A Appendix

A.1 Quantization kinetics in the continuous time domain

The asymptotic quantization of weights W using BDMM with a Lagrangian function \mathcal{L} follows the discrete updates,

$$egin{array}{lll} m{W} & \leftarrow & m{W} - \eta_W
abla_{m{W}} \mathcal{L} \left(m{W}, m{\lambda}
ight) \ m{\lambda} & \leftarrow & m{\lambda} + \eta_\lambda
abla_{m{\lambda}} \mathcal{L} \left(m{x}, m{\lambda}
ight), \end{array}$$

which can be expressed in the continuous time domain as follows.

$$\frac{d\boldsymbol{W}}{dt} = -\tau_{\boldsymbol{W}}^{-1} \nabla_{\boldsymbol{W}} \mathcal{L},\tag{1}$$

and

$$\frac{d\boldsymbol{\lambda}}{dt} = \tau_{\boldsymbol{\lambda}}^{-1} \nabla_{\boldsymbol{\lambda}} \mathcal{L}, \tag{2}$$

where the reciprocal time constants τ_W^{-1} and τ_λ^{-1} are proportional to learning rates η_W and η_λ , respectively. The Lagrangian function \mathcal{L} is a Lyapunov function of W and λ .

$$\frac{d\mathcal{L}}{dt} = \nabla_{\boldsymbol{W}} \mathcal{L} \cdot \frac{d\boldsymbol{W}}{dt} + \nabla_{\boldsymbol{\lambda}} \mathcal{L} \cdot \frac{d\boldsymbol{\lambda}}{dt}.$$
(3)

Plugging Eqs. (1) and (2) into Eq. (3) yields

$$\frac{d\mathcal{L}}{dt} = -\tau_W^{-1} \left| \nabla_{\boldsymbol{W}} \mathcal{L} \right|^2 + \tau_\lambda^{-1} \left| \nabla_{\boldsymbol{\lambda}} \mathcal{L} \right|^2.$$
(4)

The gradients in Eq. (4) can be calculated from the Lagrangian function \mathcal{L} , given by

$$\mathcal{L} = C\left(\boldsymbol{y}^{(i)}, \hat{\boldsymbol{y}}^{(i)}; \boldsymbol{W}\right) + \boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{c} \boldsymbol{s}\left(\boldsymbol{W}\right),$$

as follows.

$$\begin{aligned} \left|\nabla_{\boldsymbol{W}} \mathcal{L}\right|^2 &= \sum_{i=0}^{n_w} \left(\frac{\partial C}{\partial w_i} + \lambda_i \frac{\partial cs_i}{\partial w_i}\right)^2, \\ \left|\nabla_{\boldsymbol{\lambda}} \mathcal{L}\right|^2 &= \sum_{i=0}^{n_w} cs_i^2. \end{aligned}$$
(5)

Therefore, the following equation holds.

$$\frac{d\mathcal{L}}{dt} = -\tau_W^{-1} \sum_{i=0}^{n_w} \left(\frac{\partial C}{\partial w_i} + \lambda_i \frac{\partial cs_i}{\partial w_i}\right)^2 + \tau_\lambda^{-1} \sum_{i=0}^{n_w} cs_i^2.$$
(6)

The Lagrange multiplier λ_i at time t is evaluated using Eq. (2).

$$\lambda_i(t) = \lambda_i(0) + \tau_{\lambda}^{-1} \int_0^t cs_i dt.$$
(7)

A.2 Pseudocode

Algorithm 1: CBP algorithm. N denotes the number of training epochs in aggregate. M denotes the number of mini-batches of the training set Tr. The function minibatch(Tr) samples a mini-batch of training data and their targets from Tr. The function model(x, W) returns the output from the network for a given mini-batch x. The function clip(W) denotes the clipping weight, and η_W and η_λ denote the weight- and multiplier-learning rates, respectively.

Result: Updated weight matrix W Pre-training using conventional backprop; Initialization such that $\lambda \leftarrow 0, p \leftarrow 0, q \leftarrow 1$; Initial update of λ : for epoch = 1 to N do $\mathcal{L}_{sum} \leftarrow 0;$ /* Update of weight $oldsymbol{W}$ */ for i = 1 to M do $\boldsymbol{x}^{(i)}, \boldsymbol{\hat{y}}^{(i)} \leftarrow \text{minibatch}(\boldsymbol{Tr});$ $egin{aligned} & oldsymbol{x}^{(i)}, oldsymbol{y} \in \mathrm{Minibatch}(\mathcal{I} \ oldsymbol{r}), \ & oldsymbol{y}^{(i)} \leftarrow \mathrm{model}ig(oldsymbol{x}^{(i)}; oldsymbol{W}ig); \ & \mathcal{L} \leftarrow Cig(oldsymbol{\hat{y}}^{(i)}, oldsymbol{y}^{(i)}; oldsymbol{W}ig) + oldsymbol{\lambda}^{\mathrm{T}} oldsymbol{cs} (oldsymbol{W}; oldsymbol{Q}, oldsymbol{M}, g); \ & \mathcal{L}_{sum} \leftarrow \mathcal{L}_{sum} + \mathcal{L}; \ & oldsymbol{W} \leftarrow \mathrm{clip}ig(oldsymbol{W} - \eta_W
abla oldsymbol{W} \mathcal{L}ig); \end{aligned}$ end /* Update of window variable g and Lagrange multiplier $oldsymbol{\lambda}$ */ $p \leftarrow p + 1;$ if $\mathcal{L}_{sum} \geq \mathcal{L}_{sum}^{pre}$ or $p = p_{max}$ then $g \leftarrow g + \Delta g;$ $\boldsymbol{\lambda} \leftarrow \boldsymbol{\lambda} + \eta_{\boldsymbol{\lambda}} \boldsymbol{cs} (\boldsymbol{W}, g);$ $p \leftarrow 0;$ $\mathcal{L}_{sum}^{pre} \leftarrow \mathcal{L}_{sum}^{max};$ else $\mathcal{L}_{sum}^{pre} \leftarrow \mathcal{L}_{sum};$ end end

