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Abstract
Independent component analysis provides a principled framework for unsupervised
representation learning, with solid theory on the identifiability of the latent code
that generated the data, given only observations of mixtures thereof. Unfortunately,
when the mixing is nonlinear, the model is provably nonidentifiable, since statistical
independence alone does not sufficiently constrain the problem. Identifiability can
be recovered in settings where additional, typically observed variables are included
in the generative process. We investigate an alternative path and consider instead
including assumptions reflecting the principle of independent causal mechanisms
exploited in the field of causality. Specifically, our approach is motivated by
thinking of each source as independently influencing the mixing process. This
gives rise to a framework which we term independent mechanism analysis. We
provide theoretical and empirical evidence that our approach circumvents a number
of nonidentifiability issues arising in nonlinear blind source separation.

1 Introduction
One of the goals of unsupervised learning is to uncover properties of the data generating process, such
as latent structures giving rise to the observed data. Identifiability [55] formalises this desideratum:
under suitable assumptions, a model learnt from observations should match the ground truth, up to
well-defined ambiguities. Within representation learning, identifiability has been studied mostly in the
context of independent component analysis (ICA) [17, 40], which assumes that the observed data x
results from mixing unobserved independent random variables si referred to as sources. The aim is to
recover the sources based on the observed mixtures alone, also termed blind source separation (BSS).
A major obstacle to BSS is that, in the nonlinear case, independent component estimation does not
necessarily correspond to recovering the true sources: it is possible to give counterexamples where
the observations are transformed into components yi which are independent, yet still mixed with
respect to the true sources si [20, 39, 98]. In other words, nonlinear ICA is not identifiable.

In order to achieve identifiability, a growing body of research postulates additional supervision or
structure in the data generating process, often in the form of auxiliary variables [28, 30, 37, 38, 41].
In the present work, we investigate a different route to identifiability by drawing inspiration from the
field of causal inference [71, 78] which has provided useful insights for a number of machine learning
tasks, including semi-supervised [87, 103], transfer [6, 23, 27, 31, 61, 72, 84, 85, 97, 102, 107],
reinforcement [7, 14, 22, 26, 53, 59, 60, 106], and unsupervised [9, 10, 54, 70, 88, 91, 104, 105]
learning. To this end, we interpret the ICA mixing as a causal process and apply the principle
of independent causal mechanisms (ICM) which postulates that the generative process consists of
independent modules which do not share information [43, 78, 87]. In this context, “independent” does
not refer to statistical independence of random variables, but rather to the notion that the distributions
and functions composing the generative process are chosen independently by Nature [43, 48]. While
a formalisation of ICM [43, 57] in terms of algorithmic (Kolmogorov) complexity [51] exists, it is not
computable, and hence applying ICM in practice requires assessing such non-statistical independence
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Figure 1: (Left) For the cocktail party problem, the ICM principle as traditionally understood would say
that the content of speech ps is independent of the mixing or recording process f (microphone placement,
room acoustics). IMA refines, or extends, this idea at the level of the mixing function by postulating that the
contributions ∂f/∂si of each source to f , as captured by the speakers’ positions relative to the recording process,
should not be fine-tuned to each other. (Right) We formalise this independence between the ∂f/∂si, which are the
columns of the Jacobian Jf , as an orthogonality condition: the absolute value of the determinant |Jf |, i.e., the
volume of the parallelepiped spanned by ∂f/∂si, should decompose as the product of the norms of the ∂f/∂si.

with suitable domain specific criteria [96]. The goal of our work is thus to constrain the nonlinear ICA
problem, in particular the mixing function, via suitable ICM measures, thereby ruling out common
counterexamples to identifiability which intuitively violate the ICM principle.

Traditionally, ICM criteria have been developed for causal discovery, where both cause and effect are
observed [18, 45, 46, 110]. They enforce an independence between (i) the cause (source) distribution
and (ii) the conditional or mechanism (mixing function) generating the effect (observations), and thus
rely on the fact that the observed cause distribution is informative. As we will show, this renders
them insufficient for nonlinear ICA, since the constraints they impose are satisfied by common
counterexamples to identifiability. With this in mind, we introduce a new way to characterise or refine
the ICM principle for unsupervised representation learning tasks such as nonlinear ICA.

Motivating example. To build intuition, we turn to a famous example of ICA and BSS: the cocktail
party problem, illustrated in Fig. 1 (Left). Here, a number of conversations are happening in parallel,
and the task is to recover the individual voices si from the recorded mixtures xi. The mixing
or recording process f is primarily determined by the room acoustics and the locations at which
microphones are placed. Moreover, each speaker influences the recording through their positioning in
the room, and we may think of this influence as ∂f/∂si. Our independence postulate then amounts to
stating that the speakers’ positions are not fine-tuned to the room acoustics and microphone placement,
or to each other, i.e., the contributions ∂f/∂si should be independent (in a non-statistical sense).1

Our approach. We formalise this notion of independence between the contributions ∂f/∂si of each
source to the mixing process (i.e., the columns of the Jacobian matrix Jf of partial derivatives) as
an orthogonality condition, see Fig. 1 (Right). Specifically, the absolute value of the determinant
|Jf |, which describes the local change in infinitesimal volume induced by mixing the sources, should
factorise or decompose as the product of the norms of its columns. This can be seen as a decoupling of
the local influence of each partial derivative in the pushforward operation (mixing function) mapping
the source distribution to the observed one, and gives rise to a novel framework which we term
independent mechanism analysis (IMA). IMA can be understood as a refinement of the ICM principle
that applies the idea of independence of mechanisms at the level of the mixing function.

