Supplementary material for An analysis of Ermakov-Zolotukhin quadrature using kernels

Ayoub Belhadji
Univ Lyon, ENS de Lyon
Inria, CNRS, UCBL
LIP UMR 5668, Lyon, France
ayoub.belhadji@ens-lyon.fr

A Detailed proofs

A. 1 Proof of Proposition 2

By definition, we have

$$
\begin{equation*}
\forall x_{1}, x_{2} \in \mathcal{X}, \kappa_{N}^{\gamma}\left(x_{1}, x_{2}\right)=\sum_{n \in[N]} \gamma_{n} \phi_{n}\left(x_{1}\right) \phi_{n}\left(x_{2}\right), \tag{1}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\forall x_{1}, x_{2} \in \mathcal{X}, \quad \kappa_{N}^{\gamma}\left(x_{1}, x_{2}\right)=\sum_{n \in[N]} \rho_{n} \phi_{n}\left(x_{1}\right) \tilde{\gamma}_{n} \phi_{n}\left(x_{2}\right), \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\forall n \in[N], \quad \rho_{n}=\frac{\gamma_{n}}{\tilde{\gamma}_{n}} . \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\forall \boldsymbol{x} \in \mathcal{X}^{N}, \boldsymbol{\kappa}_{N}^{\gamma}(\boldsymbol{x})=\boldsymbol{\Phi}_{N}^{\boldsymbol{\rho}}(\boldsymbol{x})^{\boldsymbol{\top}} \boldsymbol{\Phi}_{N}^{\tilde{\gamma}}(\boldsymbol{x}) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\Phi}_{N}^{\boldsymbol{\rho}}(\boldsymbol{x})=\left(\rho_{n} \phi_{n}\left(x_{i}\right)\right)_{(n, i) \in[N] \times[N]} \in \mathbb{R}^{N \times N} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{\Phi}_{N}^{\tilde{\gamma}}(\boldsymbol{x})=\left(\tilde{\gamma}_{n} \phi_{n}\left(x_{i}\right)\right)_{(n, i) \in[N] \times[N]} \in \mathbb{R}^{N \times N} . \tag{6}
\end{equation*}
$$

Moreover, by definition of μ_{g}^{γ}, we have

$$
\begin{equation*}
\forall x \in \mathcal{X}, \mu_{g}^{\gamma}(x)=\sum_{n \in[N]} \gamma_{n}\left\langle g, \phi_{n}\right\rangle_{\omega} \phi_{n}(x), \tag{7}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\forall x \in \mathcal{X}, \mu_{g}^{\gamma}(x)=\sum_{n \in[N]} \tilde{\gamma}_{n}\left\langle g, \phi_{n}\right\rangle_{\omega} \rho_{n} \phi_{n}(x), \tag{8}
\end{equation*}
$$

so that

$$
\begin{equation*}
\forall \boldsymbol{x} \in \mathcal{X}^{N}, \mu_{g}^{\gamma}(\boldsymbol{x})=\boldsymbol{\Phi}_{N}^{\rho}(\boldsymbol{x})^{\top} \boldsymbol{\alpha} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\alpha}=\left(\tilde{\gamma}_{n}\right)_{n \in[N]} \in \mathbb{R}^{N} \tag{10}
\end{equation*}
$$

Combining (4) and (9), we prove that for any $\boldsymbol{x} \in \mathcal{X}^{N}$ such that Det $\boldsymbol{\kappa}_{N}(\boldsymbol{x})>0$, we have

$$
\begin{align*}
\hat{\boldsymbol{w}}^{\gamma, N, g}(\boldsymbol{x}) & =\boldsymbol{\kappa}_{N}^{\gamma}(\boldsymbol{x})^{-1} \mu_{g}^{\gamma}(\boldsymbol{x}) \\
& =\boldsymbol{\Phi}_{N}^{\tilde{\gamma}}(\boldsymbol{x})^{-1} \boldsymbol{\Phi}_{N}^{\rho}(\boldsymbol{x})^{-1^{\top}} \mu_{g}^{\gamma}(\boldsymbol{x}) \\
& =\boldsymbol{\Phi}_{N}^{\tilde{\gamma}}(\boldsymbol{x})^{-1} \boldsymbol{\Phi}_{N}^{\rho}(\boldsymbol{x})^{-1^{\top}} \boldsymbol{\Phi}_{N}^{\rho}(\boldsymbol{x})^{\top} \boldsymbol{\alpha} \\
& =\boldsymbol{\Phi}_{N}^{\tilde{\tilde{\gamma}}}(\boldsymbol{x})^{-1} \boldsymbol{\alpha} \tag{11}
\end{align*}
$$

A. 2 Useful results

We gather in this section some results that will be useful in the following proofs.

