∗
+ δ−1

∥∥Q̄− Q̄1

∥∥
1,Q0,X ,g∗

.

Proof. We treat each case separately.
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Case (i, j) = (1, 2). ∣∣∣Φ(2)
0,1(Q̄)− Φ

(2)
0,1(Q̄1)

∣∣∣
=2
∣∣PQ0,g∗

{
(ỹ − Q̄)〈g∗, Q̄〉 − (ỹ − Q̄1)〈g∗, Q̄1〉

}∣∣
=2
∣∣PQ0,g∗

{
(Q̄1 − Q̄)〈g∗, Q̄〉+ (ỹ − Q̄1)〈g∗, Q̄− Q̄)〉

}∣∣
≤4
∥∥Q̄− Q̄1

∥∥
1,Q0,X ,g∗

Case (i, j) = (1, 3). ∣∣∣Φ(3)
0,1(Q̄)− Φ

(3)
0,1(Q̄1)

∣∣∣
=
∣∣Q0,X

{
〈g∗, Q̄〉2 − 〈g∗, Q̄1〉2

}∣∣
≤2Q0,X〈g∗,

∣∣Q̄− Q̄1

∣∣〉
=
∥∥Q̄− Q̄1

∥∥
1,Q0,X ,g∗

Case (i, j) = (2, 1). ∣∣∣Φ(1)
0,2(Q̄)− Φ

(1)
0,2(Q̄1)

∣∣∣
=
∣∣PQ0,g∗

{
(ỹ − Q̄)− (ỹ − Q̄1)

}∣∣
≤
∥∥Q̄− Q̄1

∥∥)1,Q0,X ,g∗

Case (i, j) = (2, 2). ∣∣∣Φ(2)
0,2(Q̄)− Φ

(2)
0,2(Q̄1)

∣∣∣
=
∣∣Q0,X

{
〈g∗, Q̄〉 − 〈g∗, Q̄1〉

}∣∣
≤
∥∥Q̄− Q̄1

∥∥
1,Q0,X ,g∗

Case (i, j) = (1, 1). ∣∣∣Φ(1)
0,1(g, Q̄)− Φ

(1)
0,1(g1, Q̄1)

∣∣∣
=

∣∣∣∣PQ0,g∗

{
g∗

g
(ỹ − Q̄)− g∗

g
(ỹ − Q̄1)

}∣∣∣∣
≤
∣∣∣∣PQ0,g∗

{
1

gg1
(g − g1) +

1

g
(Q̄− Q̄1)

}∣∣∣∣
≤ 1

δ2
‖g − g1‖1,Q0,X ,g∗

+
1

δ

∥∥Q̄− Q̄1

∥∥
1,Q0,X ,g∗

.

B.5 Proof of theorem 2

Proof of theorem 2. As noted at the beginning of this section, the estimation error σ̂2
t −σ2

0,t decom-
poses as

σ̂2
t − σ2

0,t :=
∑

(i,j)∈S

Φ̂
(j)
i,t − Φ̄

(j)
0,i,t (6)

+
∑

(i,j)∈S

Φ̄
(j)
0,i,t − Φ

(j)
0,i (gt, Q̄1) (7)

+
∑

(i,j)∈S

Φ
(j)
0,i (gt, Q̄1)− Φ

(j)
0,i (gt,

̂̄Qt−1). (8)
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The terms in line (6) are MDS averages or martingale empirical processes evaluated at gt. Setting
xt := (log t)2 in lemma 4 and using Borel-Cantelli gives that the MDS averages are o(1) almost
surely. Lemma 3 gives that the martigale empirical process terms evaluated at gt are o(1) almost
surely as well.

From lemma 5, and assumptions 4 and 6,∑
(i,j)∈S

Φ
(j)
0,i (gt, Q̄1)− Φ

(j)
0,i (gt,

̂̄Qs−1)

=O(sα−β) a.s.
=o(1) a.s..

Therefore the third line above (8) is o(1) almost surely, and by Cesaro summation, the second line
above (7) is o(1) almost surely as well.