Contributions. The structure and contributions of this paper can be summarised as follows:
• we review well-known obstacles to identifiability of nonlinear ICA (§ 2.1), as well as existing ICM

criteria (§ 2.2), and show that the latter do not sufficiently constrain nonlinear ICA (§ 3);
• we propose a more suitable ICM criterion for unsupervised representation learning which gives rise

to a new framework that we term independent mechanism analysis (IMA) (§ 4); we provide geomet-
ric and information-theoretic interpretations of IMA (§ 4.1), introduce an IMA contrast function
which is invariant to the inherent ambiguities of nonlinear ICA (§ 4.2), and show that it rules out a
large class of counterexamples and is consistent with existing identifiability results (§ 4.3);

• we experimentally validate our theoretical claims and propose a regularised maximum-likelihood
learning approach based on the IMA constrast which outperforms the unregularised baseline (§ 5);
additionally, we introduce a method to learn nonlinear ICA solutions with triangular Jacobian and
a metric to assess BSS which can be of independent interest for the nonlinear ICA community.

1For additional intuition and possible violations in the context of the cocktail party problem, see Appendix B.4.
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2 Background and preliminaries
Our work builds on and connects related literature from the fields of independent component analy-
sis (§ 2.1) and causal inference (§ 2.2). We review the most important concepts below.

2.1 Independent component analysis (ICA)

Assume the following data-generating process for independent component analysis (ICA)

x = f(s) , ps(s) =
∏n

i=1 psi(si) , (1)

where the observed mixtures x ∈ Rn result from applying a smooth and invertible mixing function
f : Rn → Rn to a set of unobserved, independent signals or sources s ∈ Rn with smooth, factorised
density ps with connected support (see illustration Fig. 2b). The goal of ICA is to learn an unmixing
function g : Rn → Rn such that y = g(x) has independent components. Blind source separation
(BSS), on the other hand, aims to recover the true unmixing f−1 and thus the true sources s (up to
tolerable ambiguities, see below). Whether performing ICA corresponds to solving BSS is related to
the concept of identifiability of the model class. Intuitively, identifiability is the desirable property
that all models which give rise to the same mixture distribution should be “equivalent” up to certain
ambiguities, formally defined as follows.
Definition 2.1 (∼-identifiability). Let F be the set of all smooth, invertible functions f : Rn → Rn,
and P be the set of all smooth, factorised densities ps with connected support on Rn. Let M ⊆ F×P
be a subspace of models and let ∼ be an equivalence relation on M. Denote by f∗ps the push-forward
density of ps via f . Then the generative process (1) is said to be ∼-identifiable on M if

∀(f , ps), (f̃ , ps̃) ∈ M : f∗ps = f̃∗ps̃ =⇒ (f , ps) ∼ (f̃ , ps̃) . (2)

If the true model belongs to the model class M, then ∼-identifiability ensures that any model in M
learnt from (infinite amounts of) data will be ∼-equivalent to the true one. An example is linear ICA
which is identifiable up to permutation and rescaling of the sources on the subspace MLIN of pairs
of (i) invertible matrices (constraint on F) and (ii) factorizing densities for which at most one si is
Gaussian (constraint on P) [17, 21, 93], see Appendix A for a more detailed account.

In the nonlinear case (i.e., without constraints on F), identifiability is much more challenging. If si
and sj are independent, then so are hi(si) and hj(sj) for any functions hi and hj . In addition to
permutation-ambiguity, such element-wise h(s) = (h1(s1), ..., hn(sn)) can therefore not be resolved
either. We thus define the desired form of identifiability for nonlinear BSS as follows.
Definition 2.2 (∼BSS). The equivalence relation ∼BSS on F × P defined as in Defn. 2.1 is given by

(f , ps) ∼BSS (f̃ , ps̃) ⇐⇒ ∃P,h s.t. (f , ps) = (f̃ ◦ h−1 ◦P−1, (P ◦ h)∗ps̃) (3)

where P is a permutation and h(s) = (h1(s1), ..., hn(sn)) is an invertible, element-wise function.

A fundamental obstacle—and a crucial difference to the linear problem—is that in the nonlinear case,
different mixtures of si and sj can be independent, i.e., solving ICA is not equivalent to solving BSS.
A prominent example of this is given by the Darmois construction [20, 39].
Definition 2.3 (Darmois construction). The Darmois construction gD : Rn → (0, 1)n is obtained by
recursively applying the conditional cumulative distribution function (CDF) transform:

gDi (x1:i) := P(Xi ≤ xi|x1:i−1) =
∫ xi

−∞ p(x′
i|x1:i−1)dx

′
i (i = 1, ..., n). (4)