A.2.1 A useful lemma

We prove in the following a lemma that we will use in Section A.3.
Lemma 1. Let $\boldsymbol{x} \in \mathcal{X}^{N}$ such that $\operatorname{Det} \boldsymbol{\kappa}_{N}(\boldsymbol{x})>0$. For $n, n^{\prime} \in[N]$, define

$$
\begin{equation*}
\tau_{n, n^{\prime}}(\boldsymbol{x})=\sqrt{\sigma_{n}} \sqrt{\sigma_{n^{\prime}}} \phi_{n}(\boldsymbol{x})^{\top} \boldsymbol{K}_{N}(\boldsymbol{x})^{-1} \phi_{n^{\prime}}(\boldsymbol{x}) \tag{12}
\end{equation*}
$$

Then

$$
\begin{equation*}
\forall n, n^{\prime} \in[N], \quad \tau_{n, n^{\prime}}(\boldsymbol{x})=\delta_{n, n^{\prime}} \tag{13}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\boldsymbol{K}_{N}(\boldsymbol{x})=\boldsymbol{\Phi}_{N}^{\sqrt{\boldsymbol{\sigma}}}(\boldsymbol{x})^{\top} \boldsymbol{\Phi}_{N}^{\sqrt{\boldsymbol{\sigma}}}(\boldsymbol{x}) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\Phi}_{N}^{\sqrt{\sigma}}(\boldsymbol{x})=\left(\sqrt{\sigma}_{n} \phi_{n}\left(x_{i}\right)\right)_{(n, i) \in[N] \times[N]} . \tag{15}
\end{equation*}
$$

Let $n, n^{\prime} \in[N]$. We have

$$
\begin{equation*}
\sqrt{\sigma_{n}} \phi_{n}(\boldsymbol{x})^{\top}=\boldsymbol{e}_{n}^{\top} \boldsymbol{\Phi}_{N}^{\sigma}(\boldsymbol{x}) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{\sigma_{n^{\prime}}} \phi_{n^{\prime}}(\boldsymbol{x})=\boldsymbol{\Phi}_{N}^{\boldsymbol{\sigma}}(\boldsymbol{x})^{\top} \boldsymbol{e}_{n^{\prime}} \tag{17}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\tau_{n, n^{\prime}}(\boldsymbol{x}) & =\boldsymbol{e}_{n}^{\top} \boldsymbol{\Phi}_{N}^{\boldsymbol{\sigma}}(\boldsymbol{x})\left(\boldsymbol{\Phi}_{N}^{\boldsymbol{\sigma}}(\boldsymbol{x})^{\top} \boldsymbol{\Phi}_{N}^{\boldsymbol{\sigma}}(\boldsymbol{x})\right)^{-1} \boldsymbol{\Phi}_{N}^{\boldsymbol{\sigma}}(\boldsymbol{x})^{\top} \boldsymbol{e}_{n^{\prime}} \tag{18}\\
& =\boldsymbol{e}_{n}^{\top} \boldsymbol{\Phi}_{N}^{\boldsymbol{\sigma}}(\boldsymbol{x}) \boldsymbol{\Phi}_{N}^{\boldsymbol{\sigma}}(\boldsymbol{x})^{-1} \boldsymbol{\Phi}_{N}^{\boldsymbol{\sigma}}(\boldsymbol{x})^{\top^{-1}} \boldsymbol{\Phi}_{N}^{\boldsymbol{\sigma}}(\boldsymbol{x})^{\top} \boldsymbol{e}_{n^{\prime}} \tag{19}\\
& =\boldsymbol{e}_{n}^{\top} \boldsymbol{e}_{n^{\prime}} \tag{20}\\
& =\delta_{n, n^{\prime}} . \tag{21}
\end{align*}
$$

