A Appendix

A. 1 Quantization kinetics in the continuous time domain

The asymptotic quantization of weights \boldsymbol{W} using BDMM with a Lagrangian function \mathcal{L} follows the discrete updates,

$$
\begin{aligned}
\boldsymbol{W} & \leftarrow \boldsymbol{W}-\eta_{W} \nabla_{\boldsymbol{W}} \mathcal{L}(\boldsymbol{W}, \boldsymbol{\lambda}) \\
\boldsymbol{\lambda} & \leftarrow \boldsymbol{\lambda}+\eta_{\lambda} \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})
\end{aligned}
$$

which can be expressed in the continuous time domain as follows.

$$
\begin{equation*}
\frac{d \boldsymbol{W}}{d t}=-\tau_{W}^{-1} \nabla_{\boldsymbol{W}} \mathcal{L} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d \boldsymbol{\lambda}}{d t}=\tau_{\lambda}^{-1} \nabla_{\boldsymbol{\lambda}} \mathcal{L} \tag{2}
\end{equation*}
$$

where the reciprocal time constants τ_{W}^{-1} and τ_{λ}^{-1} are proportional to learning rates η_{W} and η_{λ}, respectively. The Lagrangian function \mathcal{L} is a Lyapunov function of \boldsymbol{W} and $\boldsymbol{\lambda}$.

$$
\begin{equation*}
\frac{d \mathcal{L}}{d t}=\nabla_{\boldsymbol{W}^{\mathcal{L}}} \cdot \frac{d \boldsymbol{W}}{d t}+\nabla_{\boldsymbol{\lambda}} \mathcal{L} \cdot \frac{d \boldsymbol{\lambda}}{d t} \tag{3}
\end{equation*}
$$

Plugging Eqs. (1) and (2) into Eq. (3) yields

$$
\begin{equation*}
\frac{d \mathcal{L}}{d t}=-\tau_{W}^{-1}\left|\nabla_{\boldsymbol{W}^{\mathcal{L}}} \mathcal{L}\right|^{2}+\tau_{\lambda}^{-1}\left|\nabla_{\boldsymbol{\lambda}} \mathcal{L}\right|^{2} \tag{4}
\end{equation*}
$$

The gradients in Eq. (4) can be calculated from the Lagrangian function \mathcal{L}, given by

$$
\mathcal{L}=C\left(\boldsymbol{y}^{(i)}, \hat{\boldsymbol{y}}^{(i)} ; \boldsymbol{W}\right)+\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{c s}(\boldsymbol{W})
$$

as follows.

$$
\begin{align*}
\left|\nabla_{\boldsymbol{W}} \mathcal{L}\right|^{2} & =\sum_{i=0}^{n_{w}}\left(\frac{\partial C}{\partial w_{i}}+\lambda_{i} \frac{\partial c s_{i}}{\partial w_{i}}\right)^{2} \\
\left|\nabla_{\boldsymbol{\lambda}} \mathcal{L}\right|^{2} & =\sum_{i=0}^{n_{w}} c s_{i}^{2} \tag{5}
\end{align*}
$$

Therefore, the following equation holds.

$$
\begin{equation*}
\frac{d \mathcal{L}}{d t}=-\tau_{W}^{-1} \sum_{i=0}^{n_{w}}\left(\frac{\partial C}{\partial w_{i}}+\lambda_{i} \frac{\partial c s_{i}}{\partial w_{i}}\right)^{2}+\tau_{\lambda}^{-1} \sum_{i=0}^{n_{w}} c s_{i}^{2} \tag{6}
\end{equation*}
$$

The Lagrange multiplier λ_{i} at time t is evaluated using Eq. 2).

$$
\begin{equation*}
\lambda_{i}(t)=\lambda_{i}(0)+\tau_{\lambda}^{-1} \int_{0}^{t} c s_{i} d t \tag{7}
\end{equation*}
$$