The resulting estimated sources yD = gD(x) are mutually-independent uniform r.v.s by construction,
see Fig. 2a for an illustration. However, they need not be meaningfully related to the true sources
s, and will, in general, still be a nonlinear mixing thereof [39].2 Denoting the mixing function
corresponding to (4) by fD = (gD)−1 and the uniform density on (0, 1)n by pu, the Darmois solution
(fD, pu) thus allows construction of counterexamples to ∼BSS-identifiability on F × P .3

Remark 2.4. gD has lower-triangular Jacobian, i.e., ∂gD
i /∂xj = 0 for i < j. Since the order of the xi

is arbitrary, applying gD after a permutation yields a different Darmois solution. Moreover, (4) yields
independent components yD even if the sources si were not independent to begin with.4

2Consider, e.g., a mixing f with full Jacobian which yields a contradiction to Defn. 2.2, due to Remark 2.4.
3By applying a change of variables, we can see that the transformed variables in (4) are uniformly distributed

in the open unit cube, thereby corresponding to independent components [69, § 2.2].
4This has broad implications for unsupervised learning, as it shows that, for i.i.d. observations, not only

factorised priors, but any unconditional prior is insufficient for identifiability (see, e.g., [49], Appendix D.2).
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Figure 2: (a) Any observed density px can be mapped to a uniform py via the CDF transform g(x) = P(X ≤ x);
Darmois solutions (fD, pu) constructed from (4) therefore automatically satisfy the independence postulated
by IGCI (6). (b) ICA setting with n = 2 sources (shaded nodes are observed, white ones are unobserved). (c)
Existing ICM criteria typically enforce independence between an observed input or cause distribution pc and a
mechanism pe|c (independent objects are highlighted in blue and red). (d) IMA enforces independence between
the contributions of different sources si to the mixing function f as captured by ∂f/∂si.

Another well-known obstacle to identifiability are measure-preserving automorphisms (MPAs) of the
source distribution ps: these are functions a which map the source space to itself without affecting its
distribution, i.e., a∗ps = ps [39]. A particularly instructive class of MPAs is the following [49, 58].
Definition 2.5 (“Rotated-Gaussian” MPA). Let R ∈ O(n) be an orthogonal matrix, and denote by
Fs(s) = (Fs1(s1), ..., Fsn(sn)) and Φ(z) = (Φ(z1), ...,Φ(zn)) the element-wise CDFs of a smooth,
factorised density ps and of a Gaussian, respectively. Then the “rotated-Gaussian” MPA aR(ps) is

aR(ps) = F−1
s ◦Φ ◦R ◦Φ−1 ◦ Fs . (5)

aR(ps) first maps to the (rotationally invariant) standard isotropic Gaussian (via Φ−1 ◦ Fs), then
applies a rotation, and finally maps back, without affecting the distribution of the estimated sources.
Hence, if (f̃ , ps̃) is a valid solution, then so is (f̃ ◦ aR(ps̃), ps̃) for any R ∈ O(n). Unless R is a
permutation, this constitutes another common counterexample to ∼BSS-identifiability on F × P .

Identifiability results for nonlinear ICA have recently been established for settings where an auxiliary
variable u (e.g., environment index, time stamp, class label) renders the sources conditionally inde-
pendent [37, 38, 41, 49]. The assumption on ps in (1) is replaced with ps|u(s|u) =

∏n
i=1 psi|u(si|u),

thus restricting P in Defn. 2.1. In most cases, u is assumed to be observed, though [30] is a notable
exception. Similar results exist given access to a second noisy view x̃ [28].

2.2 Causal inference and the principle of independent causal mechanisms (ICM)

Rather than relying only on additional assumptions on P (e.g., via auxiliary variables), we seek to
further constrain (1) by also placing assumptions on the set F of mixing functions f . To this end, we
draw inspiration from the field of causal inference [71, 78]. Of central importance to our approach is
the Principle of Independent Causal Mechanisms (ICM) [43, 56, 87].
Principle 2.6 (ICM principle [78]). The causal generative process of a system’s variables is composed
of autonomous modules that do not inform or influence each other.

These “modules” are typically thought of as the conditional distributions of each variable given
its direct causes. Intuitively, the principle then states that these causal conditionals correspond to
independent mechanisms of nature which do not share information. Crucially, here “independent”
does not refer to statistical independence of random variables, but rather to independence of the
underlying distributions as algorithmic objects. For a bivariate system comprising a cause c and an
effect e, this idea reduces to an independence of cause and mechanism, see Fig. 2c. One way to
formalise ICM uses Kolmogorov complexity K(·) [51] as a measure of algorithmic information [43].

However, since Kolmogorov complexity is is not computable, using ICM in practice requires as-
sessing Principle 2.6 with other suitable proxy criteria [9, 11, 34, 42, 45, 65, 75–78, 90, 110].5
Allowing for deterministic relations between cause (sources) and effect (observations), the criterion
which is most closely related to the ICA setting in (1) is information-geometric causal inference
(IGCI) [18, 46].6 IGCI assumes a nonlinear relation e = f(c) and formulates a notion of indepen-

5“This can be seen as an algorithmic analog of replacing the empirically undecidable question of statistical in-
dependence with practical independence tests that are based on assumptions on the underlying distribution” [43].