A.2.2 A borrowed result

We recall in the following a result proven in [1] that we will use in Section A.4.
Proposition 1. [Theorem 1 in [1]] Let \boldsymbol{x} be a random subset of \mathcal{X} that follows the distribution of DPP of kernel κ_{N} and reference measure ω. Let $f \in \mathcal{L}_{2}(\omega)$, and $n, n^{\prime} \in[N]$ such that $n \neq n^{\prime}$. Then

$$
\begin{equation*}
\mathbb{C o v}_{\mathrm{DPP}}\left(I^{\mathrm{EZ}, n}(f), I^{\mathrm{EZ}, n^{\prime}}(f)\right)=0 \tag{22}
\end{equation*}
$$

A. 3 Proof of Proposition 5

Let $\boldsymbol{x} \in \mathcal{X}^{N}$ such that the condition Det $\boldsymbol{\kappa}_{N}(\boldsymbol{x})>0$ is satisfied, and let $g \in \mathcal{E}_{N}$. We start by the proof of (36). By definition of μ_{g}, we have

$$
\begin{equation*}
\mu_{g}(x)=\sum_{n \in[N]} \sigma_{n}\left\langle g, \phi_{n}\right\rangle_{\omega} \phi_{n}(x) \tag{23}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mu_{g}(\boldsymbol{x})=\sum_{n \in[N]} \sigma_{n}\left\langle g, \phi_{n}\right\rangle_{\omega} \phi_{n}(\boldsymbol{x}) . \tag{24}
\end{equation*}
$$

Proposition 2 yields

$$
\begin{equation*}
\hat{\boldsymbol{w}}^{\mathrm{EZ}, g}=\boldsymbol{K}_{N}(\boldsymbol{x})^{-1} \mu_{g}(\boldsymbol{x}) . \tag{25}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\hat{\boldsymbol{w}}^{\mathrm{EZ}, g^{\top}} \mu_{g}(\boldsymbol{x}) & =\mu_{g}(\boldsymbol{x}) \boldsymbol{K}_{N}(\boldsymbol{x})^{-1} \mu_{g}(\boldsymbol{x}) \\
& =\sum_{n, n^{\prime} \in[N]} \sigma_{n} \sigma_{n^{\prime}}\left\langle g, \phi_{n}\right\rangle_{\omega}\left\langle g, \phi_{n^{\prime}}\right\rangle_{\omega} \phi_{n}(\boldsymbol{x})^{\top} \boldsymbol{K}_{N}(\boldsymbol{x})^{-1} \phi_{n^{\prime}}(\boldsymbol{x}) \\
& =\sum_{n \in[N]} \sigma_{n}\left\langle g, \phi_{n}\right\rangle_{\omega}^{2} \tau_{n, n}(\boldsymbol{x}) \\
& +\sum_{\substack{n, n^{\prime} \in[N] \\
n \neq n^{\prime}}} \sqrt{\sigma_{n} \sigma_{n^{\prime}}}\left\langle g, \phi_{n}\right\rangle_{\omega}\left\langle g, \phi_{n^{\prime}}\right\rangle_{\omega} \tau_{n, n^{\prime}}(\boldsymbol{x}), \tag{26}
\end{align*}
$$

where $\tau_{n, n^{\prime}}(\boldsymbol{x})$ is defined by

$$
\begin{equation*}
\tau_{n, n^{\prime}}(\boldsymbol{x})=\sqrt{\sigma_{n}} \sqrt{\sigma_{n^{\prime}}} \phi_{n}(\boldsymbol{x})^{\top} \boldsymbol{K}_{N}(\boldsymbol{x})^{-1} \phi_{n^{\prime}}(\boldsymbol{x}) \tag{27}
\end{equation*}
$$

Now, Lemma 1 yields

$$
\begin{align*}
\sum_{n \in[N]} \sigma_{n}\left\langle g, \phi_{n}\right\rangle_{\omega}^{2} \tau_{n, n}(\boldsymbol{x}) & =\sum_{n \in[N]} \sigma_{n}\left\langle g, \phi_{n}\right\rangle_{\omega}^{2} \\
& =\left\|\mu_{g}\right\|_{\mathcal{F}}^{2} \tag{28}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{\substack{n, n^{\prime} \in[N] \\ n \neq n^{\prime}}} \sqrt{\sigma_{n}} \sqrt{\sigma_{n^{\prime}}}\left\langle g, \phi_{n}\right\rangle_{\omega}\left\langle g, \phi_{n^{\prime}}\right\rangle_{\omega} \tau_{n, n^{\prime}}(\boldsymbol{x})=0 . \tag{29}
\end{equation*}
$$