A. 2 Pseudocode

```
Algorithm 1: CBP algorithm. \(N\) denotes the number of training epochs in aggregate. \(M\) denotes
the number of mini-batches of the training set \(\boldsymbol{T r}\). The function minibatch \((\boldsymbol{T} \boldsymbol{r})\) samples a
mini-batch of training data and their targets from \(\boldsymbol{T r}\). The function model \((x, \boldsymbol{W})\) returns the
output from the network for a given mini-batch \(\boldsymbol{x}\). The function \(\operatorname{clip}(\boldsymbol{W})\) denotes the clipping
weight, and \(\eta_{W}\) and \(\eta_{\lambda}\) denote the weight- and multiplier-learning rates, respectively.
Result: Updated weight matrix \(\boldsymbol{W}\)
Pre-training using conventional backprop;
Initialization such that \(\boldsymbol{\lambda} \leftarrow \mathbf{0}, p \leftarrow 0, g \leftarrow 1\);
Initial update of \(\boldsymbol{\lambda}\);
for \(e p o c h=1\) to \(N\) do
    \(\mathcal{L}_{\text {sum }} \leftarrow 0 ;\)
    /* Update of weight \(\boldsymbol{W}\) */
    for \(i=1\) to \(M\) do
        \(\boldsymbol{x}^{(i)}, \hat{\boldsymbol{y}}^{(i)} \leftarrow\) minibatch \((\boldsymbol{T r}) ;\)
        \(\boldsymbol{y}^{(i)} \leftarrow \operatorname{model}\left(\boldsymbol{x}^{(i)} ; \boldsymbol{W}\right)\);
        \(\mathcal{L} \leftarrow C\left(\hat{\boldsymbol{y}}^{(i)}, \boldsymbol{y}^{(i)} ; \boldsymbol{W}\right)+\boldsymbol{\lambda}^{\mathrm{T}} \boldsymbol{c s}(\boldsymbol{W} ; \boldsymbol{Q}, \boldsymbol{M}, g) ;\)
        \(\mathcal{L}_{\text {sum }} \leftarrow \mathcal{L}_{\text {sum }}+\mathcal{L}\);
        \(\boldsymbol{W} \leftarrow \operatorname{clip}\left(\boldsymbol{W}-\eta_{W} \nabla_{\boldsymbol{W}} \mathcal{L}\right) ;\)
    end
    /* Update of window variable \(g\) and Lagrange multiplier \(\boldsymbol{\lambda}\) */
    \(p \leftarrow p+1\);
    if \(\mathcal{L}_{\text {sum }} \geq \mathcal{L}_{\text {sum }}^{\text {pre }}\) or \(p=p_{\text {max }}\) then
        \(g \leftarrow g+\Delta g ;\)
        \(\boldsymbol{\lambda} \leftarrow \boldsymbol{\lambda}+\eta_{\lambda} \boldsymbol{c s}(\boldsymbol{W}, g) ;\)
        \(p \leftarrow 0\);
        \(\mathcal{L}_{\text {sum }}^{\text {pre }} \leftarrow \mathcal{L}_{\text {sum }}^{\text {max }}\);
    else
        \(\mathcal{L}_{\text {sum }}^{\text {pre }} \leftarrow \mathcal{L}_{\text {sum }} ;\)
    end
end
```


A. 3 Quantization kinetics with gradually vanishing unconstrained-weight window

We consider the gradually vanishing unconstrained-weight window in addition to the kinetics of update of weights and lagrange multipliers in Eqs. (1) and (2). Given that the update frequency of the unconstrained-weight window variable g is equal to that of the Lagrange multipliers, its time constant equals τ_{λ}.

$$
\begin{equation*}
\frac{d g}{d t}=\tau_{\lambda}^{-1} g_{0} \tag{8}
\end{equation*}
$$

where $g_{0}=1$ when $g<10$, and $g_{0}=10$ otherwise. Regarding the Lagrangian function \mathcal{L} as a Lyapunov function of $\boldsymbol{W}, \boldsymbol{\lambda}$, and g, Eq. (3) should be modified as follow.

$$
\begin{equation*}
\frac{d \mathcal{L}}{d t}=\nabla_{\boldsymbol{W}^{\mathcal{L}}} \cdot \frac{d \boldsymbol{W}}{d t}+\nabla_{\boldsymbol{\lambda}} \mathcal{L} \cdot \frac{d \boldsymbol{\lambda}}{d t}+\frac{\partial \mathcal{L}}{\partial g} \frac{d g}{d t} \tag{9}
\end{equation*}
$$

Plugging Eqs. (1), (2), and (8) into Eq. (9) yields

$$
\begin{equation*}
\frac{d \mathcal{L}}{d t}=-\tau_{W}^{-1}\left|\nabla_{\boldsymbol{W}} \mathcal{L}\right|^{2}+\tau_{\lambda}^{-1}\left|\nabla_{\boldsymbol{\lambda}} \mathcal{L}\right|^{2}+\tau_{\lambda}^{-1} g_{0} \frac{\partial \mathcal{L}}{\partial g} \tag{10}
\end{equation*}
$$

The gradients in Eq. (10) can be calculated using Eqs. (8), (9), and (10) as follows.

