
A Appendix

A.1 Quantization kinetics in the continuous time domain

The asymptotic quantization of weightsW using BDMM with a Lagrangian function L follows the
discrete updates,

W ← W − ηW∇W L (W ,λ)

λ ← λ+ ηλ∇λL (x,λ) ,

which can be expressed in the continuous time domain as follows.

dW

dt
= −τ−1W ∇W L, (1)

and
dλ

dt
= τ−1λ ∇λL, (2)

where the reciprocal time constants τ−1W and τ−1λ are proportional to learning rates ηW and ηλ,
respectively. The Lagrangian function L is a Lyapunov function ofW and λ.

dL
dt

= ∇W L ·
dW

dt
+∇λL ·

dλ

dt
. (3)

Plugging Eqs. (1) and (2) into Eq. (3) yields

dL
dt

= −τ−1W
∣∣∇W L∣∣2 + τ−1λ

∣∣∇λL∣∣2 . (4)

The gradients in Eq. (4) can be calculated from the Lagrangian function L, given by

L = C
(
y(i), ŷ(i);W

)
+ λTcs (W) ,

as follows. ∣∣∇W L∣∣2 =

nw∑
i=0

(
∂C

∂wi
+ λi

∂csi
∂wi

)2

,

∣∣∇λL∣∣2 =

nw∑
i=0

cs2i . (5)

Therefore, the following equation holds.

dL
dt

= −τ−1W
nw∑
i=0

(
∂C

∂wi
+ λi

∂csi
∂wi

)2

+ τ−1λ

nw∑
i=0

cs2i . (6)

The Lagrange multiplier λi at time t is evaluated using Eq. (2).

λi (t) = λi (0) + τ−1λ

∫ t

0

csidt. (7)

1

A.2 Pseudocode

Algorithm 1: CBP algorithm. N denotes the number of training epochs in aggregate. M denotes
the number of mini-batches of the training set Tr. The function minibatch (Tr) samples a
mini-batch of training data and their targets from Tr. The function model (x,W) returns the
output from the network for a given mini-batch x. The function clip(W) denotes the clipping
weight, and ηW and ηλ denote the weight- and multiplier-learning rates, respectively.
Result: Updated weight matrixW
Pre-training using conventional backprop;
Initialization such that λ← 0, p← 0, g ← 1;
Initial update of λ;
for epoch = 1 to N do
Lsum ← 0;
/* Update of weight W */
for i = 1 to M do

x(i), ŷ(i) ← minibatch(Tr);
y(i) ← model

(
x(i);W

)
;

L ← C
(
ŷ(i),y(i);W

)
+ λTcs (W ;Q,M , g);

Lsum ←Lsum + L;
W ← clip

(
W − ηW∇W L

)
;

end
/* Update of window variable g and Lagrange multiplier λ */
p← p+ 1;
if Lsum ≥ Lpresum or p = pmax then

g ← g + ∆g;
λ← λ + ηλcs (W , g);
p← 0;
Lpresum ←Lmaxsum ;

else
Lpresum ←Lsum;

end
end

A.3 Quantization kinetics with gradually vanishing unconstrained-weight window

We consider the gradually vanishing unconstrained-weight window in addition to the kinetics of
update of weights and lagrange multipliers in Eqs. (1) and (2). Given that the update frequency of the
unconstrained-weight window variable g is equal to that of the Lagrange multipliers, its time constant
equals τλ.

dg

dt
= τ−1λ g0, (8)

where g0 = 1 when g < 10, and g0 = 10 otherwise. Regarding the Lagrangian function L as a
Lyapunov function ofW , λ, and g, Eq. (3) should be modified as follow.

dL
dt

= ∇W L ·
dW

dt
+∇λL ·

dλ

dt
+
∂L
∂g

dg

dt
. (9)

Plugging Eqs. (1), (2), and (8) into Eq. (9) yields

dL
dt

= −τ−1W
∣∣∇W L∣∣2 + τ−1λ

∣∣∇λL∣∣2 + τ−1λ g0
∂L
∂g

. (10)

2

The gradients in Eq. (10) can be calculated using Eqs. (8), (9), and (10) as follows.∣∣∇W L∣∣2 =

nw∑
i=0

[
∂C

∂wi
+ λi

(
ucsi

∂Yi
∂wi

+ Yi
∂ucsi
∂wi

)]2
, (11)

∣∣∇λL∣∣2 =

nw∑
i=0

(ucsiYi)
2
,

∂L
∂g

=
1

2g2

nw∑
i=0

λiYi

nq−1∑
j=1

(qj+1 − qj) δ
(

1

2g
(qj+1 − qj)− |wi −mj + ε|

)
. (12)

Given that ∂ucsi/∂wi = 0 holds for any wi value because of ε→ 0+,
∣∣∇W L∣∣2 is simplified as

∣∣∇W L∣∣2 =

nw∑
i=0

(
∂C

∂wi
+ λiucsi

∂Yi
∂wi

)2

. (13)

The gradient ∂L/∂g is non-zero only if a given weight wi satisfies |wi −mj + ε| = 1

2g
(qj+1 − qj)