Combining (26), (28) and (29), we obtain

$$
\begin{equation*}
\hat{\boldsymbol{w}}^{\mathrm{EZ}, g^{\top}} \mu_{g}(\boldsymbol{x})=\left\|\mu_{g}\right\|_{\mathcal{F}}^{2} . \tag{30}
\end{equation*}
$$

We move now to the proof of (37). We have by the Mercer decomposition

$$
\begin{align*}
\boldsymbol{K}(\boldsymbol{x}) & =\sum_{m=1}^{+\infty} \sigma_{m} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top} \tag{31}\\
& =\sum_{m=1}^{N} \sigma_{m} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top}+\sum_{m=N+1}^{+\infty} \sigma_{m} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top} . \tag{32}
\end{align*}
$$

Moreover, observe that

$$
\begin{equation*}
\boldsymbol{K}_{N}(\boldsymbol{x})=\sum_{m=1}^{N} \sigma_{m} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{K}_{N}^{\perp}(\boldsymbol{x})=\sum_{m=N+1}^{+\infty} \sigma_{m} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top} \tag{34}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\boldsymbol{K}(\boldsymbol{x})=\boldsymbol{K}_{N}(\boldsymbol{x})+\boldsymbol{K}_{N}^{\perp}(\boldsymbol{x}), \tag{35}
\end{equation*}
$$

so that

$$
\begin{equation*}
\hat{\boldsymbol{w}}^{\mathrm{EZ}, g^{\top}} \boldsymbol{K}(\boldsymbol{x}) \hat{\boldsymbol{w}}^{\mathrm{EZ}, g}=\hat{\boldsymbol{w}}^{\mathrm{EZ}, g^{\top}} \boldsymbol{K}_{N}(\boldsymbol{x}) \hat{\boldsymbol{w}}^{\mathrm{EZ}, g}+\hat{\boldsymbol{w}}^{\mathrm{EZ}, g^{\top}} \boldsymbol{K}_{N}^{\perp}(\boldsymbol{x}) \hat{\boldsymbol{w}}^{\mathrm{EZ}, g} . \tag{36}
\end{equation*}
$$

In order to evaluate $\hat{\boldsymbol{w}}^{\mathrm{EZ}, g^{\top}} \boldsymbol{K}_{N}(\boldsymbol{x}) \hat{\boldsymbol{w}}^{\mathrm{EZ}, g}$, we use Proposition 2, and we get

$$
\begin{equation*}
\hat{\boldsymbol{w}}^{\mathrm{EZ}, g}=\boldsymbol{K}_{N}(\boldsymbol{x})^{-1} \mu_{g}(\boldsymbol{x}), \tag{37}
\end{equation*}
$$

so that

$$
\begin{align*}
\hat{\boldsymbol{w}}^{\mathrm{EZ}, g^{\top}} \boldsymbol{K}_{N}(\boldsymbol{x}) \hat{\boldsymbol{w}}^{\mathrm{EZ}, g} & =\hat{\boldsymbol{w}}^{\mathrm{EZ}, g^{\top}} \boldsymbol{K}_{N}(\boldsymbol{x}) \boldsymbol{K}_{N}(\boldsymbol{x})^{-1} \mu_{g}(\boldsymbol{x}) \\
& =\hat{\boldsymbol{w}}^{\mathrm{EZ}, g^{\top}} \mu_{g}(\boldsymbol{x}) \\
& =\left\|\mu_{g}\right\|_{\mathcal{F}}^{2} \tag{38}
\end{align*}
$$

Finally, by definition

$$
\begin{equation*}
\hat{\boldsymbol{w}}^{\mathrm{EZ}, g}=\mathbf{\Phi}_{N}(\boldsymbol{x})^{-1} \boldsymbol{\epsilon}, \tag{39}
\end{equation*}
$$

where $\boldsymbol{\epsilon}=\sum_{n \in[N]}\left\langle g, \phi_{n}\right\rangle_{\omega} \boldsymbol{e}_{n}$. Therefore

$$
\begin{equation*}
\hat{\boldsymbol{w}}^{\mathrm{EZ}, g^{\top}} \boldsymbol{K}_{N}(\boldsymbol{x})^{\perp} \hat{\boldsymbol{w}}^{\mathrm{EZ}, g}=\boldsymbol{\epsilon}^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\top}} \boldsymbol{K}_{N}(\boldsymbol{x})^{\perp} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1} \boldsymbol{\epsilon} . \tag{40}
\end{equation*}
$$