6For a similar criterion which assumes linearity [45, 110] and its relation to linear ICA, see Appendix B.1.
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dence between the cause distribution pc and the deterministic mechanism f (which we think of as a
degenerate conditional pe|c) via the following condition (in practice, assumed to hold approximately),

CIGCI(f , pc) :=
∫
log |Jf (c)| pc(c)dc−

∫
log |Jf (c)| dc = 0 , (6)

where (Jf (c))ij = ∂fi/∂cj(c) is the Jacobian matrix and | · | the absolute value of the determinant.
CIGCI can be understood as the covariance between pc and log |Jf | (viewed as r.v.s on the unit cube
w.r.t. the Lebesgue measure), so that CIGCI = 0 rules out a form of fine-tuning between pc and |Jf |.
As its name suggests, IGCI can, from an information-geometric perspective, also be seen as an
orthogonality condition between cause and mechanism in the space of probability distributions [46],
see Appendix B.2, particularly eq. (19) for further details.

3 Existing ICM measures are insufficient for nonlinear ICA
Our aim is to use the ICM Principle 2.6 to further constrain the space of models M ⊆ F ×P and
rule out common counterexamples to identifiability such as those presented in § 2.1. Intuitively, both
the Darmois construction (4) and the rotated Gaussian MPA (5) give rise to “non-generic” solutions
which should violate ICM: the former, (fD, pu), due the triangular Jacobian of fD (see Remark 2.4),
meaning that each observation xi = fD

i (y1:i) only depends on a subset of the inferred independent
components y1:i, and the latter, (f ◦ aR(ps), ps), due to the dependence of f ◦ aR(ps) on ps (5).

However, the ICM criteria described in § 2.2 were developed for the task of cause-effect inference
where both variables are observed. In contrast, in this work, we consider an unsupervised representa-
tion learning task where only the effects (mixtures x) are observed, but the causes (sources s) are not.
It turns out that this renders existing ICM criteria insufficient for BSS: they can easily be satisfied
by spurious solutions which are not equivalent to the true one. We can show this for IGCI. Denote
by MIGCI = {(f , ps) ∈ F × P : CIGCI(f , ps) = 0} ⊂ F × P the class of nonlinear ICA models
satisfying IGCI (6). Then the following negative result holds.
Proposition 3.1 (IGCI is insufficient for ∼BSS-identifiability). (1) is not ∼BSS-identifiable on MIGCI.

Proof. IGCI (6) is satisfied when ps is uniform. However, the Darmois construction (4) yields
uniform sources, see Fig. 2a. This means that (fD ◦ aR(pu), pu) ∈ MIGCI, so IGCI can be satisfied
by solutions which do not separate the sources in the sense of Defn. 2.2, see footnote 2 and [39].

As illustrated in Fig. 2c, condition (6) and other similar criteria enforce a notion of “genericity” or
“decoupling” of the mechanism w.r.t. the observed input distribution.7 They thus rely on the fact that
the cause (source) distribution is informative, and are generally not invariant to reparametrisation of
the cause variables. In the (nonlinear) ICA setting, on the other hand, the learnt source distribution
may be fairly uninformative. This poses a challenge for existing ICM criteria since any mechanism is
generic w.r.t. an uninformative (uniform) input distribution.

4 Independent mechanism analysis (IMA)
As argued in § 3, enforcing independence between the input distribution and the mechanism (Fig. 2c),
as existing ICM criteria do, is insufficient for ruling out spurious solutions to nonlinear ICA. We
therefore propose a new ICM-inspired framework which is more suitable for BSS and which we term
independent mechanism analysis (IMA).8 All proofs are provided in Appendix C.

4.1 Intuition behind IMA

As motivated using the cocktail party example in § 1 and Fig. 1 (Left), our main idea is to enforce
a notion of independence between the contributions or influences of the different sources si on the
observations x = f(s) as illustrated in Fig. 2d—as opposed to between the source distribution and
mixing function, cf. Fig. 2c. These contributions or influences are captured by the vectors of partial
derivatives ∂f/∂si. IMA can thus be understood as a refinement of ICM at the level of the mixing f : in
addition to statistically independent components si, we look for a mixing with contributions ∂f/∂si
which are independent, in a non-statistical sense which we formalise as follows.
Principle 4.1 (IMA). The mechanisms by which each source si influences the observed distribution,
as captured by the partial derivatives ∂f/∂si, are independent of each other in the sense that for all s:

log |Jf (s)| =
n∑

i=1

log

∥∥∥∥ ∂f

∂si
(s)

∥∥∥∥ (7)

7In fact, many ICM criteria can be phrased as special cases of a unifying group-invariance framework [9].
8The title of the present work is thus a reverence to Pierre Comon’s seminal 1994 paper [17].
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Geometric interpretation. Geometrically, the IMA principle can be understood as an orthogonality
condition, as illustrated for n = 2 in Fig. 1 (Right). First, the vectors of partial derivatives ∂f/∂si,
for which the IMA principle postulates independence, are the columns of Jf . |Jf | thus measures the
volume of the n−dimensional parallelepiped spanned by these columns, as shown on the right. The
product of their norms, on the other hand, corresponds to the volume of an n-dimensional box, or
rectangular parallelepiped with side lengths ∥∂f/∂si∥, as shown on the left. The two volumes are
equal if and only if all columns ∂f/∂si of Jf are orthogonal. Note that (7) is trivially satisfied for
n = 1, i.e., if there is no mixing, further highlighting its difference from ICM for causal discovery.

