
Appendices for: Local Hyper-Flow Diffusion

Kimon Fountoulakis
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

kimon.fountoulakis@uwaterloo.ca

Pan Li
Department of Computer Science

Purdue University
West Lafayette, IN, United States

panli@purdue.edu

Shenghao Yang
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

shenghao.yang@uwaterloo.ca

Outline of the Appendix:

• Appendix A contains supplementary material to Section 3 and Section 4 of the paper:

– mathematical derivation of the dual diffusion problem;
– proofs of Theorem 1 and Lemma 2.

• Appendix B contains supplementary material to Section 5 of the paper:

– proof of Lemma 3;
– convergence properties of Algorithm 1;
– specialized algorithms for alternating minimization sub-problems of Algorithm 1.

• Appendix C contains supplementary material to Section 6 of the paper:

– additional synthetic experiments using k-uniform hypergraph stochastic block model;
– complete information about the real datasets considered in Section 6 of the paper;
– experiments for local clustering using seed sets that contain more than one node;
– experiments using 3 additional real datasets that are not discussed in the main paper;
– parameter settings and implementation details.

A Approximation guarantee for local hypergraph clustering

In this section we prove a generalized and stronger version of Theorem 1 in the main paper, where
the primal and dual diffusion problems are penalized by `p-norm and `q-norm, respectively, where
p ≥ 2 and 1/p+ 1/q = 1. Moreover, we consider a generic hypergraph H = (V,E,W) with general
submodular weightsW = {we, ϑe}e∈E for any nonzero ϑe := maxS⊆e we(S). All claims in the
main paper are therefore immediate special cases when p = q = 2 and ϑe = 1 for all e ∈ E.

Unless otherwise stated, we use the same notation as in the main paper. We generalize the definition
of the degree of a node v ∈ V as

dv :=
∑

e∈E:v∈e
ϑe.

Note that when ϑe = 1 for all e, the above definition reduces to dv = |{e ∈ E : v ∈ e}|, which is the
number of hyperedges to which v belongs to.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Given H = (V,E,W) whereW = {we, ϑe}e∈E , p ≥ 2, and a hyperparameter σ ≥ 0, our primal
Hyper-Flow Diffusion (HFD) problem is written as

min
φ∈R|E|+ ,z∈R|V |+

1

p

∑
e∈E

ϑeφ
p
e +

σ

p

∑
v∈V

dvz
p
v

s.t. ∆−
∑
e∈E

ϑere ≤ d+ σDz

re ∈ φeBe, ∀e ∈ E

(A.1)

where
Be := {ρe ∈ R|V | | ρe(S) ≤ we(S),∀S ⊆ V, and ρe(V) = we(V)}

is the base polytope of we. The vector m = ∆ −
∑
e∈E ϑere gives the net amount of mass after

routing. Note that we multiply re by ϑe because we have normalized we by ϑe in its definition.

Lemma A.1. The following optimization problem is dual to (A.1):

max
x∈R|V |+

(∆− d)Tx− 1

q

∑
e∈E

ϑefe(x)q − σ

q

∑
v∈V

dvx
q
v (A.2)

where fe(x) := maxρe∈Be ρ
T
e x is the support function of base polytope Be.

Proof. Using convex conjugates, for x ∈ R|V |+ , we have

1

q
fe(x)q = max

φe≥0
φefe(x)− 1

p
φpe, ∀e ∈ E, (A.3a)

1

q
xqv = max

zv≥0
zvxv −

1

p
zpv , ∀v ∈ V. (A.3b)

Apply the definition of fe(x), we can write (A.3a) as

1

q
fe(x)q = max

φe≥0
φefe(x)− 1

p
φpe = max

φe≥0,re∈φeBe
rTe x−

1

p
φpe.

Therefore,

max
x∈R|V |+

(∆− d)Tx− 1

q

∑
e∈E

ϑefe(x)q − σ

q

∑
v∈V

dvx
q
v

= max
x∈R|V |+

(∆− d)Tx−
∑
e∈E

ϑe

(
max

φe≥0,re∈φeBe
rTe x−

1

p
φpe

)
− σ

∑
v∈V

dv

(
max
zv≥0

zvxv −
1

p
zpv

)
= max

x∈R|V |+

(∆− d)Tx+ min
φ∈R|E|+

re∈φeBe,∀e∈E

∑
e∈E

(
1

p
ϑeφ

p
e − ϑerTe x

)
+ min
z∈R|V |+

σ
∑
v∈V

(
1

p
dvz

p
v − dvzvxv

)

= min
φ∈R|E|+ ,z∈R|V |+

re∈φeBe,∀e∈E

1

p

∑
e∈E

ϑeφ
p
e +

σ

p

∑
v∈V

dvz
p
v + max

x∈R|V |+

(
(∆− d)Tx−

∑
e∈E

ϑer
T
e x− σ

∑
v∈V

dvzvxv

)

= min
φ∈R|E|+ ,z∈R|V |+

re∈φeBe,∀e∈E

1

p

∑
e∈E

ϑeφ
p
e +

σ

p

∑
v∈V

dvz
p
v s.t. ∆− d−

∑
e∈E

ϑere − σDz ≤ 0.

In the above derivations, we may exchange the order of minimization and maximization and arrive at
the second last equality, due to Proposition 2.2, Chapter VI, in [1]. The last equality follows from

max
x∈R|V |+

(
(∆−d)Tx−

∑
e∈E

ϑer
T
e x−σ

∑
v∈V

dvzvxv

)
=

{
0, if ∆− d−

∑
e∈E

ϑere − σDz ≤ 0,

+∞, otherwise.

2

Notation. For the rest of this section, we reserve the notation (φ̂, ẑ) and x̂ for optimal solutions of
(A.1) and (A.2) respectively. If σ = 0, we simply treat ẑ = 0.

The next lemma relates primal and dual optimal solutions. We make frequent use of this relation
throughout our discussion.

Lemma A.2. We have that φ̂pe = fe(x̂)q for all e ∈ E. Moreover, if σ > 0, then ẑpv = x̂qv for all
v ∈ V .

Proof. Given x̂ an optimal solution to (A.2), it follows directly from (A.3) and strong duality that
(φ̂, ẑ) must satisfy, for each e ∈ E and v ∈ V ,

φ̂e = f(x̂)q−1 = argmax
φe≥0

φefe(x̂)− 1

p
φpe and ẑv = x̂q−1

v = argmax
zv≥0

zvx̂v −
1

p
zpv .

Diffusion setup. Recall that we pick a scalar δ and set the source ∆ as

∆v =

{
δdv, if v ∈ S,
0, otherwise. (A.4)

For convenience we restate the assumptions in the following.
Assumption 1. vol(S ∩ C) ≥ αvol(C) and vol(S ∩ C) ≥ βvol(S) for some α, β ∈ (0, 1].
Assumption 2. The source mass ∆ as specified in (A.4) satisfies δ = 3/α, which gives ∆(C) ≥
3vol(C).
Assumption 3. σ satisfies 0 ≤ σ ≤ βΦ(C)/3.

A.1 Technical lemmas

In this subsection we state and prove some technical lemmas that will be used for the main proof in
the next subsection.

The following lemma characterizes the maximizers of the support function for a base polytope.
Lemma A.3 (Proposition 4.2 in [2]). Let w be a submodular function such that w(∅) = 0. Let
x ∈ R|V |, with unique values a1 > · · · > am, taken at sets A1, . . . , Am (i.e., V = A1 ∪ · · · ∪ Am
and ∀i ∈ {1, . . . ,m}, ∀v ∈ Ai, xv = av). Let B be the associated base polytope. Then ρ ∈ B is
optimal for maxρ∈B ρ

Tx if and only if for all i = 1, . . . ,m, ρ(A1 ∪ · · · ∪Ai) = w(A1 ∪ · · · ∪Ai).

Recall that (φ̂, ẑ) and x̂ denote the optimal solutions of (A.1) and (A.2) respectively. We start with a
lemma on the locality of the optimal solutions.
Lemma A.4 (Lemma 2 in the main paper). We have∑

e∈supp(φ̂)

ϑe = vol(supp(x̂)) ≤ ‖∆‖1.

Moreover, if σ > 0, then vol(supp(ẑ)) = vol(supp(x̂)).

Proof. To see the first inequality, note that if x̂v = 0 for every v ∈ e for some e, then fe(x̂) = 0.
By Lemma A.2, this means φ̂e = 0. Thus, φ̂e 6= 0 only if there is some v ∈ e such that x̂v 6= 0.
Therefore, we have that∑

e∈supp(φ̂)

ϑe ≤
∑

v∈supp(x̂)

∑
e∈E:v∈e

ϑe =
∑

v∈supp(x̂)

dv = vol(supp(x̂)).

To see the last inequality, note that, by the first order optimality condition of (A.2), if x̂v 6= 0 then we
must have

∆v − dv =
∑
e∈E

ϑefe(x̂)q−1ρ̂e,v + σdvx̂
q−1
v , for some ρ̂e ∈ ∂fe(x̂) = argmax

ρe∈Be
ρTe x̂. (A.5)

3

Denote N := supp(x̂) and E[N] := {e ∈ E | v ∈ N for all v ∈ e}. Note that E[N] ∩ ∂N = ∅, and
E[N] ∪ ∂N = {e ∈ E | v ∈ N for some v ∈ e}, that is, E[N] ∪ ∂N contain all hyperedges that are
incident to some node in N . Moreover, we have that for any ρ̂e ∈ argmaxρe∈Be ρ

T
e x̂,∑

v∈N
ρ̂e,v = ρ̂e(N) =

{
we(N), if e ∈ ∂N,
0, if e ∈ E[N],

where ρ̂e(N) = we(N) for e ∈ ∂N follows from Lemma A.3, since x̂v > 0 for v ∈ N and x̂v = 0
for v 6∈ N . The equality ρ̂e(N) = 0 for e ∈ E[N] follows from ρ̂e(N) = ρ̂e(e) = 0 because e ⊆ N
and ρ̂e,v = 0 for all v 6∈ e.
Taking sums over v ∈ N on both sides of equation (A.5) we obtain

∆(N)− vol(N) =
∑
v∈N

∑
e∈E

ϑefe(x̂)q−1ρ̂e,v +
∑
v∈N

σdvx̂
q−1
v

=
∑
v∈N

∑
e∈E[N]

ϑefe(x̂)q−1ρ̂e,v +
∑
v∈N

∑
e∈∂N

ϑefe(x̂)q−1ρ̂e,v +
∑
v∈N

σdvx̂
q−1
v

=
∑

e∈E[N]

ϑefe(x̂)q−1
∑
v∈N

ρ̂e,v +
∑
e∈∂N

ϑefe(x̂)q−1
∑
v∈N

ρ̂e,v +
∑
v∈N

σdvx̂
q−1
v

= 0 +
∑
e∈∂N

ϑefe(x̂)q−1we(N) +
∑
v∈N

σdvx̂
q−1
v

≥ 0.

The second equality follows from ρ̂e,v = 0 for all v 6∈ e. This proves vol(supp(x̂)) ≤ ∆(supp(x̂)) ≤
‖∆‖1.

Finally, if σ > 0, then vol(supp(ẑ)) = vol(supp(x̂)) follows from Lemma A.2 that ẑp = x̂q for all
v ∈ V .

The following inequality is a special case of Hölder’s inequality for degree-weighted norms. It will
become useful later.
Lemma A.5. For x ∈ R|V | and p > 1 we have that(∑

v∈V
dv|xv|

)p
≤ vol(supp(x))p−1

∑
v∈V

dv|xv|p.

Proof. Let q = p/(p− 1). Apply Hölder’s inequality we have

∑
v∈V

dv|xv| =
∑

v∈supp(x)

|d1/q
v ||d1/p

v xv| ≤

(∑
v∈supp(x)

dv

)1/q(∑
v∈supp(x)

dv|xv|p
)1/p

= vol(supp(x))1/q

(∑
v∈V

dv|xv|p
)1/p

.

Lemma A.6 (Lemma I.2 in [3]). For any x ∈ R|V |+ \ {0} and q ≥ 1, one has∑
e∈E ϑefe(x)q∑
v∈V dvx

q
v
≥ c(x)q

qq
,

where

c(x) := min
h≥0

vol(∂{v ∈ V |xqv > h})
vol({v ∈ V |xqv > h})

= min
h≥0

vol(∂{v ∈ V |xv > h})
vol({v ∈ V |xv > h})

.