C Maximal inequality for importance sampling weighted martingale
empirical processes

In this section, we restate a maximal inequality for so-called importance sampling martingale em-
pirical processes from Bibaut et al. [2021]. We include it for our reader’s convenience.

Sequential bracketing entropy. Let Θ be a set, and let T ≥ 1. For any θ ∈ Θ, let (ξt(θ))
T
t=1 be

a sequence of functions O → R such that for any t ∈ [T ], ξt(θ) is Ō(t− 1)-measurable. We denote

ΞT :=
{

(ξt(θ))
T
t=1 : θ ∈ Θ

}
.

Let gref be a fixed reference policy. For any sequence (ft)
T
t=1 of O → R functions such that ft is

Ō(t− 1)-measurable for any t, we introduce the norm

ρ((ft)
T
t=1) :=

(
1

T

T∑
t=1

‖ft‖22,Q0,gref

)1/2

.

Following the definition of van Handel [2011], we say that a collection of sequences of pairs of
functions O → R of the form {

((λjt , υ
j
t ))

T
t=1 : j ∈ [N ]

}
forms an (ε, L(PQ,gref )) sequential bracketing of ΞT if

• for any t ∈ [T ] and any j ∈ [N ], λjt and υjt are Ō(t− 1)-measurable O → R functions,

• for any θ ∈ [Θ], there exists j ∈ [N ] such that, for any t ∈ [T ], λjt ≤ ξt(θ) ≤ υ
j
t .

• for any j ∈ [N ], ρ((υjt − λ
j
t )
T
t=1) ≤ ε.

We denote N[ ](ε,ΞT , L2(PQ,gref )) the cardinality of any (ε, L2(PQ,gref ) sequential bracketing of
ΞT of minimal cardinality.

Importance sampling weighted martingale empirical process. We term importance sampling
weighting martingale empirical processes stochastic processes of the form{

1

T

T∑
t=1

(δO(t) − PQ0,gt)
gref

gt
ξt(θ) : θ ∈ Θ

}
.

The result below is theorem 1 from Bibaut et al. [2021].
Theorem 3 (Maximal inequality for IS weighted martingale processes). Suppose that

• there exists γ > 0 such that ‖g∗/gt‖∞ ≤ γ for every t ∈ [T ],
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• there exists B > 0 such that supθ∈Θ ‖ξt(θ)‖∞ ≤ B for every t ∈ [T ],

• there exists p > 0 such that

logN[ ](ε,ΞT , L2(PQ,gref )) . ε−p.

Then, for any r > 0, r− ∈ [0, r/2] and x > 0,it holds with probability at least 1− 2e−x that

sup
g∈G

{
1

T

T∑
t=1

(δO(t) − PQ0,gt)
gref

gt
ξt(θ) : θ ∈ Θ, ρ((ξt(θ))

T
t=1) ≤ ε

}

.r− +

√
γ

T

∫ r

r−

√
log(1 +N[ ](ε,ΞT , PQ0,gref )dε+

γB

T
log(1 +N[ ](r,ΞT , PQ0,gref ))

+ r

√
γx

T
+
γBx

T

D High probability bound for IS weighted nonparametric least squares
from adaptively collected data

Suppose Y ⊆ [−
√
M,
√
M ] for some M > 0 and let Q̄ be a convex class of functionsA×X → Y .

For any Q̄ : A × X → R, and any o = (x, a, y) ∈ O, let `(Q̄, o) := (y − Q̄(a, x))2. Let
gref be a fixed (as opposed to random) density w.r.t. some dominating measure µ on A. For any
Q̄, define the corresponding population risk w.r.t. PQ0,gref as R0(Q̄) := PQ0,gref `(Q̄, ·). Observe
that the population risk can be rewritten in terms of the conditional distributions (PQ0,gs)ts=1 of
observations (O(s))ts=1 given their respective past, via IS weighting:

R0(Q̄) :=
1

t

t∑
s=1

PQ0,gs

gref

gs
`(Q̄, ·).

We define the corresponding IS weighted empirical risk as

R̂t(Q̄) :=
1

t

t∑
s=1

δO(s)
gref

gs
`(Q̄, ·).