Independent influences and orthogonality. In a high dimensional setting (large n), this orthogonality
can be intuitively interpreted from the ICM perspective as Nature choosing the direction of the
influence of each source component in the observation space independently and from an isotropic
prior. Indeed, it can be shown that the scalar product of two independent isotropic random vectors in
Rn vanishes as the dimensionality n increases (equivalently: two high-dimensional isotropic vectors
are typically orthogonal). This property was previously exploited in other linear ICM-based criteria
(see [44, Lemma 5] and [45, Lemma 1 & Thm. 1]).9 The principle in (7) can be seen as a constraint
on the function space, enforcing such orthogonality between the columns of the Jacobian of f at all
points in the source domain, thus approximating the high-dimensional behavior described above.10

Information-geometric interpretation and comparison to IGCI. The additive contribution of
the sources’ influences ∂f/∂si in (7) suggests their local decoupling at the level of the mechanism f .
Note that IGCI (6), on the other hand, postulates a different type of decoupling: one between log |Jf |
and ps. There, dependence between cause and mechanism can be conceived as a fine tuning between
the derivative of the mechanism and the input density. The IMA principle leads to a complementary,
non-statistical measure of independence between the influences ∂f/∂si of the individual sources on the
vector of observations. Both the IGCI and IMA postulates have an information-geometric interpre-
tation related to the influence of (“non-statistically”) independent modules on the observations: both
lead to an additive decomposition of a KL-divergence between the effect distribution and a reference
distribution. For IGCI, independent modules correspond to the cause distribution and the mechanism
mapping the cause to the effect (see (19) in Appendix B.2). For IMA, on the other hand, these are
the influences of each source component on the observations in an interventional setting (under soft
interventions on individual sources), as measured by the KL-divergences between the original and
intervened distributions. See Appendix B.3, and especially (22), for a more detailed account.

We finally remark that while recent work based on the ICM principle has mostly used the term
“mechanism” to refer to causal Markov kernels p(Xi|PAi) or structural equations [78], we employ
it in line with the broader use of this concept in the philosophical literature.11 To highlight just
two examples, [86] states that “Causal processes, causal interactions, and causal laws provide the
mechanisms by which the world works; to understand why certain things happen, we need to see
how they are produced by these mechanisms”; and [99] states that “Mechanisms are events that alter
relations among some specified set of elements”. Following this perspective, we argue that a causal
mechanism can more generally denote any process that describes the way in which causes influence
their effects: the partial derivative ∂f/∂si thus reflects a causal mechanism in the sense that it describes
the infinitesimal changes in the observations x, when an infinitesimal perturbation is applied to si.

4.2 Definition and useful properties of the IMA contrast

We now introduce a contrast function based on the IMA principle (7) and show that it possesses
several desirable properties in the context of nonlinear ICA. First, we define a local contrast as the
difference between the two integrands of (7) for a particular value of the sources s.
Definition 4.2 (Local IMA contrast). The local IMA contrast cIMA(f , s) of f at a point s is given by

cIMA(f , s) =

n∑
i=1

log

∥∥∥∥ ∂f

∂si
(s)

∥∥∥∥− log |Jf (s)| . (8)

Remark 4.3. This corresponds to the left KL measure of diagonality [2] for
√
Jf (s)⊤Jf (s).

9This has also been used as a “leading intuition” [sic] to interpret IGCI in [46].
10To provide additional intuition on how IMA differs from existing principles of independence of cause and

mechanism, we give examples, both technical and pictorial, of violations of both in Appendix B.4.
11See Table 1 in [62] for a long list of definitions from the literature.
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The local IMA contrast cIMA(f , s) quantifies the extent to which the IMA principle is violated at a
given point s. We summarise some of its properties in the following proposition.
Proposition 4.4 (Properties of cIMA(f , s)). The local IMA contrast cIMA(f , s) defined in (8) satisfies:

(i) cIMA(f , s) ≥ 0, with equality if and only if all columns ∂f/∂si(s) of Jf (s) are orthogonal.

(ii) cIMA(f , s) is invariant to left multiplication of Jf (s) by an orthogonal matrix and to right
multiplication by permutation and diagonal matrices.

Property (i) formalises the geometric interpretation of IMA as an orthogonality condition on the
columns of the Jacobian from § 4.1, and property (ii) intuitively states that changes of orthonormal
basis and permutations or rescalings of the columns of Jf do not affect their orthogonality. Next, we
define a global IMA contrast w.r.t. a source distribution ps as the expected local IMA contrast.
Definition 4.5 (Global IMA contrast). The global IMA contrast CIMA(f , ps) of f w.r.t. ps is given by

CIMA(f , ps) = Es∼ps [cIMA(f , s)] =
∫
cIMA(f , s)ps(s)ds . (9)

The global IMA contrast CIMA(f , ps) thus quantifies the extent to which the IMA principle is violated
for a particular solution (f , ps) to the nonlinear ICA problem. We summarise its properties as follows.
Proposition 4.6 (Properties of CIMA(f , ps)). The global IMA contrast CIMA(f , ps) from (9) satisfies:

(i) CIMA(f , ps) ≥ 0, with equality iff. Jf (s) = O(s)D(s) almost surely w.r.t. ps, where
O(s),D(s) ∈ Rn×n are orthogonal and diagonal matrices, respectively;

(ii) CIMA(f , ps) = CIMA(f̃ , ps̃) for any f̃ = f ◦ h−1 ◦P−1 and s̃ = Ph(s), where P ∈ Rn×n is a
permutation and h(s) = (h1(s1), ..., hn(sn)) an invertible element-wise function.
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Figure 3: An example of a (non-conformal) or-
thogonal coordinate transformation from polar
(left) to Cartesian (right) coordinates.