Recall that the objective function of our primal diffusion problem (A.1) consists of two parts. The
first part is

∑
e∈E ϑeφ

p
e and it penalizes the cost of flow routing, the second part is

∑
v∈V dvz

p
v and

4

it penalizes the cost of excess mass. An immediate consequence of Lemma A.6 is the inequality in
Lemma A.7 that relates the cost of optimal flow routing

∑
e∈E ϑeφ̂

p
e and the cost of excess mass∑

v∈V dv ẑ
p
v at optimality.

For h > 0, recall that the sweep sets are defined as Sh := {v ∈ V |x̂v ≥ h}.

Let ĥ ∈ argminh>0 Φ(Sh) and denote Ŝ = Sĥ. That is, Ŝ = Sh for some h > 0 and Φ(Ŝ) ≤ Φ(Sh)
for all h > 0.
Lemma A.7. For p > 1 and q = p/(p− 1) we have that∑

e∈E
ϑeφ̂

p
e ≥

(
Φ(Ŝ)

q

)q∑
v∈V

dv ẑ
p
v .

Proof. By Lemma A.2,∑
e∈E

ϑeφ̂
p
e =

∑
e∈E

ϑefe(x̂)q and
∑
v∈V

dv ẑ
p
v =

∑
v∈V

dvx̂
q
v,

and the result follows from applying Lemma A.6.

Given a vector a ∈ R|V | and a set S ⊆ V , recall that we write a(S) =
∑
v∈S av. This actually

defines a modular set-function a taking input on subsets of V . The Lovász extension of modular
function a is simply f(x) = aTx [2]. Since all modular functions are also submodular, we arrive at
the following lemma that follows from a classical property of the Choquet integral/Lovász extension.
Lemma A.8. We have that

∆T x̂ =

∫ +∞

h=0

∆(Sh)dh, dT x̂ =

∫ +∞

h=0

vol(Sh)dh, fe(x̂) =

∫ +∞

h=0

we(Sh)dh.

Proof. Recall that, by definition, vol(S) = d(S) where d is the degree vector. ∆ and d are modular
functions on 2V and we is a submodular function on 2V . The Lovász extension of ∆ and d are ∆Tx
and dTx, respectively. The Lovász extension of we is fe(x). The results then follow immediately
from representing the Lovász extensions using Choquet integrals. See, e.g., Proposition 3.1 in [2].

A.2 Proof of Theorem 1 in the main paper

We restate the theorem below with respect to the general formulations (A.1) and (A.2) for any p ≥ 2
and q = p/(p− 1).

Let us recall that the sweep sets are defined as Sh := {v ∈ V |x̂v ≥ h}.
Theorem A.9. Under Assumptions 1, 2, 3, for some h > 0 we have that

Φ(Sh) ≤ O
(

Φ(C)1/q

αβ

)
.

Recall that Ŝ is such that Ŝ = Sh for some h > 0 and Φ(Ŝ) ≤ Φ(Sh) for all h > 0. We will
assume without loss of generality that Φ(C) ≤ (Φ(Ŝ)/q)q , as otherwise Φ(Ŝ) < qΦ(C)1/q and the
statement in Theorem A.9 already holds.

Denote ν̂ :=
∑
e∈E ϑeφ̂

p
e , the cost of optimal flow routing. The following claim states that ν̂ must be

large.

Claim A.1. ν̂ ≥ vol(C)p/vol(∂C)p−1.

Proof. The proof of this claim follows from a case analysis on the total amount of excess mass
σ
∑
v∈V dv ẑv at optimality. Intuitively, if the excess is small, then naturally there must be a large

amount of flow in order to satisfy the primal constraint; if the excess is large, then Lemma A.7 and
Lemma A.5 guarantee that flow is also large. We give details below.

Suppose that σ
∑
v∈V dv ẑv < vol(C). Note that this also includes the case where σ = 0. By

Assumption 2 there is at least ∆(C) ≥ 3vol(C) amount of source mass trapped in C at the beginning.

5

Moreover, the primal constraint enforces the nodes in C can settle at most
∑
v∈C(dv + σdv ẑv) ≤

vol(C)+
∑
v∈V σdv ẑv < 2vol(C) amount of mass. Therefore, the remaining at least vol(C) amount

of mass needs to get out of C using the hyperedges in ∂C. That is, the net amount of mass that moves
from C to V \ C satisfies

∑
e∈∂C ϑer̂e(C) ≥ vol(C). We focus on the cost of φ̂ restricted to these

hyperedges along. It is easy to see that∑
e∈∂C

ϑeφ̂
p
e ≥ min

φ∈R|∂C|+

∑
e∈∂C

ϑeφ
p
e subject to r̂e ∈ φeBe, ∀e ∈ ∂C (A.6a)

≥ min
φ∈R|∂C|+

∑
e∈∂C

ϑeφ
p
e subject to

∑
e∈∂C

ϑer̂e(C) ≤
∑
e∈∂C

ϑeφewe(C) (A.6b)

≥ min
φ∈R|∂C|+

∑
e∈∂C

ϑeφ
p
e subject to vol(C) ≤

∑
e∈∂C

ϑeφewe(C). (A.6c)

The first inequality follows because φ̂ restricted to ∂C is a feasible solution in problem (A.6a).
The second inequality follows because r̂e ∈ φeBe implies r̂e(C) ≤ φewe(C), therefore every
feasible solution for (A.6a) is also a feasible solution for (A.6b). The third inequality follows because
vol(C) ≤

∑
e∈E ϑer̂e(C). Let φ̄ ∈ R|∂C|+ be an optimal solution of problem (A.6c). The optimality

condition of (A.6c) is given by (we may assume the p factor in the gradient of
∑
e∈∂C ϑeφ

p
e is

absorbed into multipliers λ and ηe)

ϑeφ
p−1
e − λϑewe(C)− ηe = 0, ∀e ∈ ∂C

φe ≥ 0, ηe ≥ 0, φeηe = 0, ∀e ∈ ∂C

vol(C) ≤
∑
e∈∂C

ϑeφewe(C)

λ ≥ 0, λ

(
vol(C)−

∑
e∈∂C

ϑeφewe(C)

)
= 0.

(A.7)

If λ = 0, then the conditions in (A.7) imply that ϑeφp−1
e = ηe, but then by complimentary slackness

we would obtain φe = ηe = 0 for all e ∈ ∂C which will violate feasibility. Therefore we must have
λ > 0, and consequently, we have that∑

e∈∂C

ϑeφ̄ewe(C) = vol(C). (A.8)

Moreover, the conditions in (A.7) imply that for e ∈ ∂C, φ̄e = 0 if and only if we(C) = 0, and
hence we have that

ϑeφ̄
p−1
e = λϑewe(C), ∀e ∈ ∂C. (A.9)

Rearrange (A.9) we get

φ̄ewe(C) = λ1/(p−1)we(C)p/(p−1), ∀e ∈ ∂C.

Substitute the above into (A.8),

vol(C) =
∑
e∈∂C

ϑeφ̄ewe(C) =
∑
e∈∂C

ϑeλ
1/(p−1)we(C)p/(p−1),

this gives

λ1/(p−1) =
vol(C)∑

e∈∂C ϑewe(C)p/(p−1)
.

Therefore, the solution φ̄ for (A.6c) is give by

φ̄e = λ1/(p−1)we(C)1/(p−1) =
vol(C)we(C)1/(p−1)∑
e′∈∂C ϑe′we′(C)p/(p−1)

, ∀e ∈ ∂C,

6

and hence,

ν̂ =
∑
e∈E

ϑeφ̂
p
e ≥

∑
e∈∂C

ϑeφ̂
p
e ≥

∑
e∈∂C

ϑeφ̄
p
e =

∑
e∈∂C

ϑe
vol(C)pwe(C)p/(p−1)(∑
e′∈∂C ϑe′we′(C)p/(p−1)

)p
=

vol(C)p
∑
e∈∂C ϑewe(C)p/(p−1)(∑

e′∈∂C ϑe′we′(C)p/(p−1)
)p

=
vol(C)p(∑

e′∈∂C ϑe′we′(C)p/(p−1)
)p−1

≥ vol(C)p(∑
e′∈∂C ϑe′we′(C)

)p−1

where the last inequality follows because we(C) ∈ [0, 1] and p ≥ 1.

Suppose now that σ
∑
v∈V dv ẑv ≥ vol(C). Becase Φ(C) ≤ (Φ(Ŝ)/q)q (recall that we assumed this

without loss of generality), by Assumption 3, we know that σ < (φ(Ŝ)/q)q . Therefore,

ν̂ =
∑
e∈E

ϑeφ̂
p
e

(i)

≥ σ
∑
v∈V

dv ẑ
p
v

(ii)

≥
σ
(∑

v∈V dv ẑv
)p

vol(supp(ẑ))p−1

(iii)

≥
σp
(∑

v∈V dv ẑv
)p

σp−1(3vol(C)/β)p−1

(iv)

≥
σp
(∑

v∈V dv ẑv
)p

vol(∂C)p−1

(v)

≥ vol(C)p

vol(∂C)p−1
.

(i) is due to Lemma A.6. (ii) is due to Lemma A.5. (iii) is due to Lemma A.4 that vol(supp(ẑ)) ≤
‖∆‖1 and Assumption 2 that ‖∆‖1 ≤ 3vol(c)/β, so vol(supp(ẑ))p−1 ≤ (3vol(C)/β)p−1 for p ≥ 1.
(iv) is due to Assumption 3 that σ ≤ βvol(∂C)

3vol(C) , so (3σvol(C)/β)p−1 ≤ vol(∂C)p−1 for p ≥ 1. (v)

is due to the assumption that σ
∑
v∈V dv ẑv ≥ vol(C).

To connect Φ(Sh) with Φ(C), we define the length of a hyperedge e ∈ E as

l̂(e) :=

{
max(1/vol(C)1/q, fe(x̂)/ν̂1/q), if fe(x̂) > 0,
0, otherwise.

The next claim follows from simple algebraic computations and the locality of solutions in
Lemma A.4.

Claim A.2.
∑
e∈E ϑefe(x̂)l̂(e)q−1 ≤ 4ν̂1/q/β.

Proof. For e ∈ E, define l(e) := fe(x̂)/ν̂1/q . Then l(e) ≤ l̂(e). Moreover,∑
e:l(e)<l̂(e)

ϑe ≤
∑

e∈supp(φ̂)

ϑe ≤ vol(supp(x̂)) ≤ ‖∆‖1 =
3

α
vol(S) ≤ 3

β
vol(C).

The first inequality follows from that l(e) < l̂(e) only if l(e) 6= 0, and by Lemma A.2, l(e) 6= 0 if
and only if φ̂e 6= 0. The second and the third inequalities are due to Lemma A.4. The second to last
equality follows from the diffusion setting (A.4) and Assumption 2 that δ = 3/α. The last inequality

7

follows from Assumption 1. Therefore,∑
e∈E

ϑefe(x̂)l̂(e)q−1 =
∑

e:l(e)=l̂(e)

ϑefe(x̂)
fe(x̂)q−1

ν̂(q−1)/q
+

∑
e:l(e)<l̂(e)

ϑefe(x̂)
1

vol(C)(q−1)/q

≤
∑

e:l(e)=l̂(e)

ϑefe(x̂)
fe(x̂)q−1

ν̂(q−1)/q
+

∑
e:l(e)<l̂(e)

ϑe
ν̂1/q

vol(C)1/q

1

vol(C)(q−1)/q

=
1

ν̂(q−1)/q

∑
e:l(e)=l̂(e)

ϑefe(x̂)q +
ν̂1/q

vol(C)

∑
e:l(e)<l̂(e)

ϑe

≤ 1

ν̂(q−1)/q

∑
e∈E

ϑefe(x̂)q +
ν̂1/q

vol(C)

3vol(C)

β

=
ν̂

ν̂(q−1)/q
+

3ν̂1/q

β

≤ 4ν̂1/q

β

where the last equality follows from Lemma A.2 that ν̂ =
∑
e∈E ϑeφ̂

p
e =

∑
e∈E ϑefe(x̂)q .

By the strong duality between (A.1) and (A.2), we know that

(∆− d)T x̂− 1

q

∑
e∈E

ϑefe(x̂)q − σ

q

∑
v∈V

dvx̂
q
v =

1

p

∑
e∈E

ϑeφ̂
p
e +

σ

p

∑
v∈V

dv ẑ
p
v .

Hence, by Lemma A.2, we get

(∆− d)T x̂ ≥ 1

q

∑
e∈E

ϑefe(x̂)q +
1

p

∑
e∈E

ϑeφ̂
p
e =

∑
e∈E

ϑeφ̂
p
e = ν̂.