The probability that wi at a given time satisfies the equality for a given g should be very low.
Additionally, regarding the discrete change in g in the actual application of the algorithm, the
probability is negligible. Thus, this gradient can be ignored hereafter. Therefore, Eq. (10) can be
re-expressed as

dL
dt

= −τ−1W
nw∑
i=0

(
∂C

∂wi
+ λiucsi

∂Yi
∂wi

)2

+ τ−1λ

nw∑
i=0

(ucsiYi)
2
. (14)

Distinguishing the weights belonging to the unconstrained-weight window Ducs from the others at a
given time t, Eq. (14) can be written by

dL
dt

= −τ−1W
∑

wi∈Ducs

(
∂C

∂wi

)2

−
∑

wi /∈Ducs

[
τ−1W

(
∂C

∂wi
+ λi

∂Yi
∂wi

)2

− τ−1λ Y 2
i

]
. (15)

3

Figure 1: Weight-ternarization kinetics of ResNet-18 on ImageNet

A.4 Quantization kinetics in the discrete time domain

We monitored the population changes of weights near given quantized weight values for ResNet-18
on ImageNet with ternary-weight constraints. Fig. 1 shows the population changes of weights near -1,
0, and 1 upon the update of the unconstrained-weight window variable g. As such, the variable g was
updated such that ∆g = 1 when g < 10, and ∆g = 10 otherwise. Step-wise increases in populations
upon the increase of g are seen, indicating the obvious effect of the unconstrained-weight window on
weight-quantization kinetics.

A.5 Hyperparameters

The hyperparameters used are listed in Table 1. The weight- and multiplier-learning rates are denoted
by ηW and ηλ, respectively. The weight decay rate (L2 regularization) is denoted by wd.

Table 1: Hyperparameters used.

AlexNet ResNet-18
ηW ηλ wd batch size ηW ηλ wd batch size

Binary
10−3

10−4 5× 10−4 256 10−3 10−4 10−4 256
Ternary

One-bit shift
10−4Two-bit shift

ResNet-50 GoogLeNet
ηW ηλ wd batch size ηW ηλ wd batch size

Binary
10−3

10−4 10−4 128 10−4 10−4 10−4 256
Ternary

One-bit shift
10−4Two-bit shift

4

A.6 Computational complexity

CBP is a post-training method so that this number of FLOPs is an additional computational complexity
to the pre-training using backprop.

#FLOPs for CBP = (#FLOPs for weight update) + (#FLOPs for Lagrange multiplier update), where

#FLOPs for weight update = (#FLOPs for loss evaluation) + (#FLOPs for error-backpropagation).

#FLOPs for loss evaluation = (#FLOPs for forward propagation) + (#FLOPs for constraint contribution
calculation λT cs).

The number of FLOPs for the latter scales with the number of parameters in total (nw) because each
parameter is given a set of λ and cs. The number of multiplication λ× csi (wi) is the same as the
number of parameters (nw).The calculation of csi for a given wi involves six FLOPs according to
Eqs. (8)-(10). Therefore,

#FLOPs for loss evaluation = (#FLOPs for forward propagation) + 6nw.

As for conventional backprop, the number of FLOPs for weight update (using error-backpropagation)
approximately equals the number of FLOPs for forward propagation. Therefore,

#FLOPs for weight update = 2×(#FLOPs for forward propagation) + 6nw
The Lagrange multiplier update for each multiplier involves one multiplication (ηλ × csi) and one
addition (λi ← λi + ηλcsi), but uses csi that has been calculated already when calculating the loss
function. Therefore,

#FLOPs for Lagrange multiplier update = 2nw.

It should be noted that the multiplier is updated merely a few times during the entire training period:
less than 20 percent of the training epochs, which is parameterized by p.

Therefore, we have

#FLOPs for CBP = 2(#FLOPs for forward propagation) + 2(p+ 3)nw

The number of FLOPs for CBP for three models (for p = 0.2) is shown below.

AlexNet: #FLOPs for CBP ≈ 1.82G, and #FLOPs for BP ≈ 1.45G (i.e., 25% increase in #FLOPs)

ResNet18: #FLOPs for CBP ≈ 3.69G, and #FLOPs for BP ≈ 3.62G (i.e., 2% increase in #FLOPs)

ResNet50: #FLOPs for CBP ≈ 7.89G, and #FLOPs for BP ≈ 7.74G (i.e., 2% increase in #FLOPs)

B Additional Data

B.1 Extra Data

Processes of learning quantized weights in AlexNet, ResNet-18, ResNet-50, and GoogLeNet are
shown in Fig. 2, 3, 4, and 5, respectively.

5

Figure 2: Learning quantized weights in AlexNet

6

Figure 3: Learning quantized weights in ResNet-18

7

Figure 4: Learning quantized weights in ResNet-50

8

Figure 5: Learning quantized weights in GoogLeNet

9

	Introduction
	Related work
	Optimization method
	Pseudo-Lagrange multiplier method
	Constrained backpropagation using the pseudo-Lagrange multiplier method
	Learning kinetics

	Experiments
	AlexNet
	ResNet-18 and ResNet-50
	GoogLeNet

	Discussion
	Conclusion
	Appendix
	Quantization kinetics in the continuous time domain
	Pseudocode
	Quantization kinetics with gradually vanishing unconstrained-weight window
	Quantization kinetics in the discrete time domain
	Hyperparameters
	Computational complexity

	Additional Data
	Extra Data