Property (i) is the distribution-level analogue to (i)
of Prop. 4.4 and only allows for orthogonality vi-
olations on sets of measure zero w.r.t. ps. This
means that CIMA can only be zero if f is an or-
thogonal coordinate transformation almost every-
where [19, 52, 66], see Fig. 3 for an example. We par-
ticularly stress property (ii), as it precisely matches
the inherent indeterminacy of nonlinear ICA: CIMA is
blind to reparametrisation of the sources by permu-
tation and element wise transformation.

4.3 Theoretical analysis and justification of CIMA

We now show that, under suitable assumptions on the generative model (1), a large class of spurious
solutions—such as those based on the Darmois construction (4) or measure preserving automorphisms
such as aR from (5) as described in § 2.1—exhibit nonzero IMA contrast. Denote the class of non-
linear ICA models satisfying (7) (IMA) by MIMA = {(f , ps) ∈ F × P : CIMA(f , ps) = 0} ⊂ F × P .
Our first main theoretical result is that, under mild assumptions on the observations, Darmois solutions
will have strictly positive CIMA, making them distinguishable from those in MIMA.
Theorem 4.7. Assume the data generating process in (1) and assume that xi ⊥̸⊥ xj for some i ̸= j.
Then any Darmois solution (fD, pu) based on gD as defined in (4) satisfies CIMA(f

D, pu) > 0. Thus a
solution satisfying CIMA(f , ps) = 0 can be distinguished from (fD, pu) based on the contrast CIMA.
The proof is based on the fact that the Jacobian of gD is triangular (see Remark 2.4) and on the
specific form of (4). A specific example of a mixing process satisfying the IMA assumption is the
case where f is a conformal (angle-preserving) map.
Definition 4.8 (Conformal map). A smooth map f : Rn → Rn is conformal if Jf (s) = O(s)λ(s) ∀s,
where λ : Rn → R is a scalar field, and O ∈ O(n) is an orthogonal matrix.
Corollary 4.9. Under assumptions of Thm. 4.7, if additionally f is a conformal map, then (f , ps) ∈
MIMA for any ps ∈ P due to Prop. 4.6 (i), see Defn. 4.8. Based on Thm. 4.7, (f , ps) is thus
distinguishable from Darmois solutions (fD, pu).
This is consistent with a result that proves identifiability of conformal maps for n = 2 and conjectures
it in general [39].12 However, conformal maps are only a small subset of all maps for which CIMA = 0,
as is apparent from the more flexible condition of Prop. 4.6 (i), compared to the stricter Defn. 4.8.

12Note that Corollary 4.9 holds for any dimensionality n.
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Figure 4: Top. Visual comparison of different nonlinear ICA solutions for n = 2: (left to right) true sources; ob-
served mixtures; Darmois solution; true unmixing, composed with the measure preserving automorphism (MPA)
from (5) (with rotation by π/4); Darmois solution composed with the same MPA; maximum likelihood (λ = 0);
and CIMA-regularised approach (λ = 1). Bottom. Quantitative comparison of CIMA for different spurious
solutions: learnt Darmois solutions for (a) n = 2, and (b) n ∈ {2, 3, 5, 10} dimensions; (c) composition of the
MPA (5) in n = 2 dim. with the true solution (blue) and a Darmois solution (red) for different angles. (d) CIMA

distribution for true MLP mixing (red) vs. Darmois solution (blue) for n = 5 dim., L ∈ {2, 3, 4} layers.

Example 4.10 (Polar to Cartesian coordinate transform). Consider the non-conformal transformation
from polar to Cartesian coordinates (see Fig. 3), defined as (x, y) = f(r, θ) := (r cos(θ), r sin(θ))
with independent sources s = (r, θ), with r ∼ U(0, R) and θ ∼ U(0, 2π).13 Then, CIMA(f , ps) = 0
and CIMA(f

D, pu) > 0 for any Darmois solution (fD, pu) —see Appendix D for details.

Finally, for the case in which the true mixing is linear, we obtain the following result.
Corollary 4.11. Consider a linear ICA model, x = As, with E[s⊤s] = I, and A ∈ O(n) an orthog-
onal, non-trivial mixing matrix, i.e., not the product of a diagonal and a permutation matrix DP. If
at most one of the si is Gaussian, then CIMA(A, ps) = 0 and CIMA(f

D, pu) > 0.