It then follows that∑
e∈E ϑefe(x̂)l̂(e)q−1

(∆− d)T x̂
≤
∑
e∈E ϑefe(x̂)l̂(e)q−1

ν̂

(i)

≤ 4ν̂1/q

βν̂
=

4

βν̂1/p

(ii)

≤ 4vol(∂C)1/q

βvol(C)
, (A.10)

where (i) is follows from Claim A.2 and (ii) follows from Claim A.1.

We can write the left-most ratio in (A.10) in its integral form, as follows. By Lemma A.8, we have

(∆− d)T x̂ =

∫ ∞
h=0

(∆(Sh)− vol(Sh))dh,

and ∑
e∈E

ϑefe(x̂)l̂(e)q−1 =
∑
e∈E

ϑe

∫ ∞
h=0

we(Sh)dh l̂(e)q−1

=

∫ ∞
h=0

∑
e∈E

ϑewe(Sh)l̂(e)q−1dh

=

∫ ∞
h=0

∑
e∈∂Sh

ϑewe(Sh)l̂(e)q−1dh,

where the last equality follows from the fact that we(Sh) = 0 for e 6∈ ∂Sh. Therefore, we get∫ ∞
h=0

∑
e∈∂Sh ϑewe(Sh)l̂(e)q−1

∆(Sh)− vol(Sh)
dh ≤ 4vol(∂C)1/q

βvol(C)
,

which means that there exists h > 0 such that∑
e∈∂Sh ϑewe(Sh)l̂(e)q−1

∆(Sh)− vol(Sh)
≤ 4vol(∂C)1/q

βvol(C)
. (A.11)

8

Finally, we connect the left hand side in inequality (A.11) to the conductance of Sh. For the
denominator, by Assumption 2, we have

∆(Sh)− vol(Sh) ≤ 3

α
vol(Sh). (A.12)

For the numerator, every hyperedge e ∈ ∂Sh must contain some u, v ∈ e such that x̂u 6= x̂v, thus
fe(x̂) > 0, which means l̂(e) ≥ 1/vol(C)1/q . This gives∑

e∈∂Sh

ϑewe(Sh)l̂(e)q−1 ≥
∑
e∈∂Sh ϑewe(Sh)

vol(C)(q−1)/q
=

vol(∂Sh)

vol(C)(q−1)/q
. (A.13)

Put (A.11), (A.12) and (A.13) together, there exists h > 0 such that

Φ(Sh) =
vol(∂Sh)

vol(Sh)
≤ 12vol(∂C)1/q

αβvol(C)1/q
=

12Φ(C)1/q

αβ
.

B Optimization algorithm for HFD

In this section we give details on an Alternating Minimization (AM) algorithm [4] that solves the
primal problem (A.1). In Algorithm B.1 we write the basic AM steps in a slightly more general form
than what is given by Algorithm 1 in the main paper. The key observation is that the AM method
provides a unified framework to solve HFD, when the objective function of the primal problem (A.1)
is penalized by any `p-norm for p ≥ 2.

Let us remind the reader the definitions and notation that we will use. We consider a generic
hypergraph H = (V,E,W) whereW = {we, ϑe}e∈E are submodular hyperedge weights. For each
e ∈ E, we define a diagonal matrix Ae ∈ R|V |×|V | such that [Ae]v,v = 1 if v ∈ e and 0 otherwise.
We use the notation r ∈

⊗
e∈E R|V | to represent a vector in the space R|V ||E|, where each re ∈ R|V |

corresponds to a block in r indexed by e ∈ E. For a vector re ∈ R|V |, re,v is the entry in re that
corresponds to v ∈ V . For a vector x ∈ R|V |, [x]+ := max{x, 0} where the maximum is taken
entry-wise.

We denote C := {(φ, r) ∈ R|E|+ × (
⊗

e∈E R|V |) | re ∈ φeBe, ∀e ∈ E}.

Algorithm B.1 Alternating Minimization for HFD
Initialization:

φ(0) := 0, r(0) := 0, s(0)
e := D−1Ae [∆− d]+ ,∀e ∈ E.

For k = 0, 1, 2, . . . do:

(φ(k+1), r(k+1)) := argmin
(φ,r)∈C

∑
e∈E

ϑe

(
φpe +

1

σp−1
‖s(k)
e − re‖pp

)
s(k+1) := argmin

s

∑
e∈E

ϑe‖se − r(k+1)
e ‖pp, s.t. ∆−

∑
e∈E

ϑese ≤ d, se,v = 0,∀v 6∈ e.

We will prove the equivalence between the primal diffusion problem (A.1) and its separable reformu-
lation shortly, but let us start with a simple lemma that gives closed-form solution for one of the AM
sub-problems.
Lemma B.1. The optimal solution to the following problem

min
s∈

⊗
e∈E R|V |

∑
e∈E

ϑe‖se − re‖pp, s.t. ∆−
∑
e∈E

ϑese ≤ d, se,v = 0,∀v 6∈ e. (B.1)

is given by
s∗e = re +AeD

−1
[
∆−

∑
e′∈E

ϑe′re′ − d
]

+
, ∀e ∈ E. (B.2)

9

Proof. Rewrite (B.1) as

min
s∈

⊗
e∈E R|V |

∑
v∈V

∑
e∈E

ϑe|se,v − re,v|p

s.t. ∆v −
∑
e∈E

ϑese,v ≤ dv, ∀v ∈ V

se,v = 0, ∀v 6∈ e.

Then it is immediate to see that (B.1) decomposes into |V | sub-problems indexed by v ∈ V ,

min
ξv∈R|Ev|

∑
e∈Ev

ϑe|ξv,e − re,v|p, s.t. ∆v −
∑
e∈Ev

ϑeξv,e ≤ dv, (B.3)

where Ev := {e ∈ E | v ∈ e} is the set of hyperedges incident to v, and we use ξv,e for the entry in
ξv that corresponds to e ∈ Ev . Let ξ∗v denote the optimal solution for (B.3). We have that s∗e,v = ξ∗v,e
if v ∈ e and s∗e,v = 0 otherwise. Therefore, it suffices to find ξ∗v for v ∈ V . The optimality condition
of (B.3) is given by

pϑe|ξv,e − re,v|p−1 sign(ξv,e − re,v)− ϑeλ 3 0, ∀e ∈ Ev,

λ ≥ 0, ∆v −
∑
e∈Ev

ϑeξv,e ≤ dv, λ
(

∆v −
∑
e∈Ev

ϑeξv,e − dv
)

= 0,

where

sign(a) :=

{ {−1}, if a < 0,
{1}, if a > 0,
[−1, 1] if a = 0.

There are two cases about λ. We show that in both cases the solution given by (B.2) is optimal.

Case 1. If λ > 0, then we must have that pϑe|ξv,e − re,v|p−1 > 0 for all e ∈ Ev (otherwise, the
stationarity condition would be violated). This means that p|ξv,e − re,v|p−1 = λ for all e ∈ Ev , that
is, ξv,e1 − re1,v = ξv,e2 − re2,v > 0 for every e1, e2 ∈ Ev . Denote tv := ξv,e− re,v . Because λ > 0,
by complementarity we have

∆v −
∑
e∈Ev

ϑe(tv + re,v) = ∆v −
∑
e∈Ev

ϑeξv,e = dv,

which implies that tv = (
∑
e∈Ev ϑe)

−1(∆v−
∑
e∈Ev ϑere,v−dv). Note that ∆v−

∑
e∈Ev ϑere,v−

dv > 0 because ∆v −
∑
e∈Ev ϑeξv,e − dv = 0 and ξv,e > re,v for all e ∈ Ev. Therefore we have

that

s∗e,v = ξ∗v,e = re,v + d−1
v

[
∆v −

∑
e∈Ev

ϑere,v − dv
]

+
.

Case 2. If λ = 0, then we have that pϑe|ξv,e − re,v|p−1 sign(ξv,e − re,v) 3 0 for all e ∈ Ev, which
implies ξv,e − re,v = 0 for all e ∈ Ev . Then we must have

∆v −
∑
e∈Ev

ϑere,v = ∆v −
∑
e∈Ev

ϑeξv,e ≤ dv.

Therefore we still have that

s∗e,v = ξ∗v,e = re,v = re,v + d−1
v

[
∆v −

∑
e∈Ev

ϑere,v − dv
]

+
.

The required result then follows from the definition of Ae and D.

We are now ready to show that the primal problem (A.1) can be cast into an equivalent separable
formulation, which can then be solved by the AM method in Algorithm B.1. We give the reformulation
under general `p-norm penalty and arbitrary ϑe > 0.

10

Lemma B.2 (Lemma 3 in the main paper). The following problem is equivalent to (A.1) for any
σ > 0, in the sense that (φ̂, r̂, ẑ) is optimal in (A.1) for some ẑ ∈ R|V | if and only if (φ̂, r̂, ŝ) is
optimal in (B.4) for some ŝ ∈

⊗
e∈E R|V |.

min
φ,r,s

1

p

∑
e∈E

ϑe

(
φpe +

1

σp−1
‖se − re‖pp

)
s.t. (φ, r) ∈ C, ∆−

∑
e∈E

ϑese ≤ d, se,v = 0,∀v 6∈ e.
(B.4)

Proof. We will show the forward direction and the converse follows from exactly the same reasoning.
Let ν̂1 and ν̂2 denote the optimal objective value of problems (A.1) and (B.4), respectively. Let
(φ̂, r̂, ẑ) be an optimal solution for (A.1). Define ŝe := r̂e + σAeẑ for e ∈ E. We show that (φ̂, r̂, ŝ)
is an optimal solution for (B.4).

Because r̂e,v = 0 for all v 6∈ e, by the definition of Ae, we know that ŝe,v = 0 for all v 6∈ e.
Moreover,

σDẑ = σ
∑
e∈E

ϑeAeẑ =
∑
e∈E

ϑe(ŝe − r̂e),

so
∆−

∑
e∈E

ϑeŝe = ∆−
∑
e∈E

ϑer̂e − σDẑ ≤ d.

Therefore, (φ̂, r̂, ŝ) is a feasible solution for (B.4). Furthermore,

σ
∑
v∈V

dv ẑ
p
v = σ

∑
e∈E

ϑe
∑
v∈e

ẑpv = σ
∑
e∈E

ϑe‖Aeẑ‖pp

=
1

σp−1

∑
e∈E

ϑe ‖σAeẑ‖pp =
1

σp−1

∑
e∈E

ϑe ‖ŝe − r̂e‖pp .

This means that (φ̂, r̂, ŝ) attains objective value ν̂1 in (B.4). Hence ν̂1 ≥ ν̂2.

In order to show that (φ̂, r̂, ŝ) is indeed optimal for (B.4), it left to show that ν̂2 ≥ ν̂1. Let (φ′, r′, s′)
be an optimal solution for (B.4). Then we know that

s′ = argmin
s∈

⊗
e∈E R|V |

∑
e∈E

ϑe‖se − r′e‖pp, s.t. ∆−
∑
e∈E

ϑese ≤ d, se,v = 0 ∀v 6∈ e. (B.5)

According to Lemma B.1, we know that

s′e = r′e +AeD
−1
[
∆−

∑
e′∈E

ϑe′r
′
e′ − d

]
+
, ∀e ∈ E. (B.6)

Define z′ := 1
σD
−1[∆−

∑
e∈E ϑer

′
e − d]+. Then z′ ≥ 0. Moreover, we have that∑

e∈E
ϑes
′
e−
∑
e∈E

ϑer
′
e =

∑
e∈E

ϑeAeD
−1
[
∆−

∑
e′∈E

ϑe′r
′
e′ −d

]
+

=
[
∆−

∑
e′∈E

ϑe′r
′
e′ −d

]
+

= σDz′,

so
∆−

∑
e∈E

ϑer
′
e = ∆−

∑
e∈E

ϑes
′
e + σDz′ ≤ d+ σDz′.

Therefore, (φ′, r′, z′) is a feasible solution for (A.1). Furthermore,

1

σp−1

∑
e∈E

ϑe ‖s′e − r′e‖
p
p =

1

σp−1

∑
e∈E

ϑe ‖σAez′‖
p
p = σ

∑
e∈E

ϑe‖Aez′‖pp

= σ
∑
e∈E

ϑe
∑
v∈e

z′
p
v = σ

∑
v∈V

dvz
′p
v.

This means that (φ′, r′, z′) attains objective value ν̂2 in (A.1). Hence ν̂2 ≥ ν̂1.

11

Remark. The constructive proof of Lemma B.2 means that, given an optimal solution (φ̂, r̂, ŝ) for
problem (B.4), one can recover an optimal solution (φ̂, r̂, ẑ) for our original primal formulation (A.1)
via ẑ := 1

σD
−1[∆ −

∑
e∈E ϑer̂e − d]+. It then follows from Lemma A.2 that the dual optimal

solution x̂ is given by x̂ = ẑp−1. Therefore, a sweep cut rounding procedure readily applies to the
solution (φ̂, r̂, ŝ) of problem (B.4).