A.3 Quantization kinetics with gradually vanishing unconstrained-weight window

We consider the gradually vanishing unconstrained-weight window in addition to the kinetics of update of weights and lagrange multipliers in Eqs. (1) and (2). Given that the update frequency of the unconstrained-weight window variable g is equal to that of the Lagrange multipliers, its time constant equals τ_{λ} .

$$\frac{dg}{dt} = \tau_{\lambda}^{-1} g_0, \tag{8}$$

where $g_0 = 1$ when g < 10, and $g_0 = 10$ otherwise. Regarding the Lagrangian function \mathcal{L} as a Lyapunov function of W, λ , and g, Eq. (3) should be modified as follow.

$$\frac{d\mathcal{L}}{dt} = \nabla_{\boldsymbol{W}} \mathcal{L} \cdot \frac{d\boldsymbol{W}}{dt} + \nabla_{\boldsymbol{\lambda}} \mathcal{L} \cdot \frac{d\boldsymbol{\lambda}}{dt} + \frac{\partial \mathcal{L}}{\partial g} \frac{dg}{dt}.$$
(9)

Plugging Eqs. (1), (2), and (8) into Eq. (9) yields

$$\frac{d\mathcal{L}}{dt} = -\tau_W^{-1} \left| \nabla_{\boldsymbol{W}} \mathcal{L} \right|^2 + \tau_\lambda^{-1} \left| \nabla_{\boldsymbol{\lambda}} \mathcal{L} \right|^2 + \tau_\lambda^{-1} g_0 \frac{\partial \mathcal{L}}{\partial g}.$$
(10)

The gradients in Eq. (10) can be calculated using Eqs. (8), (9), and (10) as follows.

$$\left|\nabla_{\boldsymbol{W}}\mathcal{L}\right|^{2} = \sum_{i=0}^{n_{w}} \left[\frac{\partial C}{\partial w_{i}} + \lambda_{i} \left(ucs_{i}\frac{\partial Y_{i}}{\partial w_{i}} + Y_{i}\frac{\partial ucs_{i}}{\partial w_{i}}\right)\right]^{2},\tag{11}$$

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} \Big|^{2} = \sum_{i=0}^{n_{w}} \left(ucs_{i} Y_{i} \right)^{2},$$

$$\frac{\partial \mathcal{L}}{\partial g} = \frac{1}{2g^{2}} \sum_{i=0}^{n_{w}} \lambda_{i} Y_{i} \sum_{j=1}^{n_{q}-1} \left(q_{j+1} - q_{j} \right) \delta \left(\frac{1}{2g} \left(q_{j+1} - q_{j} \right) - |w_{i} - m_{j} + \epsilon| \right).$$
(12)

Given that $\partial ucs_i/\partial w_i = 0$ holds for any w_i value because of $\epsilon \to 0^+$, $|\nabla_{\mathbf{W}} \mathcal{L}|^2$ is simplified as

$$\left|\nabla_{\boldsymbol{W}}\mathcal{L}\right|^{2} = \sum_{i=0}^{n_{w}} \left(\frac{\partial C}{\partial w_{i}} + \lambda_{i}ucs_{i}\frac{\partial Y_{i}}{\partial w_{i}}\right)^{2}.$$
(13)

The gradient $\partial \mathcal{L}/\partial g$ is non-zero only if a given weight w_i satisfies $|w_i - m_j + \epsilon| = \frac{1}{2g} (q_{j+1} - q_j)$ The probability that w_i at a given time satisfies the equality for a given g should be very low. Additionally, regarding the discrete change in g in the actual application of the algorithm, the probability is negligible. Thus, this gradient can be ignored hereafter. Therefore, Eq. (10) can be re-expressed as

$$\frac{d\mathcal{L}}{dt} = -\tau_W^{-1} \sum_{i=0}^{n_w} \left(\frac{\partial C}{\partial w_i} + \lambda_i u c s_i \frac{\partial Y_i}{\partial w_i} \right)^2 + \tau_\lambda^{-1} \sum_{i=0}^{n_w} \left(u c s_i Y_i \right)^2.$$
(14)