In a “blind” setting, we may not know a priori whether the true mixing is linear or not, and thus
choose to learn a nonlinear unmixing. Corollary 4.11 shows that, in this case, Darmois solutions are
still distinguishable from the true mixing via CIMA. Note that unlike in Corollary 4.9, the assumption
that xi ⊥̸⊥ xj for some i ̸= j is not required for Corollary 4.11. In fact, due to Theorem 11 of [17], it
follows from the assumed linear ICA model with non-Gaussian sources, and the fact that the mixing
matrix is not the product of a diagonal and a permutation matrix (see also Appendix A).

Having shown that the IMA principle allows to distinguish a class of models (including, but not limited
to conformal maps) from Darmois solutions, we next turn to a second well-known counterexample to
identifiability: the “rotated-Gaussian” MPA aR(ps) (5) from Defn. 2.5. Our second main theoretical
result is that, under suitable assumptions, this class of MPAs can also be ruled out for “non-trivial” R.
Theorem 4.12. Let (f , ps) ∈ MIMA and assume that f is a conformal map. Given R ∈ O(n), assume
additionally that ∃ at least one non-Gaussian si whose associated canonical basis vector ei is not
transformed by R−1 = R⊤ into another canonical basis vector ej . Then CIMA(f ◦ aR(ps), ps) > 0.

Thm. 4.12 states that for conformal maps, applying the aR(ps) transformation at the level of the
sources leads to an increase in CIMA except for very specific rotations R that are “fine-tuned” to ps
in the sense that they permute all non-Gaussian sources si with another sj . Interestingly, as for the
linear case, non-Gaussianity again plays an important role in the proof of Thm. 4.12.

5 Experiments
Our theoretical results from § 4 suggest that CIMA is a promising contrast function for nonlinear
blind source separation. We test this empirically by evaluating the CIMA of spurious nonlinear ICA
solutions (§ 5.1), and using it as a learning objective to recover the true solution (§ 5.2).

We sample the ground truth sources from a uniform distribution in [0, 1]n; the reconstructed sources
are also mapped to the uniform hypercube as a reference measure via the CDF transform. Unless

13For different ps, (x, y) can be made to have independent Gaussian components ([98], II.B), and CIMA-
identifiability is lost; this shows that the assumption of Thm. 4.7 that xi ⊥̸⊥ xj for some i ̸= j is crucial.
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otherwise specified, the ground truth mixing f is a Möbius transformation [81] (i.e., a conformal map)
with randomly sampled parameters, thereby satisfying Principle 4.1. In all of our experiments, we
use JAX [12] and Distrax [13]. For additional technical details, equations and plots see Appendix E.
The code to reproduce our experiments is available at this link.

5.1 Numerical evaluation of the CIMA contrast for spurious nonlinear ICA solutions

Learning the Darmois construction. To learn the Darmois construction from data, we use normalis-
ing flows, see [35, 69]. Since Darmois solutions have triangular Jacobian (Remark 2.4), we use an
architecture based on residual flows [16] which we constrain such that the Jacobian of the full model
is triangular. This yields an expressive model which we train effectively via maximum likelihood.

CIMA of Darmois solutions. To check whether Darmois solutions (learnt from finite data) can be
distinguished from the true one, as predicted by Thm. 4.7, we generate 1000 random mixing functions
for n = 2, compute the CIMA values of learnt solutions, and find that all values are indeed significantly
larger than zero, see Fig. 4 (a). The same holds for higher dimensions, see Fig. 4 (b) for results with
50 random mixings for n ∈ {2, 3, 5, 10}: with higher dimensionality, both the mean and variance of
the CIMA distribution for the learnt Darmois solutions generally attain higher values.14 We confirmed
these findings for mappings which are not conformal, while still satisfying (7), in Appendix E.5.

CIMA of MPAs. We also investigate the effect on CIMA of applying an MPA aR(·) from (5) to the
true solution or a learnt Darmois solution. Results for n = 2 dim. for different rotation matrices R
(parametrised by the angle θ) are shown in Fig. 4 (c). As expected, the behavior is periodic in θ,
and vanishes for the true solution (blue) at multiples of π/2, i.e., when R is a permutation matrix, as
predicted by Thm. 4.12. For the learnt Darmois solution (red, dashed) CIMA remains larger than zero.

CIMA values for random MLPs. Lastly, we study the behavior of spurious solutions based on
the Darmois construction under deviations from our assumption of CIMA = 0 for the true mixing
function. To this end, we use invertible MLPs with orthogonal weight initalisation and leaky_tanh
activations [29] as mixing functions; the more layers L are added to the mixing MLP, the larger
a deviation from our assumptions is expected. We compare the true mixing and learnt Darmois
solutions over 20 realisations for each L ∈ {2, 3, 4}, n = 5. Results are shown in figure Fig. 4 (d):
the CIMA of the mixing MLPs grows with L; still, the one of the Darmois solution is typically higher.

Summary. We verify that spurious solutions can be distinguished from the true one based on CIMA.