Let g(φ, r, s) denote the objective function of problem (B.4) and let g∗ denote its optimal objective
value.

The following theorem gives the convergence rate of Algorithm B.1 applied to (B.4), when its
objective function is penalized by `p-norm for p ≥ 2.

Theorem B.3 ([4]). Let {φ(k), r(k), s(k)}k≥0 be the sequence generated by Algorithm B.1. Then for
any k ≥ 1,

g(φ(k), r(k), s(k))− g∗ ≤ 3 max{g(φ(0), r(0), s(0))− g∗, LpR2}
k

,

where

R = max
(φ,r,s)∈F

max
(φ̂,r̂,ŝ)∈O

{
‖φ− φ̂‖22 + ‖r − r̂‖22 + ‖s− ŝ‖22

∣∣ g(φ, r, s) ≤ g(φ(0), r(0), s(0))
}
,

Lp = (p− 1)
ϑ

2/p
max‖∆‖p−2

p

d
(p−1)(p−2)/p
min σp−1

,

where F and O denote the feasible set and set of optimal solutions, respectively, ϑmax := max
e∈E

ϑe,

and dmin := min
v∈supp(∆)

dv .

Remark. When p = 2, as considered in the main paper, the objective function g(φ, r, s) has Lipschitz
continuous gradient with constant L2 = ϑmax/σ. When p > 2, the gradient of g(φ, r, s) is not
generally Lipschitz continuous. However, the sub-linear convergence rate in Theorem B.3 applies as
long as g(φ, r, s) is block Lipschitz smooth in the sub-level sets containing the iterates generated by
Algorithm B.1. We give more details in Subsection B.1.

B.1 Block Lipschitz smoothness over sub-level set

Recall that g(φ, r, s) denotes the objective function of problem (B.4). Lemma B.4 concerns specifi-
cally the setting when problem B.4 is penalized by the `p-norm for some p > 2.

Lemma B.4 (Block Lipschitz smoothness). The partial gradient∇(φ,r)g(φ, r, s) is Lipschitz contin-
uous over the sub-level sets (given any fixed s)

Uφ,r(s) := {(φ, r) ∈ R|V |+ × (
⊗

e∈ER
|V |) | g(φ, r, s) ≤ g(φ(0), r(0), s(0))}

with constant Lφ,r such that

Lφ,r ≤ (p− 1)
ϑ

2/p
max‖∆‖p−2

p

d
(p−1)(p−2)/p
min σp−1

,

where ϑmax := maxe∈E ϑe and dmin := minv∈supp(∆) dv. The partial gradient ∇sg(φ, r, s) is
Lipschitz continuous over the sub-level sets (given any fixed (φ, r))

Us(φ, r) := {s ∈
⊗

e∈ER
|V | | g(φ, r, s) ≤ g(φ(0), r(0), s(0))}

with constant Ls ≤ Lφ,r.

Proof. Fix s ∈
⊗

e∈E R|V | and consider

g1(φ, r) := g(φ, r, s) =
1

p

∑
e∈E

ϑeφ
p
e +

1

pσp−1

∑
e∈E

∑
v∈V

ϑe|re,v − se,v|p.

12

The function g1(φ, r) is coordinate-wise separable and hence its second order derivative∇2g1(φ, r)
is a diagonal matrix. Therefore, the largest eigenvalue of∇2g1(φ, r) is the largest coordinate-wise
second order partial derivative, that is,

Lφ,r = max
(φ,r)∈Uφ,r(s)

λmax(∇2g1(φ, r)) = max
(φ,r)∈Uφ,r(s)

max
e∈E,v∈V

{∇2
φeg1(φ, r),∇2

re,vg1(φ, r)}.

So it suffices to upper bound∇2
φe
G(φ, r) and ∇2

re,vG(φ, r) for all (φ, r) ∈ Uφ,r(s). We have that

g(φ(0), r(0), s(0)) =
1

pσp−1

∑
e∈E

ϑe
∑
v∈e

[∆v − dv]p+
dpv

=
1

pσp−1

∑
v∈V

[∆v − dv]p+
dp−1
v

≤
‖∆‖pp

pσp−1dp−1
min

where dmin = minv∈supp(∆) dv . It follows that for all (φ, r) ∈ Uφ,r(s),

∇2
φeg1(φ, r) = (p− 1)ϑeφ

p−2
e ≤

(p− 1)ϑ
2/p
e ‖∆‖p−2

p

d
(p−1)(p−2)/p
min σ(p−1)(p−2)/p

≤
(p− 1)ϑ

2/p
e ‖∆‖p−2

p

d
(p−1)(p−2)/p
min σp−1

, ∀e ∈ E,

∇2
re,vg1(φ, r) = (p− 1)

ϑe
σp−1

|se,v − re,v|p−2 ≤
(p− 1)ϑ

2/p
e ‖∆‖p−2

p

d
(p−1)(p−2)/p
min σp−1

, ∀e ∈ E, ∀v ∈ V,

because otherwise we would have g(φ, r, s) > g(φ(0), r(0), s(0)). Hence,

Lφ,r ≤ max
e∈E

(p− 1)ϑ
2/p
e ‖∆‖p−2

p

d
(p−1)(p−2)/p
min σp−1

=
(p− 1)ϑ

2/p
max‖∆‖p−2

p

d
(p−1)(p−2)/p
min σp−1

.

Finally, by the symmetry between r and s in F (φ, r, s), we know that Ls ≤ Lφ,r.

Remark. Because the iterates generated by Algorithm B.1 monotonically decrease the objective
function value, in particular, we have that

g(φ(0), r(0), s(0)) ≥ g(φ(k+1), r(k+1), s(k)) ≥ g(φ(k+1), r(k+1), s(k+1))

for any k ≥ 0. Therefore, the sequence of iterates live in the sub-level sets. As a result, for any p > 2,
the block Lipschitz smoothness within sub-level sets suffices to obtain the sub-linear convergence
rate for the AM method [4].

B.2 Alternating minimization sub-problems

We now discuss how to solve the sub-problems in Algorithm B.1 efficiently. By Lemma B.1, we
know that the sub-problem with respect to s,

s(k+1) := argmin
s

∑
e∈E

ϑe‖se − r(k+1)
e ‖pp, s.t. ∆−

∑
e∈E

ϑese ≤ d, se,v = 0,∀v 6∈ e,

has closed-form solution

s(k+1)
e = r(k+1)

e +AeD
−1
[
∆−

∑
e′∈E

ϑe′r
(k+1)
e′ − d

]
+
, ∀e ∈ E.

For the sub-problem with respect to (φ, r),

(φ(k+1), r(k+1)) := argmin
(φ,r)∈C

∑
e∈E

ϑe

(
φpe +

1

σp−1
‖s(k)
e − re‖pp

)
,

note that it decomposes into |E| independent problems that can be minimized separately. That is, for
e ∈ E, we have

(φ(k+1)
e , r(k+1)

e) = argmin
φe≥0,re∈φeBe

ϑeφ
p
e +

1

σp−1
ϑe‖s(k)

e − re‖pp

= argmin
φe≥0,re∈φeBe

1

p
φpe +

1

pσp−1
‖s(k)
e − re‖pp.

(B.7)

13

The above problem (B.7) is strictly convex so it has a unique minimizer.

We focus on p = 2 first. In this case, problem (B.7) can be solved in sub-linear time using either the
conic Frank-Wolfe algorithm or the conic Fujishige-Wolfe minimum norm algorithm studied in [5].
Notice that the dimension of problem (B.7) is the size of the corresponding hyperedge. Therefore, as
long as the hyperedge is not extremely large, we can easily obtain a good update (φ

(k+1)
e , r

(k+1)
e).

If Be has a special structure, for example, if the hyperedge weight we models unit cut-cost, then an
exact solution for (B.7) can be computed in time O(|e| log |e|) [5]. For completeness we transfer
the algorithmic details in [5] to our setting and list them in Algorithm B.2. The basic idea is to find
optimal dual variables achieving dual optimality, and then recover primal optimal solution from the
dual. We refer the reader to [5] for detailed justifications. Given e ∈ E, se ∈ R|V |, and a, b ∈ R,
denote

e≥(a) := {v ∈ e | se,v ≥ σa} and e≤(b) := {v ∈ e | se,v ≤ σb}.

Define

γ(a, b) := a− b+
∑

v∈e≥(a)

σ
(
a− se,v

σ

)
.

Algorithm B.2 An Exact Projection Algorithm for (B.7) (p = 2, unit cut-cost) [5]

1: Input: e, se.
2: a← maxv∈e se,v/σ, b← minv∈e se,v/σ
3: While true:
4: wa ← σ |e≥(a)|, wb ← σ |e≤(b)|
5: a1 ← maxv∈e\e≥(a) se,v/σ, b1 ← b+ (a− a1)wa/wb
6: b2 ← minv∈e\e≤(b) se,v/σ, a2 ← a− (b2 − b)wb/wa
7: i∗ ← argmini∈{1,2} bi
8: If ai∗ ≤ bi∗ or γ(ai∗ , bi∗) ≤ 0 break
9: a← ai∗ , b← bi∗

10: a← a−γ(a, b)wb/(wawb+wa+wb), b← b+γ(a, b)wa/(wawb+wa+wb)
11: For v ∈ e do:
12: If v ∈ e≥(a) then re,v ← se,v − σa
13: Else if v ∈ e≤(b) then re,v ← se,v − σb
14: Else re,v ← 0
15: Return: re

Now we discuss the case p > 2 in (B.7). The dual of (B.7) is written as

min
ye

1

q
fe(ye)

q +
σ

q
‖ye‖qq − yTe s(k)

e . (B.8)

Let (φ∗e, r
∗
e) and y∗e be optimal solutions of (B.7) and (B.8), respectively. Then one has

r∗e = s(k)
e − σ(y∗e)q−1 and φ∗e =

(
(r∗e)T y∗e

)1/q
.

Both the derivation of (B.8) and the above relations between (φ∗e, r
∗
e) and y∗e follow from similar

reasoning and algebraic computations used in the proofs of Lemma A.1 and Lemma A.2. Therefore,
we can use subgradient method to compute y∗e first and then recover φ∗e and r∗e . For special cases like
the unit cut-cost, a similar approach to Algorithm B.2 can be adopted to obtain an almost (up to a
binary search tolerance) exact solution, by modifying Steps 2-6 to work with general `p-norm and
replacing Step 10 with binary search. See Algorithm B.3 for details.

Caution. To simplify notation in Algorithm B.3, for c ∈ R and p > 0, cp is to be interpreted as
cp := |c|p sign(c), where we treat sign(0) := 0. For q = p/(p− 1), we define

γp(a, b) := (a− b)q−1 +
∑

v∈e≥(aq−1)

σ
(
aq−1 − se,v

σ

)
.

14

Algorithm B.3 An `p-Projection Algorithm for (B.7) (p > 2, unit cut-cost)

1: Input: e, se.
2: a← maxv∈e(se,v/σ)p−1, b← minv∈e(se,v/σ)p−1, q ← p/(p− 1)
3: While true:
4: wa ← σ |e≥(aq−1)|, wb ← σ |e≤(bq−1)|
5: a1 ← maxv∈e\e≥(aq−1)(se,v/σ)p−1, b1 ← (bq−1 + (aq−1 − aq−1

1)wa/wb)
p−1

6: b2 ← minv∈e\e≤(bq−1)(se,v/σ)p−1, a2 ← (aq−1 − (bq−1
2 − bq−1)wb/wa)p−1

7: i∗ ← argmini∈{1,2} bi
8: If ai∗ ≤ bi∗ or γp(ai∗ , bi∗) ≤ 0 break
9: a← ai∗ , b← bi∗

10: Employ binary search for â ∈ [b, a] such that γp(â, b̂) = 0 while maintaining
b̂ = (bq−1 + (aq−1 − âq−1)wa/wb)

p−1 and b̂ ≤ â
11: For v ∈ e do:
12: If v ∈ v ∈ e≥(âq−1) then re,v ← se,v − σâq−1

13: Else if v ∈ e≤(b̂q−1) then re,v ← se,v − σb̂q−1

14: Else re,v ← 0
15: Return: re

C Empirical set-up and results

C.1 Experiments using synthetic data

In this subsection we provide details aboue how we generate synthetic hypergraphs using k-uniform
stochastic block model and how we set the parameters for the algorithms used in our experiments.
Additional synthetic experiments that demonstrate or explain the robustness of our method are also
provided.