$$
\begin{align*}
\left|\nabla_{\boldsymbol{W}} \mathcal{L}\right|^{2} & =\sum_{i=0}^{n_{w}}\left[\frac{\partial C}{\partial w_{i}}+\lambda_{i}\left(u c s_{i} \frac{\partial Y_{i}}{\partial w_{i}}+Y_{i} \frac{\partial u c s_{i}}{\partial w_{i}}\right)\right]^{2} \tag{11}\\
\left|\nabla_{\boldsymbol{\lambda}} \mathcal{L}\right|^{2} & =\sum_{i=0}^{n_{w}}\left(u c s_{i} Y_{i}\right)^{2} \\
\frac{\partial \mathcal{L}}{\partial g} & =\frac{1}{2 g^{2}} \sum_{i=0}^{n_{w}} \lambda_{i} Y_{i} \sum_{j=1}^{n_{q}-1}\left(q_{j+1}-q_{j}\right) \delta\left(\frac{1}{2 g}\left(q_{j+1}-q_{j}\right)-\left|w_{i}-m_{j}+\epsilon\right|\right) \tag{12}
\end{align*}
$$

Given that $\partial u c s_{i} / \partial w_{i}=0$ holds for any w_{i} value because of $\epsilon \rightarrow 0^{+},\left|\nabla_{\boldsymbol{W}} \mathcal{L}\right|^{2}$ is simplified as

$$
\begin{equation*}
\left|\nabla_{\boldsymbol{W}} \mathcal{L}\right|^{2}=\sum_{i=0}^{n_{w}}\left(\frac{\partial C}{\partial w_{i}}+\lambda_{i} u c s_{i} \frac{\partial Y_{i}}{\partial w_{i}}\right)^{2} \tag{13}
\end{equation*}
$$

The gradient $\partial \mathcal{L} / \partial g$ is non-zero only if a given weight w_{i} satisfies $\left|w_{i}-m_{j}+\epsilon\right|=\frac{1}{2 g}\left(q_{j+1}-q_{j}\right)$ The probability that w_{i} at a given time satisfies the equality for a given g should be very low. Additionally, regarding the discrete change in g in the actual application of the algorithm, the probability is negligible. Thus, this gradient can be ignored hereafter. Therefore, Eq. 10) can be re-expressed as

$$
\begin{equation*}
\frac{d \mathcal{L}}{d t}=-\tau_{W}^{-1} \sum_{i=0}^{n_{w}}\left(\frac{\partial C}{\partial w_{i}}+\lambda_{i} u c s_{i} \frac{\partial Y_{i}}{\partial w_{i}}\right)^{2}+\tau_{\lambda}^{-1} \sum_{i=0}^{n_{w}}\left(u c s_{i} Y_{i}\right)^{2} \tag{14}
\end{equation*}
$$

Distinguishing the weights belonging to the unconstrained-weight window $D_{u c s}$ from the others at a given time t, Eq. (14) can be written by

$$
\begin{equation*}
\frac{d \mathcal{L}}{d t}=-\tau_{W}^{-1} \sum_{w_{i} \in D_{u c s}}\left(\frac{\partial C}{\partial w_{i}}\right)^{2}-\sum_{w_{i} \notin D_{u c s}}\left[\tau_{W}^{-1}\left(\frac{\partial C}{\partial w_{i}}+\lambda_{i} \frac{\partial Y_{i}}{\partial w_{i}}\right)^{2}-\tau_{\lambda}^{-1} Y_{i}^{2}\right] \tag{15}
\end{equation*}
$$

Figure 1: Weight-ternarization kinetics of ResNet-18 on ImageNet

A. 4 Quantization kinetics in the discrete time domain

We monitored the population changes of weights near given quantized weight values for ResNet-18 on ImageNet with ternary-weight constraints. Fig. 1 lshows the population changes of weights near -1 , 0 , and 1 upon the update of the unconstrained-weight window variable g. As such, the variable g was updated such that $\Delta g=1$ when $g<10$, and $\Delta g=10$ otherwise. Step-wise increases in populations upon the increase of g are seen, indicating the obvious effect of the unconstrained-weight window on weight-quantization kinetics.

A. 5 Hyperparameters

The hyperparameters used are listed in Table 1 The weight- and multiplier-learning rates are denoted by η_{W} and η_{λ}, respectively. The weight decay rate (L 2 regularization) is denoted by $w d$.

Table 1: Hyperparameters used.