Distinguishing the weights belonging to the unconstrained-weight window D_{ucs} from the others at a given time t, Eq. (14) can be written by

$$\frac{d\mathcal{L}}{dt} = -\tau_W^{-1} \sum_{w_i \in D_{ucs}} \left(\frac{\partial C}{\partial w_i}\right)^2 - \sum_{w_i \notin D_{ucs}} \left[\tau_W^{-1} \left(\frac{\partial C}{\partial w_i} + \lambda_i \frac{\partial Y_i}{\partial w_i}\right)^2 - \tau_\lambda^{-1} Y_i^2\right].$$
 (15)

Figure 1: Weight-ternarization kinetics of ResNet-18 on ImageNet

A.4 Quantization kinetics in the discrete time domain

We monitored the population changes of weights near given quantized weight values for ResNet-18 on ImageNet with ternary-weight constraints. Fig. 1 shows the population changes of weights near -1, 0, and 1 upon the update of the unconstrained-weight window variable g. As such, the variable g was updated such that $\Delta g = 1$ when g < 10, and $\Delta g = 10$ otherwise. Step-wise increases in populations upon the increase of g are seen, indicating the obvious effect of the unconstrained-weight window on weight-quantization kinetics.

A.5 Hyperparameters

The hyperparameters used are listed in Table 1. The weight- and multiplier-learning rates are denoted by η_W and η_λ , respectively. The weight decay rate (L2 regularization) is denoted by wd.

			AlexNet		ResNet-18				
	η_W	η_{λ}	wd	batch size	η_W	η_{λ}	wd	batch size	
Binary Ternary	10^{-3}	10^{-4}	5×10^{-4}	256	10^{-3}	10^{-4}	10^{-4}	256	
One-bit shift Two-bit shift	10^{-4}	10	0 / 10						
		I	ResNet-50		GoogLeNet				
	η_W	η_{λ}	wd	batch size	η_W	η_{λ}	wd	batch size	
Binary Ternary	10^{-3}	10-4	10-4	128	10^{-4}	10^{-4}	10^{-4}	256	
One-bit shift Two-bit shift	10^{-4}	10	10						

Table	1:	Hy	per	par	ame	ters	used
-------	----	----	-----	-----	-----	------	------

A.6 Computational complexity

CBP is a post-training method so that this number of FLOPs is an additional computational complexity to the pre-training using backprop.

#FLOPs for CBP = (#FLOPs for weight update) + (#FLOPs for Lagrange multiplier update), where

#FLOPs for weight update = (#FLOPs for loss evaluation) + (#FLOPs for error-backpropagation).

#FLOPs for loss evaluation = (#FLOPs for forward propagation) + (#FLOPs for constraint contribution calculation $\lambda^T cs$).

The number of FLOPs for the latter scales with the number of parameters in total (n_w) because each parameter is given a set of λ and cs. The number of multiplication $\lambda \times cs_i(w_i)$ is the same as the number of parameters (n_w) . The calculation of cs_i for a given w_i involves six FLOPs according to Eqs. (8)-(10). Therefore,

#FLOPs for loss evaluation = (#FLOPs for forward propagation) + $6n_w$.

As for conventional backprop, the number of FLOPs for weight update (using error-backpropagation) approximately equals the number of FLOPs for forward propagation. Therefore,

#FLOPs for weight update = $2 \times ($ #FLOPs for forward propagation $) + 6n_w$

The Lagrange multiplier update for each multiplier involves one multiplication $(\eta_{\lambda} \times cs_i)$ and one addition $(\lambda_i \leftarrow \lambda_i + \eta_{\lambda} cs_i)$, but uses cs_i that has been calculated already when calculating the loss function. Therefore,

#FLOPs for Lagrange multiplier update = $2n_w$.

It should be noted that the multiplier is updated merely a few times during the entire training period: less than 20 percent of the training epochs, which is parameterized by p.

Therefore, we have

#FLOPs for CBP = 2(#FLOPs for forward propagation) + $2(p+3)n_w$

The number of FLOPs for CBP for three models (for p = 0.2) is shown below.

AlexNet: #FLOPs for CBP \approx 1.82G, and #FLOPs for BP \approx 1.45G (i.e., 25% increase in #FLOPs)

ResNet18: #FLOPs for CBP \approx 3.69G, and #FLOPs for BP \approx 3.62G (i.e., 2% increase in #FLOPs)

ResNet50: #FLOPs for CBP \approx 7.89G, and #FLOPs for BP \approx 7.74G (i.e., 2% increase in #FLOPs)

B Additional Data

B.1 Extra Data

Processes of learning quantized weights in AlexNet, ResNet-18, ResNet-50, and GoogLeNet are shown in Fig. 2, 3, 4, and 5, respectively.

Figure 2: Learning quantized weights in AlexNet

Figure 3: Learning quantized weights in ResNet-18

Figure 4: Learning quantized weights in ResNet-50

Figure 5: Learning quantized weights in GoogLeNet