Data generation. We generate four sets of hypergraphs using the generalized kHSBM described in
the main paper. All hypergraphs have n = 100 nodes. For simplicity, we require that each block in
the hypergraph has constant size 50.

1st set of hypergraphs. We generate the first set of hypergraphs with k = 3, constant p = 0.0765 and
varying q ∈ [0.0041, 0.0735]. Recall that for k = 3 there is only one possible inter-cluster probability
q ≡ q1. We pick p = 0.0765 so the expected number of intra-cluster hyperedges is 1500 for each
block of size 50. We set a wide range for q so that the interval covers both extremes, i.e., when the
ground-truth target cluster is very clean or very noisy. These hypergraphs are used to evaluate the
performance of algorithms for the unit cut-cost setting when the target cluster conductance varies.
Figure 4 in the main paper uses the local clustering results on these hypergraphs.

2nd set of hypergraphs. For the second set of hypergraphs, we vary k ∈ {3, 4, 5, 6}. Moreover, we
set q2 = · · · = qbk/2c = 0, so every inter-cluster hyperedge contains a single node on one side and
the rest on the other side. In this setting, separating the two ground-truth communities will incur a
small penalty using the cardinality cut-cost, but a large penalty using the unit cut-cost. Therefore,
methods that exploit appropriate cardinality-based cut-cost should perform better. The hypergraphs
are sampled so that the conductance of a block stays the same across different k’s. We compute
the conductance based on the unit cut-cost when generating the hypergraphs, because the scale of
conductance based on the unit cut-cost is less affected by k than the scale of conductance based on
the cardinality cut-cost. See details below for how the scale of conductance based on the cardinality
cut-cost is affected by k. The second set of hypergraphs is used to evaluate the performance of
algorithms for both unit and cardinality cut-costs when the hyperedge size varies. Figure 5 in the
main paper (and Figure C.3 and Figure C.4 in the appendix) uses the local clustering results on these
hypergraphs.

3rd set of hypergraphs. For the third set of hypergraphs, we set q2 = · · · = qbk/2c = 0. We consider
constant k = 4 or k = 5, constant p and varying q1. These hypergraphs are used to evaluate the
performance of algorithms for both unit and cardinality cut-costs when the target cluster conductance

15

varies. Figure C.1 and Figure C.2 in the appendix are based on the local clustering results on these
hypergraphs.

4th set of hypergraphs. This set consists of two hypergraphs generated with k = 3, p = 0.04 and
q ∈ {0.001, 0.011}. The ground-truth target cluster in the first hypergraph has conductance 0.05,
while the ground-truth target cluster in the second hypergraph has conductance 0.3. These two
hypergraphs are used to compare the performance of algorithms for the unit cut-cost setting, when the
theoretical assumptions of LH holds (for the first hypergraph) or fails (for the second hypergraph).

Parameters. For HFD, for all synthetic experiments, we initialize the seed mass so that ‖∆‖1 is three
times the volume of the target cluster (recall from Assumption 2 this is without loss of generality).
We set σ = 0.01. We tune the parameters for LH as suggested by the authors [6]. Specifically, LH
has a regularization parameter κ and we let κ = c · r where r is the ratio between the number of seed
node(s) and the size of the target cluster. We perform a binary search on c and find that c = 0.35
gives good results for the synthetic hypergraphs. An important parameter for LH is δ. When δ = 1 it
models unit cut-cost and when δ ≥ 1 it models cardinality-based cut-cost with an upper bound δ [6].
We consider both cases δ = 1 (U-LH) and δ ≥ 1 (C-LH). In principle, for k-uniform hypergraphs
LH should produce the same result for any δ ≥ k, so one could simply set δ = k for C-LH. However
in our experiments we find that the δ value that gives the best clustering results can be much larger
than k. In order to get the best performance out of C-LH, we run C-LH for δ = 2i, i = 0, 1, . . . , 12.
Among the 13 output clusters from C-LH we pick the one with the lowest conductance. For ACL, we
use the same set of parameter values used in [6] because that parameter setting also produces good
results in our synthetic experiments.

Scale of cardinality-based conductance. To see how ground-truth conductance scales (computed
using the cardinality cut-cost) with hyperedge size k ≥ 2, let us assume that a hypergraphH = (V,E),
having |V | = 100 nodes and two blocks where each block contains 50 nodes, is generated from
p = 0, q1 = 1 and q2 = . . . = qbk/2c = 0. In this case, the hypergraph consists of all and only
inter-cluster hyperedges. Let C denote a target cluster, that is, C is either one of the two ground-truth
blocks. Since we have |V | = 100 nodes and each of the two blocks contains 50 nodes, the total
number of hyperedges is

|E| = 2

(
50

k − 1

)(
50

1

)
.

Let we denote the cardinality-based cut-cost given by we(S) = min{|S ∩ e|, |e \ S|}/b|e|/2c. Then
for each e ∈ E we have that we(C) = 1

bk/2c . Moreover, the volume of C is

vol(C) = (k − 1)

(
50

k − 1

)(
50

1

)
+

(
50

1

)(
50

k − 1

)
= k

(
50

k − 1

)(
50

1

)
,

and hence we have

Φ(C) =
vol(∂C)

vol(C)
=

∑
e∈E we(C)

vol(C)
=

1
bk/2c |E|
vol(C)

=

2
bk/2c

(
50
k−1

)(
50
1

)
k
(

50
k−1

)(
50
1

) =
2

kbk/2c
.

This means that, for any p ≥ 0, q1 ≤ 1, q2 = · · · = qbk/2c = 0, let B be one of the two blocks in
H , then Φ(B) ≤ 1 for k = 2, 3, Φ(B) ≤ 1/4 for k = 4, and Φ(B) ≤ 1/5 for k = 5. This explains
why the ranges of ground-truth conductance we consider in Figure C.1 and Figure C.2 are different
from the range of ground-truth conductance in Figure 4 in the main paper. For each k we try to
make the range of conductance (i.e., x-axis) as wide as possible, but due to the different scales of
cardinality-based conductance for different k, the ranges vary accordingly.

Additional results. Figure C.1 and Figure C.2 show how the algorithms perform on k-uniform
hypergraphs for k = 4, 5, respectively, as we vary the target cluster conductances. The plots show
that as the target cluster becomes more noisy, the performance of all methods degrades. However, C-
HFD is better in terms of both conductance and F1 score, especially when the target cluster is noisy but
not complete noise (i.e., the ground-truth conductance is high but not too high). For k = 5 and high-
conductance regime, methods that use unit cut-cost, e.g., U-HFD, have poor performance because
they find low-conductance clusters based on the unit cut-cost as opposed to the cardinality cut-cost.
In general, lower unit cut-cost conductance does not necessarily translates to lower cardinality-based
conductance or higher F1 score. For both Figure C.1 and Figure C.2, the ground-truth conductance is
computed using cardinality-based cut-cost, therefore the ground-truth conductances (on the x-axes)

16

have different scales and ranges. Figure C.3 and Figure C.4 show the median (markers) and 25-75
percentiles (lower-upper bars) of conductance ratios and F1 scores for k = 3, 4, 5, 6. The target
clusters have unit cut-cost conductances around 0.2 for Figure C.3 and 0.25 for Figure C.4. Notice
that, when the target clusters are less noisy (cf. Figure 5 in the main paper where target clusters are
more noisy, having unit conductance around 0.3), U-HFD and C-HFD are significantly better than
other methods. The performance of U-HFD is slightly affected by the hyperedge size when the target
clusters have unit conductance around 0.25, while the performance of C-HFD stays the same across
all k’s.

0.04 0.08 0.12 0.16 0.20 0.24

Ground-truth conductance

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

O
u

tp
u

t
co

n
d

u
ct

an
ce U-HFD

C-HFD

U-LH

C-LH

ACL

0.04 0.08 0.12 0.16 0.20 0.24

Ground-truth conductance

0.6

0.7

0.8

0.9

1.0

O
u

tp
u

t
F

1
sc

or
e

U-HFD

C-HFD

U-LH

C-LH

ACL

Figure C.1: Average output conductance and F1 score against ground-truth conductance, on k-uniform
hypergraphs with k = 4. The error bars show variation over 50 runs using different seed nodes. Both
the ground-truth and the target conductances are computed using cardinality-based cut-cost.

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Ground-truth conductance

0.04

0.08

0.12

0.16

0.20

0.24

0.28

O
u

tp
u

t
co

n
d

u
ct

an
ce U-HFD

C-HFD

U-LH

C-LH

ACL

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Ground-truth conductance

0.75

0.80

0.85

0.90

0.95

1.00

O
u

tp
u

t
F

1
sc

or
e

U-HFD

C-HFD

U-LH

C-LH

ACL

Figure C.2: Average output conductance and F1 score against ground-truth conductance, on k-uniform
hypergraphs with k = 5. The error bars show variation over 50 runs using different seed nodes. Both
the ground-truth and the target conductances are computed using cardinality-based cut-cost.

k=3 k=4 k=5 k=6
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

(C
)/

(C
)

U-HFD
C-HFD
U-LH
C-LH
ACL

k=3 k=4 k=5 k=6

0.80

0.84

0.86

0.92

0.96

1.00

F1
 sc

or
e

U-HFD
C-HFD
U-LH
C-LH
ACL

Figure C.3: Conductance ratio and F1 score on k-uniform hypergraphs for k ∈ {3, 4, 5, 6}. Target
clusters have unit conductance around 0.20.

17

k=3 k=4 k=5 k=6
1.0

1.2

1.4

1.6

1.8

2.0

(C
)/

(C
)

U-HFD
C-HFD
U-LH
C-LH
ACL

k=3 k=4 k=5 k=6
0.80

0.84

0.86

0.92

0.96

1.00

F1
 sc

or
e

U-HFD
C-HFD
U-LH
C-LH
ACL

Figure C.4: Conductance ratio and F1 score on k-uniform hypergraphs for k ∈ {3, 4, 5, 6}. Target
clusters have unit conductance around 0.25.

Why is the empirical performance of U-HFD better than U-LH? For the unit cut-cost setting,
the local clustering guarantee for HFD holds under much weaker assumptions than those required
for LH. The assumptions for LH could fail in many cases, and consequently we see that U-HFD
has significantly better performance than U-LH in the experiments with both synthetic and real
data. More specifically, the theoretical framework for LH assumes that the node embeddings are
global (i.e., the solution is dense). However, in order to obtain a localized algorithm, the authors
use a regularization parameter κ > 0 to impose sparsity in the solution. The localized algorithm
computes a sparse approximation to the original global solution, but some clustering errors could
also be introduced. In general, this does not seem to be a major issue, as localized solutions only
seem to slightly affect the clustering performance as shown in Figure C.5. A more crucial assumption
of LH is that its approximation guarantee relies on a strong condition that the conductance of the
target cluster is upper bounded by γ

8c , where γ ∈ (0, 1) is a tuning parameter and c is a constant
that depends on both γ and a specific sampling strategy for selecting a seed node from the target
cluster. In our experiments we find that this assumption often breaks. In what follows we provide
a simple illustrating example using synthetic hypergraphs. First of all, we sample a sequence of
hypergraphs using kHSBM with n = 100 nodes, two ground-truth communities each consisting
of 50 nodes, constant k = 3, varying p and q. For each hypergraph we identify one ground-truth
community as the target cluster, and we select a seed node uniformly at random from the target
cluster. We compute the quantity γ

8c and we find that this quantity is always less than 0.12 for any
γ ∈ (0, 1). This means that in order for the assumption of LH to hold, the target cluster must have
conductance no more than 0.12, which is a very strict requirement and cannot hold in general. In
order to compare the performances of LH when its assumption holds or fails, respectively, we picked
two hypergraphs (i.e., the fourth set of hypergraphs that we generate) that correspond to the two
scenarios. The target clusters have conductance 0.05 and 0.3, respectively. Therefore, the assumption
for LH holds for the first hypergraph but fails for the second hypergraph. Moreover, we consider
both global and localized solutions for LH. The global solution demonstrates the performance of LH
under the required theoretical framework, while the localized solution demonstrates what happens in
practice when one uses sparse approximation for computational efficiency. For LH, we compute the
global solution by simply setting the regularization parameter κ to 0; we tune the localized solution
and set κ = 0.25r where r is the ratio between the number of seed node(s) and the size of the target
cluster. The way we pick κ is similar to the authors’ choice for LH. For HFD, we set σ = 0.01 and
initial mass 3 times the volume of the target cluster. We run both methods multiple times, each time
we use a different node from the target cluster as the single seed node. The median, lower and upper
quantiles of F1 scores are shown in Figure C.5. For LH, observe that (i) for both hypergraphs where
the assumption either holds or fails, localizing the solution slightly reduces the F1 score, and (ii)
for both global and localized solutions, LH has much worse performance on the hypergraph where
its assumption does not hold. On the other hand, HFD perfectly recovers the target clusters in both
settings.