Let ̂̄Qt ∈ arg minQ̄∈Q̄ R̂t(Q̄) be an empirical risk minimizer over Q̄. In the upcoming theorem,

we provide a high probability bound on the excess risk R0( ̂̄Qt) − R0(Q̄1). Our result requires the
following assumptions.
Assumption 7 (Entropy of the loss class). There exists p > 0 such that
logN[ ](Mε, `(Q̄), L2(PQ0,gref )) . ε−p, where `(Q̄) := {`(Q̄) : Q̄ ∈ Q̄}.
Assumption 8 (Bounded IS ratios). There exists γt > 0 such that ‖g∗/gs‖∞ ≤ γt for every s =
1, . . . , t.

Theorem 4 in Bibaut et al. [2021] gives a high probability excess risk bound on the least squares
estimator. We restate it here under the current notation for our reader’s convenience.
Theorem 4. Consider the setting of the current section, and suppose that 7 and 8 hold. Then, for
any x > 0, it holds with probability 1− 2e−x that

R( ̂̄Qt)− inf
Q̄∈Q̄

R(Q̄) .M

{(
γt
t

) 1
1+p/2 + γtx

t if p < 2,(
γt
t

) 1
p + γt

t +
√

γtx
t + γtx

t if p > 2.

E Additional Empirical Results

E.1 Data

We use the public OpenML Curated Classification benchmarking suite 2018 (OpenML-CC18; BSD
3-Clause license) [Bischl et al., 2017], which has 72 datasets that vary in domain, number of obser-
vations, number of classes and number of features.
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Samples Count
< 1000 17

≥ 1000 and < 10000 30
≥ 10000 10

Classes Count
= 2 31

> 2 and < 10 17
≥ 10 9

Features Count
≥ 2 and < 10 14
≥ 10 and < 50 34
≥ 50 and ≤ 100 9

Table 1: Characteristics of the 57 OpenML-CC18 datasets used for evaluation in the experiments of
Figure 1 of the main paper (repeated as Figure 2 of the appendix) and of Figure 3.

Samples Count
< 1000 17

≥ 1000 and < 10000 39
≥ 10000 16

Classes Count
= 2 35

> 2 and < 10 20
≥ 10 17

Features Count
≥ 2 and < 10 14
≥ 10 and < 50 43
≥ 50 and ≤ 100 15

Table 2: Characteristics of the 72 OpenML-CC18 datasets used for evaluation in the experiments of
Figures 4-8 of the appendix.

Among these, we select the classification datasets which have less than 100 contextual features
to produce Figure 1 of the main paper that uses sequential sample splitting for the training of the
outcome model ̂̄Qt−1 of all estimators that use it. This results in 57 classification datasets from
OpenML-CC18. Figure 3 and Figure 2 (same as Figure 1 of the main paper), which establish parity
between the results of training ̂̄Qt−1 with cross-time-fitting vs. sequential sample splitting also
use the subset of the 57 datasets with less that 100 contextual features. Table 1 summarizes the
characteristics of these 57 datasets.

Figures 4-8 use cross-time-fitting training of the outcome model ̂̄Qt−1 of all estimators that use it
and therefore use all 72 OpenML datasets. Table 2 summarizes the characteristics of all 72 datasets.

E.2 Sequential Sample Splitting vs. Cross-Time-Fitting

Figure 2: Comparison of CADR estimator against DM, IPW, DR, ADR, MRDR w.r.t 95% confi-
dence interval coverage on 57 OpenML-CC18 datasets and 4 target policies with sequential sample
splitting for training the linear outcome regression model of all estimators that use them.

The approach we proposed in the main text estimates ̂̄Qt−1 using only the data O(1), . . . , O(t− 1).
This means that potentially few data are available for earlier estimates. In this section, we empir-
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Figure 3: Comparison of CADR estimator against DM, IPW, DR, ADR, MRDR w.r.t. 95% confi-
dence interval coverage on 57 OpenML-CC18 datasets and 4 target policies with cross-fitting for
training the linear outcome regression model of all estimators that use them.