	AlexNet				ResNet-18			
	η_{W}	η_{λ}	wd	batch size	η_{W}	η_{λ}	wd	batch size
Binary Ternary One-bit shift Two-bit shift	$\begin{aligned} & 10^{-3} \\ & 10^{-4} \end{aligned}$	10^{-4}	5×10^{-4}	256	10^{-3}	10^{-4}	10^{-4}	256
			ResNet-50				gLeN	
	η_{W}	η_{λ}	wd	batch size	η_{W}	η_{λ}	wd	batch size
Binary Ternary One-bit shift Two-bit shift	$\begin{aligned} & 10^{-3} \\ & 10^{-4} \end{aligned}$	10^{-4}	10^{-4}	128	10^{-4}	10^{-4}	10^{-4}	256

A. 6 Computational complexity

CBP is a post-training method so that this number of FLOPs is an additional computational complexity to the pre-training using backprop.
\#FLOPs for CBP $=(\# F L O P s$ for weight update $)+(\# F L O P s$ for Lagrange multiplier update $)$, where $\# F L O P s$ for weight update $=(\# F L O P s$ for loss evaluation $)+(\#$ FLOPs for error-backpropagation $)$.
\#FLOPs for loss evaluation $=(\# F L O P s$ for forward propagation $)+(\# F L O P s$ for constraint contribution calculation $\boldsymbol{\lambda}^{T} \mathbf{c s}$).
The number of FLOPs for the latter scales with the number of parameters in total (n_{w}) because each parameter is given a set of λ and $c s$. The number of multiplication $\lambda \times c s_{i}\left(w_{i}\right)$ is the same as the number of parameters $\left(n_{w}\right)$.The calculation of $c s_{i}$ for a given w_{i} involves six FLOPs according to Eqs. (8)-(10). Therefore,
$\# F L O P s$ for loss evaluation $=(\# F L O P s$ for forward propagation $)+6 n_{w}$.
As for conventional backprop, the number of FLOPs for weight update (using error-backpropagation) approximately equals the number of FLOPs for forward propagation. Therefore,
\#FLOPs for weight update $=2 \times($ \#FLOPs for forward propagation $)+6 n_{w}$
The Lagrange multiplier update for each multiplier involves one multiplication ($\eta_{\lambda} \times c s_{i}$) and one addition ($\lambda_{i} \leftarrow \lambda_{i}+\eta_{\lambda} c s_{i}$), but uses $c s_{i}$ that has been calculated already when calculating the loss function. Therefore,
\#FLOPs for Lagrange multiplier update $=2 n_{w}$.
It should be noted that the multiplier is updated merely a few times during the entire training period: less than 20 percent of the training epochs, which is parameterized by p.

Therefore, we have
\#FLOPs for $\mathrm{CBP}=2(\# \mathrm{FLOPs}$ for forward propagation $)+2(p+3) n_{w}$
The number of FLOPs for CBP for three models (for $p=0.2$) is shown below.
AlexNet: \#FLOPs for CBP $\approx 1.82 \mathrm{G}$, and \#FLOPs for $\mathrm{BP} \approx 1.45 \mathrm{G}$ (i.e., 25% increase in \#FLOPs)
ResNet18: \#FLOPs for $\mathrm{CBP} \approx 3.69 \mathrm{G}$, and \#FLOPs for $\mathrm{BP} \approx 3.62 \mathrm{G}$ (i.e., 2% increase in \#FLOPs)
ResNet50: \#FLOPs for CBP $\approx 7.89 \mathrm{G}$, and \#FLOPs for $\mathrm{BP} \approx 7.74 \mathrm{G}$ (i.e., 2% increase in \#FLOPs)

B Additional Data

B. 1 Extra Data

Processes of learning quantized weights in AlexNet, ResNet-18, ResNet-50, and GoogLeNet are shown in Fig. 2, 3, 4, and 5, respectively.

Binary weight constraint

Ternary weight constraint

One-bit shift weight constraint

Two-bit shift weight constraint

Figure 2: Learning quantized weights in AlexNet

Binary weight constraint

Ternary weight constraint

- 1st
- 51st
-_ 151st

One-bit shift weight constraint

Two-bit shift weight constraint

Figure 3: Learning quantized weights in ResNet-18

Binary weight constraint

Ternary weight constraint

One-bit shift weight constraint

Two-bit shift weight constraint

Figure 4: Learning quantized weights in ResNet-50

Binary weight constraint

Ternary weight constraint

- 1st
$\begin{array}{r}\text { - } \\ \hline\end{array} 1 \mathrm{st}$
$-\quad 101 \mathrm{st}$
$-\quad 123 \mathrm{rd}$

One-bit shift weight constraint

Two-bit shift weight constraint

Figure 5: Learning quantized weights in GoogLeNet