18

Global sol
Assum. holds

Global sol
Assum. fails

Localized sol
Assum. holds

Localized sol
Assum. fails

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
1

sc
or

e

U-HFD U-LH ACL

Figure C.5: Local clustering results under various settings for LH. The markers show the median, the
error bars show the 25th and 75th percentiles, respectively. The left-most case aligns with the required
theoretical framework for LH, moreover, the srong assumption on the target cluster conductance
is satisfied; the right-most case is what typically happens in practice when one applies localized
algorithm for LH, moreover, the assumption on the target cluster conductance does not hold. ACL
is a heuristic method that applies to the star expansion of hypergraphs. ACL has no performance
guarantee. In practice, we observe that ACL and LH have similar performances.

C.2 Experiments using real-world data

C.2.1 Datasets and ground-truth clusters

We provide complete details on the real hypergraphs we used in the experiments. The last three
datasets are used for additional experiments in the appendix only.

Amazon-reviews [7, 8]. This is a hypergraph constructed from Amazon product review data, where
each node represents a product. A set of products are connected by a hyperedge if they are reviewed
by the same person. We use product category labels as ground truth cluster identities. In total there are
29 product categories. Because we are mostly interested in local clustering, we consider all clusters
consisting of less than 10,000 nodes.

Trivago-clicks [9]. The nodes in this hypergraph are accommodations/hotels. A set of nodes are
connected by a hyperedge if a user performed “click-out” action during the same browsing session,
which means the user was forwarded to a partner site. We use geographical locations as ground truth
cluster identities. There are 160 such clusters. We consider all clusters in this dataset that consists of
less than 1,000 nodes and has conductance less than 0.25.

Florida Bay food network [10]. Nodes in this hypergraph correspond to different species or organisms
that live in the Bay, and hyperedges correspond to transformed network motifs of the original dataset.
Each species is labelled according its role in the food chain.

High-school-contact [11, 9]. Nodes in this hypergraph represent high school students. A group of
people are connected by a hyperedge if they were all in proximity of one another at a given time,
based on data from sensors worn by students. We use the classroom to which a student belongs to as
ground truth. In total there are 9 classrooms.

Microsoft-academic [12, 13]. The original co-authorship network is a subset of the Microsoft
Academic Graph where nodes are authors and hyperedges correspond to a publication from those
authors. We take the dual of the original hypergraph by converting hyperedges to nodes and nodes to
hyperedges. After constructing the dual hypergraph, we removed all hyperedges having just one node
and we kept the largest connected component. In the resulting hypergraph, each node represents
a paper and is labelled by its publication venue. A set of papers are connected by a hyperedge if
they share a common coauthor. We combine similar computer science conferences into four broader
categories: Data (KDD, WWW, VLDB, SIGMOD), ML (ICML, NeurIPS), TCS (STOC, FOCS), CV
(ICCV, CVPR).

Oil-trade network. This hypergraph is constructed using the 2017 international oil trade records from
UN Comtrade Dataset. We adopt a similar modelling approach to Figure 1 in the main paper. Each
node represents a country, {v1, v2, v3, v4} form a hyperedge if the trade surplus from each of v1, v2

to each of v3, v4 exceeds 10 million USD (this is roughly 80% percentile country-wise oil export

19

value). Therefore, two countries belong to the same hyperedge if they share ≥ 2 important trading
partners in common. We use this network to for the node ranking problem.

Table C.1 provides summary statistics about the hypergraphs. Table C.2 includes the statistics of all
ground truth clusters that we used in the experiments.

Table C.1: Summary of real-world hypergraphs

Dataset Number of
nodes

Number of
hyperedges

Maximum
hyperedge size

Maximum
node degree

Median / Mean
hyperedge size

Median / Mean
node degree

Amazon-reviews 2,268,231 4,285,363 9,350 28,973 8.0 / 17.1 11.0 / 32.2
Trivago-clicks 172,738 233,202 86 588 3.0 / 4.1 2.0 / 5.6
Florida-Bay 126 141,233 4 19,843 4.0 / 4.0 3,770.5 / 4,483.6

Microsoft-academic 44,216 22,464 187 21 3.0 / 5.4 2.0 / 2.7
High-school-contact 327 7,818 5 148 2.0 / 2.3 53.0 / 55.6

Oil-trade 229 100,639 4 16,394 4.0 / 4.0 175.0 / 1,757.9

Table C.2: Summary of ground-truth clusters used in the experiments

Dataset Cluster Size Volume Conductance

A
m

az
on

-r
ev

ie
w

s

1 - Amazon Fashion 31 3042 0.06
2 - All Beauty 85 4092 0.12
3 - Appliances 48 183 0.18
12 - Gift Cards 148 2965 0.13
15 - Industrial & Scientific 5334 72025 0.14
17 - Luxury Beauty 1581 28074 0.11
18 - Magazine Subs. 157 2302 0.13
24 - Prime Pantry 4970 131114 0.10
25 - Software 802 11884 0.14

Tr
iv

ag
o-

cl
ic

ks

KOR - South Korea 945 3696 0.24
ISL - Iceland 202 839 0.21
PRI - Puerto Rico 144 473 0.25
UA-43 - Crimea 200 1091 0.24
VNM - Vietnam 832 2322 0.24
HKG - Hong Kong 536 4606 0.24
MLT - Malta 157 495 0.24
GTM - Guatemala 199 652 0.24
UKR - Ukraine 264 648 0.24
SET - Estonia 158 850 0.23

Fl
or

id
a-

B
ay

Producers 17 10781 0.70
Low-level consumers 35 173311 0.58
High-level consumers 70 375807 0.54

M
ic

ro
so

ft
-

ac
ad

em
ic Data 15817 45060 0.06

ML 10265 26765 0.16
TCS 4159 10065 0.08
CV 13974 38395 0.08

H
ig

h-
sc

ho
ol

-c
on

ta
ct

Class 1 36 1773 0.25
Class 2 34 1947 0.29
Class 3 40 2987 0.20
Class 4 29 913 0.41
Class 5 38 2271 0.26
Class 6 34 1320 0.26
Class 7 44 2951 0.16
Class 8 39 2204 0.19
Class 9 33 1826 0.25

C.2.2 Methods and parameter setting

HFD We use σ = 0.0001 for all the experiments. We set the total amount of initial mass ‖∆‖1 as a
constant factor t times the volume of the target cluster. For Amazon-reviews, on the smaller clusters

20

1, 2, 3, 12, 18, we used t = 200; on the larger clusters 15, 17, 24, 25, we used t = 50. For both
Trivago-clicks, High-school-contact and Microsoft-academic, we used t = 3. For Florida Bay food
network, we used t = 20, 10, 5 for clusters 1, 2, 3, respectively. In all experiments, the choice of t
is to ensure that the diffusion process will cover some part of the target and incur a high cost in the
objective function. For the single seed node setting, we simply set the initial mass on the seed node
as ‖∆‖1. For the multiple seed nodes setting where we are given a seed set S, for each v ∈ S we set
the initial mass on v as dv‖∆‖1/vol(S).

LH, ACL We used the parameters as suggested by the authors [6]. For both *-LH-2.0 and *-LH-1.4,
we set γ = 0.1, ρ = 0.5, κ = c · r where r is the ratio between the number of seed nodes and the size
of the target cluster, and c is a tuning constant. For Amazon-reviews, we set c = 0.025 as suggested
in [6]. For Microsoft-academic, Trivago-clicks, and Florida-Bay we also used c = 0.025 because it
produces good results. For High-school-contact we selected c = 0.25 after some tuning to make sure
both *-LH-2.0 and *-LH-1.4 have good results. We set the parameters for ACL in exactly the same
way as in [6]. We set δ = 1 for U-LH-* and δ = maxe∈E |e| for C-LH-*.

C.2.3 Additional experiments

Multiple seed nodes. We conduct additional experiments using multiple seed nodes for Amazon-
reviews and Trivago-clicks datasets. For each target cluster, we randomly select 1% nodes from that
cluster as seed nodes, and we enforce that at least 5 nodes are selected as seeds. For example, if a
cluster consists of only 100 nodes, we still select 5 nodes to form a seed set. We run 30 trials for
each cluster and report the median conductance and F1 score of the output clusters. The results are
shown in Table C.3 and Table C.4. For the multiple seed nodes setting, the results of U-LH-1.4,
U-LH-2.0 and ACL on Amazon-reviews align with the ones reported in [6]: We reproduced almost
identical numbers under the same setting, with only a few small differences due to randomness in
seed nodes selection. In general, using more seed nodes improves the performance for all methods in
terms of both conductance and F1. For Amazon-reviews, the output clusters of HFD always have the
lowest conductance, even though in some cases, low conductance does not align well with the given
ground-truth, and hence the lowest conductance does not lead to the highest F1 score. Similarly, for
Trivago-clicks, both U-HFD and C-HFD consistently find the lowest conductance clusters among all
methods, which in general (but not always) lead to a higher F1 score. Note that, if a method uses the
unit cut-cost (resp. the cardinality-based cut-cost), then we compute the conductance of the output
cluster using the unit cut-cost (resp. the cardinality-based cut-cost). Therefore, depending on the
specific cut-cost, the conductances in Table C.4 may have different scales. We highlight the lowest
conductance for both cut-costs separately.

Additional datasets, local clustering using unit and cardinality cut-costs. Table C.5 and Ta-
ble C.6 show local clustering results on High-school-contact and Microsoft-academic networks,
respectively. We use the single seed node setting, run the methods from each node in a target
cluster, and report the median conductance and F1 score. We cap the maximum number of runs
to 500. Similar to the results on other datasets, the output clusters of HFD always have the lowest
conductance, leading to the highest F1 score in most cases. We omit cardinality-based methods for
Microsoft-academic because they are very similar to the unit cut-cost setting.

Additional dataset, node ranking using general submodular cut-cost. We provide another com-
pelling use case of general submodular cut-cost. We consider the node ranking problem in the
Oil-trade network. Our goal is to search the most related country of a queried country based on the
trade-network structure. We use the hypergraph modelling shown in Figure 1 in the main paper. We
compare HFD using unit (U-HFD, γ1 = γ2 = 1), cardinality-based (C-HFD, γ1 = 1/2 and γ2 = 1)
and submodular (S-HFD, γ1 = 1/2 and γ2 = 0) cut-costs. Table C.7 shows the top-2 ranking results.
In this example, we use Iran as the seed node and we rank other countries according to the ordering of
dual variables returned by HFD. In 2017, US imposed strict sanctions on Iran. However, Bangladesh
(generally accepted as an American ally) is among the top two ranked countries based on unit or
cardinality-based cut-cost, which does not make any sense. On the other hand, S-HFD ranks Iraq
and Turkmenistan as the top two. Interested readers can easily verify that these counties share strong
economic or historical ties with Iran.

Additional method: p-norm HFD. We tried HFD with unit cut-cost and p = 4 (U-HFD-4.0).
However, in practice we did not observe that a larger p > 2 necessarily lead to better clustering

21

Table C.3: Complete local clustering results for Amazon-reviews network

Cluster

Metric Seed Method 1 2 3 12 15 17 18 24 25

C
on

du
ct

an
ce

Si
ng

le

U-HFD 0.17 0.11 0.12 0.16 0.36 0.25 0.17 0.14 0.28
U-LH-2.0 0.42 0.50 0.25 0.44 0.74 0.44 0.57 0.58 0.61
U-LH-1.4 0.33 0.44 0.25 0.36 0.81 0.40 0.51 0.54 0.59
ACL 0.42 0.50 0.25 0.54 0.77 0.52 0.63 0.68 0.65

M
ul

tip
le U-HFD 0.05 0.10 0.12 0.13 0.20 0.16 0.14 0.11 0.32

U-LH-2.0 0.05 0.15 0.15 0.21 0.45 0.45 0.26 0.18 0.53
U-LH-1.4 0.05 0.13 0.15 0.15 0.35 0.33 0.19 0.14 0.47
ACL 0.05 0.27 0.16 0.27 0.56 0.53 0.33 0.30 0.59

F1
sc

or
e Si

ng
le

U-HFD 0.45 0.09 0.65 0.92 0.04 0.10 0.80 0.81 0.09
U-LH-2.0 0.23 0.07 0.23 0.29 0.05 0.06 0.21 0.28 0.05
U-LH-1.4 0.23 0.09 0.35 0.40 0.00 0.07 0.31 0.35 0.06
ACL 0.23 0.07 0.22 0.25 0.04 0.05 0.17 0.20 0.04

M
ul

tip
le U-HFD 0.49 0.50 0.69 0.98 0.19 0.36 0.91 0.89 0.33

U-LH-2.0 0.59 0.42 0.73 0.77 0.22 0.25 0.65 0.62 0.17
U-LH-1.4 0.52 0.45 0.73 0.90 0.27 0.29 0.79 0.77 0.20
ACL 0.59 0.25 0.70 0.64 0.20 0.19 0.51 0.49 0.14

results. We show a sample result of U-HFD-4.0 for Amazon-reviews in Table C.8. Notice that the
performances of U-HFD-2.0 (p = 2) and U-HFD-4.0 are very similar.