ically explore an alternative strategy for fitting ̂̄Qt−1 inspired by the cross-time-fitting procedure
proposed in Kallus and Uehara [2019] and which would be theoretically justified under some suf-
ficient mixing (which is not necessary for our sequential approach). Specifically, we split our data
into F = 4 folds and train F outcome regression models, ̂̄Qf , f = 1, 2, 3, 4, each to be used to

make predictions on data in the corresponding fold. The model ̂̄Qf is trained using observations in
all folds except for folds f and min(f + 1, F ). As long as the data is sufficiently mixing, dropping
fold f + 1 ensures sufficient independence from future data. At the same time, each model now
uses an amount of data that grows linearly in T . Further, unlike sequential sample splitting, which
requires training of T − 1 models, cross-time-fitting requires training only F models. Figures 2
and 3 establish parity in the conclusions w.r.t. CADR’s coverage compared to all other baseline
estimators on 57 OpenML-CC18 datasets, 4 target policies and linear outcome regression models
for all estimators that use them when these models are trained with sequential sample splitting (as
in Figure 1 of the Section 4.2 in the main text) and with time cross-fitting respectively.

E.3 CADR in Misspecified vs. Well-Specified Outcome Regression Models

Although CADR’s advantage over DR is more pronounced when the off-policy estimator’s outcome
regression model is misspecified (e.g., using linear model on real data), this section establishes the
advantage of CADR over all other estimators when they all use a well-specified outcome regression
model (e.g., tree). Figure 4 shows CADR’s coverage performance when the outcome regression
model of DM, DR, MRDR and CADR is misspecified (linear regression model trained with the
default sklearn parameters) and Fig. 5 shows CADR’s coverage performance when the outcome
regression model of DM, DR, MRDR and CADR is well-specified (decision tree regression model
trained with the default sklearn parameters). Each dot represents each one of the 72 datasets and is
colored blue when CADR has significantly better coverage than the corresponding baseline column
estimator, in red when it has significantly worse coverage and in black when the two coverage are
within standard error. Results are averaged over 64 simulations per dataset and standard errors are
shown. CADR remains the best estimator in both cases but as expected, in the misspecified outcome
regression model case there are more datasets where CADR has significantly better coverage than
DR compared to the well-specified outcome regression model case where there are more datasets for
which CADR’s and DR’s coverage are within standard error. This is because when the error is large
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Figure 4: Comparison of CADR estimator against DM, IPW, DR, ADR, MRDR w.r.t. 95% confi-
dence interval coverage on all 72 OpenML-CC18 datasets and 4 target policies with linear outcome
regression model (misspecified) trained with cross-fitting of all estimators that use them.

Figure 5: Comparison of CADR estimator against DM, IPW, DR, ADR, MRDR w.r.t. 95% confi-
dence interval coverage on all 72 OpenML-CC18 datasets and 4 target policies with tree outcome
regression model (well-specified) trained with cross-fitting of all estimators that use them.

and is multiplied by a potentially large inverse propensity score of the logging policy, the variance
stabilization performed by CADR is the most effective.
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Figure 6: Comparison of CAMRDR estimator against DM, IPW, DR, ADR, MRDR and CADR
(last column) w.r.t. 95% confidence interval coverage on all 72 OpenML-CC18 datasets and 4 target
policies with linear outcome regression model (misspecified) trained with cross-fitting.

Figure 7: Comparison of CAMRDR estimator against DM, IPW, DR, ADR, MRDR and CADR
(last column) w.r.t. 95% confidence interval coverage on all 72 OpenML-CC18 datasets and 4 target
policies with tree outcome regression model (well-specified) trained with cross-fitting.

E.4 Importance Sampling Weighted Training of CADR Outcome Regression Model

Finally, we consider the effect of using weighted training in the outcome model fitting of CADR
akin to MRDR’s outcome model fitting, where each training sample O(s) = (X(s), A(s), Y (s)) is
weighted by w(s) = g∗(A(s)|X(s))

gs(A(s)|X(s)) . We call this estimator CAMRDR. Figure 6 shows CAMRDR’s
coverage performance against baselines and CADR when the outcome regression model of DM,
DR, MRDR, CADR and CAMRDR is misspecified (linear regression model trained with the default
sklearn parameters). Figure 7 shows CAMRDR’s coverage performance against baselines and
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CADR when the outcome regression model of DM, DR, MRDR, CADR and CAMRDR is well-
specified (decision tree regression model trained with the default sklearn parameters). Again, each
dot represents each one of the 72 datasets and is colored blue when CAMRDR has significantly
better coverage than the corresponding column estimator, in red when it has significantly worse
coverage and in black when the two coverage are within standard error. Results are averaged over
64 simulations per dataset and standard errors are shown. Importance sampling weighted training
makes a small positive difference compared to CADR in the well-specified case and a small negative
difference compared to CADR in the mis-specified case. CAMRDR is better than all other baselines
in both cases.