5.2 Learning nonlinear ICA solutions with CIMA-regularised maximum likelihood

Experimental setup. To use CIMA as a learning signal, we consider a regularised maximum-likelihood
approach, with the following objective: L(g) = Ex[log pg(x)]− λCIMA(g

−1, py), where g denotes
the learnt unmixing, y = g(x) the reconstructed sources, and λ ≥ 0 a Lagrange multiplier. For λ = 0,
this corresponds to standard maximum likelihood estimation, whereas for λ > 0, L lower-bounds
the likelihood, and recovers it exactly iff. (g−1, py) ∈ MIMA. We train a residual flow g (with
full Jacobian) to maximise L. For evaluation, we compute (i) the KL divergence to the true data
likelihood, as a measure of goodness of fit for the learnt flow model; and (ii) the mean correlation
coefficient (MCC) between ground truth and reconstructed sources [37, 49]. We also introduce (iii) a
nonlinear extension of the Amari distance [5] between the true mixing and the learnt unmixing, which
is larger than or equal to zero, with equality iff. the learnt model belongs to the BSS equivalence
class (Defn. 2.2) of the true solution, see Appendix E.5 for details.

Results. In Fig. 4 (Top), we show an example of the distortion induced by different spurious solutions
for n = 2, and contrast it with a solution learnt using our proposed objective (rightmost plot). Visually,
we find that the CIMA-regularised solution (with λ = 1) recovers the true sources most faithfully.
Quantitative results for 50 learnt models for each λ ∈ {0.0, 0.5, 1.0} and n ∈ {5, 7} are summarised
in Fig. 5 (see Appendix E for additional plots) . As indicated by the KL divergence values (left),
most trained models achieve a good fit to the data across all values of λ.15 We observe that using CIMA

(i.e., λ > 0) is beneficial for BSS, both in terms of our nonlinear Amari distance (center, lower is
better) and MCC (right, higher is better), though we do not observe a substantial difference between
λ = 0.5 and λ = 1.16

Summary: CIMA can be a useful learning signal to recover the true solution.

14the latter possibly due to the increased difficulty of the learning task for larger n
15models with n = 7 have high outlier KL values, seemingly less pronounced for nonzero values of λ
16In Appendix E.5, we also show that our method is superior to a linear ICA baseline, FastICA [36].
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6 Discussion
Assumptions on the mixing function. Instead of relying on weak supervision in the form of auxiliary
variables [28, 30, 37, 38, 41, 49], our IMA approach places additional constraints on the functional
form of the mixing process. In a similar vein, the minimal nonlinear distortion principle [108] pro-
poses to favor solutions that are as close to linear as possible. Another example is the post-nonlinear
model [98, 109], which assumes an element-wise nonlinearity applied after a linear mixing. IMA
is different in that it still allows for strongly nonlinear mixings (see, e.g., Fig. 3) provided that the
columns of their Jacobians are (close to) orthogonal. In the related field of disentanglement [8, 58], a
line of work that focuses on image generation with adversarial networks [24] similarly proposes to con-
strain the “generator” function via regularisation of its Jacobian [82] or Hessian [74], though mostly
from an empirically-driven, rather than from an identifiability perspective as in the present work.

Towards identifiability with CIMA. The IMA principle rules out a large class of spurious solutions to
nonlinear ICA. While we do not present a full identifiability result, our experiments show that CIMA

can be used to recover the BSS equivalence class, suggesting that identifiability might indeed hold,
possibly under additional assumptions—e.g., for conformal maps [39].

IMA and independence of cause and mechanism. While inspired by measures of independence of
cause and mechanism as traditionally used for cause-effect inference [18, 45, 46, 110], we view the
IMA principle as addressing a different question, in the sense that they evaluate independence between
different elements of the causal model. Any nonlinear ICA solution that satisfies the IMA Principle 4.1
can be turned into one with uniform reconstructed sources—thus satisfying IGCI as argued in § 3—
through composition with an element-wise transformation which, according to Prop. 4.6 (ii), leaves
the CIMA value unchanged. Both IGCI (6) and IMA (7) can therefore be fulfilled simultaneosly, while
the former on its own is inconsequential for BSS as shown in Prop. 3.1.

BSS through algorithmic information. Algorithmic information theory has previously been pro-
posed as a unifying framework for identifiable approaches to linear BSS [67, 68], in the sense that
commonly-used contrast functions could, under suitable assumptions, be interpreted as proxies for the
total complexity of the mixing and the reconstructed sources. However, to the best of our knowledge,
the problem of specifying suitable proxies for the complexity of nonlinear mixing functions has
not yet been addressed. We conjecture that our framework could be linked to this view, based on
the additional assumption of algorithmic independence of causal mechanisms [43], thus potentially
representing an approach to nonlinear BSS by minimisation of algorithmic complexity.

ICA for causal inference & causality for ICA. Past advances in ICA have inspired novel causal
discovery methods [50, 64, 92]. The present work constitutes, to the best of our knowledge, the first
effort to use ideas from causality (specifically ICM) for BSS. An application of the IMA principle to
causal discovery or causal representation learning [88] is an interesting direction for future work.

Conclusion. We introduce IMA, a path to nonlinear BSS inspired by concepts from causality. We
postulate that the influences of different sources on the observed distribution should be approximately
independent, and formalise this as an orthogonality condition on the columns of the Jacobian. We
prove that this constraint is generally violated by well-known spurious nonlinear ICA solutions,
and propose a regularised maximum likelihood approach which we empirically demonstrate to be
effective in recovering the true solution. Our IMA principle holds exactly for orthogonal coordinate
transformations, and is thus of potential interest for learning spatial representations [33], robot
dynamics [63], or physics problems where orthogonal reference frames are common [66].
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