Additional method: LH + flow improve. We tried a flow-improve method for hypergraphs [8]. We
apply the flow-improve method to the output of U-LH-2.0. The method is slow in our experiments,
so we only tried it on a few small instances. The results for the Florida Bay food network is shown
in Table C.9. In general, we find that applying the flow-improve method does not lead to consistent
performance improvements.

C.3 Computing platform and implementation detail

We implemented the AM algorithm [4] given in Algorithm B.1 in Julia. The code is run on a personal
laptop with 32GB RAM and 2.9 GHz 6-Core Intel Core i9. GPU is not used for computation. For the
rest of this section, we discuss the implementation details on how we actually solve the nontrivial
sub-problem in Algorithm B.1 to obtain the update (φ(k+1), r(k+1)).

For the unit cut-cost case, we use an exact projection algorithm [5] to obtain the update
(φ(k+1), r(k+1)). Algorithmic details for exact projection is provided in Algorithm B.2. For
cardinality-based or general submodular cut-costs, a conic Fujishige-Wolfe minimum norm algo-
rithm [5] can be adopted to efficiently compute (φ(k+1), r(k+1)). Our implementation uses alternative
methods that are simpler. For the cardinality cut-cost, we use a projected subgradient method that
works on a related dual problem to obtain the primal update in (φ(k+1), r(k+1)). The subgradient
method is easy to implement, requires less computation overhead, and works well in practice for
the sub-problem. For the specialized submodular cut-cost shown in Figure 1, since the hyperedge
consists of only 4 nodes and has a special structure, we simply perform an exhaustive search that
allows us to exactly compute (φ(k+1), r(k+1)) using constant number of vector-vector additions and
multiplications. We provide details below.

Recall that the sub-problem to compute (φ(k+1), r(k+1)) decomposes into a sequence of separate
problems indexed by e ∈ E (cf. (B.7), in the following we assume p = 2 for simplicity):

min
φe≥0,re∈φeBe

1

2
φ2
e +

1

2σ
‖se − re‖22. (C.1)

The dual problem of (C.1) is written as (cf. (B.8), here we have p = q = 2)

min
ye

1

2
fe(ye)

2 +
σ

2
‖ye‖22 − sTe ye. (C.2)

22

Table C.4: Complete local clustering results for Trivago-clicks network

Cluster

Metric Seed Method KOR ISL PRI UA-43 VNM HKG MLT GTM UKR EST
C

on
du

ct
an

ce

Si
ng

le
U-HFD 0.010 0.023 0.014 0.011 0.018 0.017 0.010 0.007 0.016 0.012
U-LH-2.0 0.020 0.042 0.027 0.027 0.037 0.035 0.031 0.035 0.032 0.019
U-LH-1.4 0.036 0.069 0.047 0.039 0.060 0.052 0.040 0.045 0.065 0.036
ACL 0.027 0.050 0.034 0.031 0.042 0.043 0.047 0.039 0.043 0.026
C-HFD 0.007 0.016 0.007 0.005 0.009 0.011 0.007 0.003 0.010 0.009
C-LH-2.0 0.022 0.066 0.030 0.030 0.035 0.035 0.029 0.028 0.029 0.029
C-LH-1.4 0.043 0.095 0.042 0.048 0.071 0.059 0.053 0.047 0.075 0.046

M
ul

tip
le

U-HFD 0.009 0.023 0.011 0.010 0.014 0.017 0.010 0.008 0.017 0.012
U-LH-2.0 0.023 0.034 0.018 0.021 0.054 0.030 0.021 0.022 0.041 0.018
U-LH-1.4 0.048 0.045 0.038 0.032 0.084 0.051 0.049 0.049 0.085 0.024
ACL 0.030 0.037 0.018 0.024 0.064 0.033 0.021 0.024 0.045 0.020
C-HFD 0.006 0.016 0.006 0.005 0.006 0.011 0.007 0.003 0.011 0.009
C-LH-2.0 0.024 0.062 0.021 0.021 0.047 0.034 0.023 0.017 0.036 0.029
C-LH-1.4 0.054 0.067 0.033 0.037 0.094 0.057 0.053 0.044 0.094 0.032

F1
sc

or
e

Si
ng

le

U-HFD 0.75 0.99 0.89 0.85 0.28 0.82 0.98 0.94 0.60 0.94
U-LH-2.0 0.70 0.86 0.79 0.70 0.24 0.92 0.88 0.82 0.50 0.90
U-LH-1.4 0.69 0.84 0.80 0.75 0.28 0.87 0.92 0.83 0.47 0.90
ACL 0.65 0.84 0.75 0.68 0.23 0.90 0.83 0.69 0.50 0.88
C-HFD 0.76 0.99 0.95 0.94 0.32 0.80 0.98 0.97 0.68 0.94
C-LH-2.0 0.73 0.90 0.84 0.78 0.27 0.94 0.96 0.88 0.51 0.83
C-LH-1.4 0.71 0.88 0.84 0.78 0.27 0.88 0.93 0.85 0.50 0.85

M
ul

tip
le

U-HFD 0.87 0.99 0.97 0.92 0.55 0.82 0.98 0.97 0.87 0.94
U-LH-2.0 0.83 0.91 0.92 0.84 0.71 0.93 0.95 0.93 0.86 0.92
U-LH-1.4 0.78 0.84 0.83 0.79 0.74 0.85 0.85 0.84 0.75 0.87
ACL 0.81 0.89 0.91 0.85 0.68 0.93 0.96 0.91 0.83 0.90
C-HFD 0.86 0.99 0.97 0.96 0.32 0.80 0.98 0.97 0.69 0.94
C-LH-2.0 0.86 0.94 0.94 0.87 0.76 0.94 0.97 0.94 0.88 0.91
C-LH-1.4 0.83 0.89 0.90 0.83 0.67 0.89 0.92 0.85 0.77 0.89

Table C.5: Local clustering results for High-school-contact network

Cluster

Metric Method Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

C
on

du
ct

an
ce

U-HFD 0.25 0.29 0.13 0.42 0.21 0.26 0.16 0.19 0.25
U-LH-2.0 0.31 0.36 0.23 0.63 0.33 0.36 0.18 0.21 0.30
U-LH-1.4 0.29 0.32 0.21 0.54 0.29 0.37 0.16 0.22 0.29
ACL 0.62 0.64 0.61 0.98 0.61 0.60 0.59 0.55 0.59
C-HFD 0.25 0.28 0.20 0.41 0.24 0.26 0.16 0.19 0.25
C-LH-2.0 0.27 0.33 0.20 0.57 0.29 0.32 0.16 0.20 0.27
C-LH-1.4 0.28 0.32 0.20 0.52 0.28 0.33 0.16 0.21 0.28

F1
sc

or
e

U-HFD 0.99 1.00 0.59 0.96 0.73 1.00 0.88 1.00 0.99
U-LH-2.0 0.91 0.83 0.93 0.66 0.84 0.88 0.96 0.96 0.90
U-LH-1.4 0.93 0.78 0.90 0.78 0.70 0.90 0.97 0.95 0.88
ACL 0.72 0.73 0.73 0.06 0.70 0.76 0.77 0.78 0.76
C-HFD 0.99 1.00 1.00 0.96 0.80 1.00 1.00 1.00 0.99
C-LH-2.0 0.93 0.82 0.92 0.74 0.84 0.93 0.97 0.97 0.91
C-LH-1.4 0.94 0.74 0.69 0.84 0.76 0.94 0.96 0.96 0.85

23

Table C.6: Local clustering results for Microsoft-academic network

Cluster

Metric Method Data ML TCS CV

C
on

d

U-HFD 0.03 0.06 0.06 0.03
U-LH-2.0 0.07 0.09 0.10 0.07
U-LH-1.4 0.07 0.08 0.09 0.07
ACL 0.08 0.11 0.11 0.09

F1
sc

or
e U-HFD 0.78 0.54 0.86 0.73

U-LH-2.0 0.67 0.46 0.71 0.61
U-LH-1.4 0.65 0.46 0.59 0.59
ACL 0.64 0.43 0.70 0.57

Table C.7: Top-2 node-ranking results for Oil-trade network

Method Query: Iran

U-HFD Kenya, Bangladesh
C-HFD Bangladesh, United Rep. of Tanzania
S-HFD Turkmenistan, Iraq

Table C.8: Local clustering results for Amazon-reviews network using p-norm HFD

Cluster

Metric Seed Method 1 2 3 12 15 17 18 24 25

C
on

d Single U-HFD-2.0 0.17 0.11 0.12 0.16 0.36 0.25 0.17 0.14 0.28
U-HFD-4.0 0.17 0.10 0.12 0.16 0.35 0.26 0.17 0.14 0.38

Multiple U-HFD-2.0 0.05 0.10 0.12 0.13 0.20 0.16 0.14 0.11 0.32
U-HFD-4.0 0.05 0.10 0.12 0.14 0.20 0.16 0.14 0.12 0.32

F1
sc

or
e Single U-HFD-2.0 0.45 0.09 0.65 0.92 0.04 0.10 0.80 0.81 0.09

U-HFD-4.0 0.48 0.07 0.65 0.92 0.04 0.09 0.80 0.82 0.10

Multiple U-HFD-2.0 0.49 0.50 0.69 0.98 0.19 0.36 0.91 0.89 0.33
U-HFD-4.0 0.49 0.50 0.69 0.98 0.19 0.36 0.91 0.88 0.35

Table C.9: Local clustering results for the food network using unit cut-costs

Cluster

Metric Method Producers Low-level consumers High-level consumers

C
on

du
ct

an
ce U-HFD 0.49 0.36 0.35
U-LH-2.0 0.51 0.39 0.39
U-LH-2.0 + flow 0.52 0.39 0.40
U-LH-1.4 0.49 0.39 0.41
ACL 0.52 0.39 0.40

F1
sc

or
e

U-HFD 0.69 0.47 0.64
U-LH-2.0 0.69 0.45 0.57
U-LH-2.0 + flow 0.69 0.45 0.57
U-LH-1.4 0.69 0.45 0.58
ACL 0.69 0.44 0.57

24

Let (φ∗e, r
∗
e) and y∗e denote primal and dual optimal solutions for (C.1) and (C.2), respectively. Then

we have that
r∗e + σy∗e = se and φ∗e

2 = r∗e
T y∗e .

The dual problem (C.2) can be derived following the same way that we derive the primal-dual HFD
formulations, moreover, the above relations between φ∗e, r

∗
e and y∗e follow immediately from the

primal-dual derivation, dual optimality condition and simple algebraic work. Therefore, in order
to find an optimal solution (φ∗e, r

∗
e) for the primal problem (C.2), it suffices to find an optimal

solution y∗e for the dual problem (C.2) and then recover (φ∗e, r
∗
e). Now, since 1T r∗e = 0, we know

that σ1T y∗e = 1T se, i.e., y∗e lies in the hyperplane H := {ye|σ1T ye = 1T se}. Let h denote the
objective function of the dual problem (C.2), we compute y∗e using projected subgradient method:

y(k+1)
e := PH

(
y(k)
e −

1

k

g(k)

‖g(k)‖2

)
,

where g(k) ∈ ∂h(y
(k)
e) is a subgradient at y(k)

e , and PH(·) denotes the projection onto the hyperplane
H. We add the additional projection step so that, when we stop the subgradient method after K
iterations to get y∗e ≈ ỹe := y

(K)
e , and approximately recover r∗e as r∗e ≈ r̃e := se − σỹe, the

resulting r̃e would still be a proper flow routing, i.e., 1T r̃e = 0 and hence it is possible to have
r̃e ∈ φ̃eBe for some φ̃e. In other words, the projection step is crucial because it permits the use of
sub-optimal dual solution ỹe to obtain sub-optimal but feasible primal solution r̃e.