E.5 Performance in Small vs. Large Datasets

Figure 8: Comparison of CADR estimator against DM, IPW, DR, ADR, MRDR w.r.t. 95% con-
fidence interval coverage on 57 OpenML-CC18 datasets and 4 target policies with cross-fitting, a
linear regression model for all estimators that use an outcome model and T = 1000 observations
(small data).

In the main empirical evaluation in section 4 and in the additional evaluations in sections E.2, E.3
and E.4 of the appendix, we used an off-policy evaluation dataset with T = 10000 observations. The
purpose of using large samples is that the normality property holds in the asymptotic regime. That
said, in more moderately sized samples, one should still expect an asymptotically normal estimator
to perform better than an estimator which is not asymptotically normal. So, in this subsection, we
re-ran the same experimental setup as in subsection E.2, Figure 3 but with T = 1000. As seen in
Figure 8, all estimators’ coverage deteriorates with smaller samples compared to the performance
of estimators in the same setup but with T = 10000 observations shown in Figure 3. Despite,
the expected deterioration of all estimators’ performance under the ”small data” regime, CADR
still remains the clearly best-performing estimator demonstrating its robustness in more moderately-
sized training samples.

E.6 Execution Specifics of Experiment Code

The IPython notebook to reproduce the experimental results of the main paper and the appendix can
be found at https://github.com/mdimakopoulou/post-contextual-bandit-inference.
One needs to obtain an OpenML API key to run this code (instructions can be
found at https://docs.openml.org/Python-guide/) and replace the string ‘YOURKEY’ in
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summarize_openmlcc18() and in download_openmlcc18() functions with it. After
that, if the notebook is executed as is, it reproduces Figure 3 (1h 26min on a 64 CPU In-
tel Xeon). Changing variable ope_outcome_model_training from cross_fitting to
sequential_sample_splitting reproduces Figures 1/2 (same) (22h 23min on a 64 CPU Intel
Xeon). Changing variable task_min_samples from 1000 to 0 and variable task_max_contexts
to np.inf reproduces Figure 4 (20h 20min on a 64 CPU Intel Xeon). Changing variable
ope_outcome_model from LinearRegression() to DecisionTreeRegressor(), variable
task_min_samples from 1000 to 0 and variable task_max_contexts to np.inf reproduces Fig-
ure 5 (26h 8min on a 64 CPU Intel Xeon). Figures 6 and 7 are from the same execution as Figures
4 and 5 but with adding ‘CAMRDR’ in the competitors variable of the visualize_coverage()
function. Figure 8 is the same as Figure 3 but with changing variable batch_size from 100 to 10.
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Aurélien Bibaut, Antoine Chambaz, Maria Dimakopoulou, Nathan Kallus, and Mark van der Laan.

Risk minimization from adaptively collected data: Guarantees for supervised and policy learning.
arXiv preprint arXiv:2106.01723, 2021.

Nathan Kallus and Masatoshi Uehara. Efficiently breaking the curse of horizon in off-policy evalu-
ation with double reinforcement learning. arXiv preprint arXiv:1909.05850, 2019.

R. van Handel. On the minimal penalty for Markov order estimation. Probability Theory and Related
Fields, 150:709–738, 2011.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [Yes] In
https://github.com/mdimakopoulou/post-contextual-bandit-inference
with specifics in Section E.6 of the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In Section 4.2

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Figures 1-7.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In Section E.6 of supplemental
material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In Section 4.2
(b) Did you mention the license of the assets? [Yes] In Section 4.2
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

28



(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

29