For the cardinality cut-cost, our implementation uses the projected subgradient method we describe
above to solve the sub-problem in Algorithm B.1 for φe and re. In what follows we talk about how
we deal with the specialized submodular cut-cost.

Given e = {v1, v2, v3, v4} and associated submodular cut-cost we such that we({vi}) = 1/2 for
i = 1, 2, 3, 4, we({v1, v2}) = 0, we({v1, v3}) = we({v1, v4}) = 1, and we(S) = we(e \ S) for
any S ⊆ e. Let Be be the base polytope of we. The sub-problem for this hyperedge is given in
(C.1). Suppose (φ∗e, r

∗
e) is optimal for (C.1), and r∗e = φ∗eρ

∗
e for some ρ∗e ∈ Be. If φ∗e > 0, then we

know that φ∗e =
sTe ρ
∗
e

σ+‖ρ∗e‖22
. To see this, substitute r∗e = φeρ

∗
e into (C.1) and optimize for φe only. The

relation φ∗e =
sTe ρ
∗
e

σ+‖ρ∗e‖22
follows from first-order optimality condition and the assumption that φ∗e > 0.

On the other hand, if φ∗e = 0, then we simply have that r∗e = 0. Therefore, in order to compute
(φ∗e, r

∗
e) when φ∗e > 0, it suffices to find ρ∗e . In order to find ρ∗e , we look at the dual problem C.2. Let

y∗e be an optimal dual solution, then we have that ρ∗e ∈ argmaxρe∈Be ρ
T
e y
∗
e . The subsequent claims

are case analyses in order to determine all possible nontrivial candidates for ρ∗e .
Claim C.1. If se,v1 = se,v2 , then ρ∗e,v1 = ρ∗e,v2 = 0; if se,v3 = se,v4 , then ρ∗e,v3 = ρ∗e,v4 = 0.

Proof. The optimality condition of the dual problem (C.2) is for some ρ̂e ∈ argmaxρe∈Be ρ
T
e y
∗
e ,

(ρ̂Te y
∗
e)ρ̂e + σy∗e = se. (C.3)

Suppose se,v1 = se,v2 , then we must have y∗e,v1 = y∗e,v2 . Otherwise, say y∗e,v1 > y∗e,v2 , then we know
that ρ̂e,v1 = 1/2 > −1/2 = ρ̂e,v2 , which follows from applying the greedy algorithm [2] to find ρ̂e
using the order of indices in y∗e . But then according to the optimality condition (C.3), we have

se,v1 = (ρ̂Te y
∗
e)ρ̂e,v1 + σy∗e,v1 > (ρ̂Te y

∗
e)ρ̂e,v2 + σy∗e,v2 = se,v2 ,

which contradicts our assumption that se,v1 = se,v2 . Similarly, y∗e,v1 < y∗e,v2 is not possible, either.
Now, because y∗e,v1 = y∗e,v2 , by the optimality condition (C.3), we must also have ρ̂e,v1 = ρ̂e,v2 .
Finally, because ρ̂e ∈ Be, we know that ρ̂e,v1 + ρ̂e,v2 ≤ 0 and ρ̂e,v1 + ρ̂e,v2 = −(ρ̂e,v3 + ρ̂e,v4) ≥
−we({v3, v4}) = 0, so ρ̂e,v1 + ρ̂e,v2 = 0. Therefore, ρ̂e,v1 = ρ̂e,v2 = 0. Since ρ̂ was chosen
arbitrarily from the set argmaxρe∈Be ρ

T
e y
∗
e , and ρ∗e ∈ argmaxρe∈Be ρ

T
e y
∗
e , we have that ρ∗e,v1 =

ρ∗e,v2 = 0 as required. The other claim on nodes v3 and v4 follows the same way.

Claim C.2. If se,v1 6= se,v2 and se,v3 = se,v4 , then ρ∗e,v1 , ρ
∗
e,v2 ∈ {1/2,−1/2} and ρ∗e,v3 = ρ∗e,v4 =

0; if se,v1 = se,v2 and se,v3 6= se,v4 , then ρ∗e,v1 = ρ∗e,v2 = 0 and ρ∗e,v3 , ρ
∗
e,v4 ∈ {1/2,−1/2}.

Proof. We will show the first case, the second case follows by symmetry. Let ρ̂e ∈
argmaxρe∈Be ρ

T
e y
∗
e . Suppose se,v1 6= se,v2 and se,v3 = se,v4 . Then by Claim C.1 we have

25

ρ̂e,v3 = ρ̂e,v4 = 0. Let us assume without loss of generality that se,v1 > se,v2 . If y∗e,v1 < y∗e,v2 , then
apply the greedy algorithm we know that ρ̂e,v1 = −1/2 < 1/2 = ρ̂e,v2 . But this contradicts the opti-
mality condition (C.3). Therefore we must have y∗e,v1 ≥ y

∗
e,v2 . There are two cases. If y∗e,v1 > y∗e,v2 ,

then apply the greedy algorithm we get ρ̂e,v1 = 1/2 and ρ̂e,v2 = −1/2. If y∗e,v1 = y∗e,v2 , then because
ρ̂e,v1 +ρ̂e,v2 = 0 (see the proof of Claim C.1 for an argument for this) and ρ̂e,v3 = ρ̂e,v4 = 0, we have
that ρ̂Te y

∗
e = 0. But then this contradicts the optimality condition (C.3), because se,v1 > se,v2 and

y∗e,v1 = y∗e,v2 . Therefore we cannot have y∗e,v1 = y∗e,v2 . Since our choice of ρ̂e ∈ argmaxρe∈Be ρ
T
e y
∗
e

was arbitrary, and ρ∗e,v1 ∈ argmaxρe∈Be ρ
T
e y
∗
e , so we know that ρ∗e must satisfy the properties

satisfied by ρ̂e.

Claim C.3. If se,v1 6= se,v2 and se,v3 6= se,v4 , then ρ∗e,v1 , ρ
∗
e,v2 ∈ {±1/2,±a} and ρ∗e,v3 , ρ

∗
e,v4 ∈

{±1/2,±b}, where a = (1
2 +σ)(se,v1−se,v2)/(se,v3−se,v4) and b = (1

2 +σ)(se,v3−se,v4)/(se,v1−
se,v2).

Proof. Let us assume without loss of generality that se,v1 > se,v2 and se,v3 > se,v4 . Let ρ̂e ∈
argmaxρe∈Be ρ

T
e y
∗
e . We have that y∗e,v1 ≥ y

∗
e,v2 and y∗e,v3 ≥ y

∗
e,v4 (see the proof of Claim C.2 for an

argument for this). There are four cases and we analyze them one by one in the following.

Case 1. If y∗e,v1 > y∗e,v2 and y∗e,v3 > y∗e,v4 , then we have ρ̂e,v1 = ρ̂e,v3 = 1/2 and ρ̂e,v2 = ρ̂e,v4 =
−1/2.

Case 2. If y∗e,v1 = y∗e,v2 and y∗e,v3 = y∗e,v4 , then ρ̂Te y
∗
e = 0 and hence the optimality condition (C.3)

cannot be satisfied. This leads to a contradiction.

Case 3. Suppose that y∗e,v1 = y∗e,v2 and y∗e,v3 > y∗e,v4 . Then according to the optimality condition
(C.3), because se,v1 > se,v2 and y∗e,v1 = y∗e,v2 , we must have that ρ̂e,v1 > ρ̂e,v2 . Moreover, because
ρ̂e,v1 + ρ̂e,v2 = 0, we know that ρ̂e,v1 = a = −ρ̂e,v2 for some a > 0. We also know that ρ̂e,v3 = 1/2
and ρ̂e,v4 = −1/2 since y∗e,v3 > y∗e,v4 . Substitute the primal-dual relation φ∗e = ρ̂Te y

∗
e into (C.3) we

have
φ∗e ρ̂e,v1 + σy∗e,v1 = se,v1 and φ∗e ρ̂e,v2 + σy∗e,v2 = se,v2 .

Because y∗e,v1 = y∗e,v2 , we get that

φ∗e(ρ̂e,v1 − ρ̂e,v2) = se,v1 − se,v2 ,

and hence
φ∗e =

se,v1 − se,v2
ρ̂e,v1 − ρ̂e,v2

=
se,v1 − se,v2

2a
. (C.4)

Because ρ̂ ∈ argmaxρe∈Be ρ
T
e y
∗
e was arbitrary, and ρ∗e ∈ argmaxρe∈Be ρ

T
e y
∗
e , we know that ρ∗e,v1 =

a = −ρ∗e,v2 and ρ∗e,v3 = 1/2 = −ρ∗e,v4 . On the other hand, since se,v1 > se,v2 we know that φ∗e > 0,
therefore

φ∗e =
sTe ρ

∗
e

σ + ‖ρ∗e‖22
=
a(se,v1 − se,v2) + 1

2 (se,v3 − se,v4)

σ + 2a2 + 1
2

. (C.5)

Combining equations (C.4) and (C.5) we get that a = (1
2 + σ)(se,v1 − se,v2)/(se,v3 − se,v4).

Case 4. Suppose that y∗e,v1 > y∗e,v2 and y∗e,v3 = y∗e,v4 . The following a similar argument for Case 3,
we get that ρ∗e,v1 = 1/2 = −ρe,v2 and ρ∗e,v3 = b = −ρ∗e,v4 where b = (1

2 +σ)(se,v3−se,v4)/(se,v1−
se,v2).

Finally, combining Claims C.1, C.2, C.3 and the constraint that ρ∗e,v1 + ρ∗e,v2 = ρ∗e,v3 + ρ∗e,v4 = 0,
there are at most 12 possible choices for ρ∗e . Therefore, an exhaustive search among these candidate
vectors for ρ∗e (and hence φ∗e =

sTe ρ
∗
e

σ+‖ρ∗e‖22
and r∗e = φ∗eρ

∗
e) that minimizes (C.1) can be done using

constant number of vector-vector additions and multiplications.

References
[1] I. Ekeland and R. Témam, Convex Analysis and Variational Problems. Society for Industrial and Applied

Mathematics, 1999.

26

[2] F. Bach, “Learning with submodular functions: A convex optimization perspective,” Foundations and
Trends in Machine Learning, vol. 6, no. 2-3, pp. 145–373, 2013.

[3] P. Li and O. Milenkovic, “Submodular hypergraphs: p-laplacians, cheeger inequalities and spectral
clustering,” in Proceedings of the 35th International Conference on Machine Learning, 2018.

[4] A. Beck, “On the convergence of alternating minimization for convex programming with applications to
iteratively reweighted least squares and decomposition schemes,” SIAM Journal on Optimization, vol. 25,
no. 1, pp. 185–209, 2015.

[5] P. Li, N. He, and O. Milenkovic, “Quadratic decomposable submodular function minimization: Theory
and practice,” Journal of Machine Learning Research, vol. 21, no. 106, pp. 1–49, 2020.

[6] M. Liu, N. Veldt, H. Song, P. Li, and D. F. Gleich, “Strongly local hypergraph diffusions for clustering and
semi-supervised learning,” in TheWebConf 2021, 2021.

[7] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using distantly-labeled reviews and fine-grained
aspects,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 188–
197, 2019.

[8] N. Veldt, A. R. Benson, and J. Kleinberg, “Minimizing localized ratio cut objectives in hypergraphs,” in
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), 2020.

[9] P. S. Chodrow, N. Veldt, and A. R. Benson, “Generative hypergraph clustering: from blockmodels to
modularity,” 2021.

[10] P. Li and O. Milenkovic, “Inhomogeneous hypergraph clustering with applications,” in Advances in Neural
Information Processing Systems, 2017.

[11] R. Mastrandrea, J. Fournet, and A. Barrat, “Contact patterns in a high school: A comparison between
data collected using wearable sensors, contact diaries and friendship surveys,” PLOS ONE, vol. 10, no. 9,
p. e0136497, 2015.

[12] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. P. Hsu, and K. Wang, “An overview of microsoft
academic service (MAS) and applications,” in Proceedings of the 24th International Conference on World
Wide Web, 2015.

[13] I. Amburg, N. Veldt, and A. R. Benson, “Clustering in graphs and hypergraphs with categorical edge
labels,” in Proceedings of the Web Conference, 2020.

27

	Approximation guarantee for local hypergraph clustering
	Technical lemmas
	Proof of Theorem 1 in the main paper

	Optimization algorithm for HFD
	Block Lipschitz smoothness over sub-level set
	Alternating minimization sub-problems

	Empirical set-up and results
	Experiments using synthetic data
	Experiments using real-world data
	Datasets and ground-truth clusters
	Methods and parameter setting
	Additional experiments

	Computing platform and implementation detail