A. 4 Proof of Theorem 7

Let $m \in \mathbb{N}^{*}$ such that $m \geq N+1$. We prove that

$$
\begin{equation*}
\forall \boldsymbol{\epsilon}, \tilde{\boldsymbol{\epsilon}} \in \mathbb{R}^{N}, \mathbb{E}_{\mathrm{DPP}} \boldsymbol{\epsilon}^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\top}} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}}=\sum_{n \in N} \epsilon_{n} \tilde{\epsilon}_{n} \tag{41}
\end{equation*}
$$

For this purpose, let $\boldsymbol{\epsilon}, \tilde{\boldsymbol{\epsilon}} \in \mathbb{R}^{N}$, and observe that

$$
\begin{align*}
\boldsymbol{\epsilon}^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\top}} \phi_{m}(\boldsymbol{x}) & =\sum_{n \in[N]} \epsilon_{n} \boldsymbol{e}_{n}^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\top}} \phi_{m}(\boldsymbol{x}) \tag{42}\\
& =\sum_{n \in[N]} \epsilon_{n} \hat{\boldsymbol{w}}^{\mathrm{EZ}, n} \phi_{m}(\boldsymbol{x}) \tag{43}\\
& =\sum_{n \in[N]} \epsilon_{n} I^{\mathrm{EZ}, n}\left(\phi_{m}\right) \tag{44}
\end{align*}
$$

and

$$
\begin{equation*}
\phi_{m}(\boldsymbol{x})^{\boldsymbol{\top}} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}}=\sum_{n \in[N]} \tilde{\epsilon}_{n} I^{\mathrm{EZ}, n}\left(\phi_{m}\right) \tag{45}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\boldsymbol{\epsilon}^{\boldsymbol{\top}} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\top}} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}}=\sum_{n \in[N]} \sum_{n^{\prime} \in[N]} \epsilon_{n} \tilde{\epsilon}_{n^{\prime}} I^{\mathrm{EZ}, n}\left(\phi_{m}\right) I^{\mathrm{EZ}, n^{\prime}}\left(\phi_{m}\right), \tag{46}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathbb{E}_{\mathrm{DPP}} \boldsymbol{\epsilon}^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\top}} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}}=\sum_{n \in[N]} \sum_{n^{\prime} \in[N]} \epsilon_{n} \tilde{\epsilon}_{n^{\prime}} \mathbb{E}_{\mathrm{DPP}} I^{\mathrm{EZ}, n}\left(\phi_{m}\right) I^{\mathrm{EZ}, n^{\prime}}\left(\phi_{m}\right) \tag{47}
\end{equation*}
$$

Now, for $n, n^{\prime} \in[N]$,

$$
\begin{equation*}
\mathbb{E}_{\mathrm{DPP}} I^{\mathrm{EZ}, n}\left(\phi_{m}\right)=\int_{\mathcal{X}} \phi_{m}(x) \phi_{n}(x) \mathrm{d} \omega(x)=0 \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}_{\mathrm{DPP}} I^{\mathrm{EZ}, n^{\prime}}\left(\phi_{m}\right)=\int_{\mathcal{X}} \phi_{m}(x) \phi_{n^{\prime}}(x) \mathrm{d} \omega(x)=0 \tag{49}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\mathbb{E}_{\mathrm{DPP}} I^{\mathrm{EZ}, n}\left(\phi_{m}\right) I^{\mathrm{EZ}, n^{\prime}}\left(\phi_{m}\right)=\operatorname{Cov}_{\mathrm{DPP}}\left(I^{\mathrm{EZ}, n}\left(\phi_{m}\right), I^{\mathrm{EZ}, n^{\prime}}\left(\phi_{m}\right)\right) \tag{50}
\end{equation*}
$$

Now, by Proposition 1, we have $\mathbb{C o v}_{\mathrm{DPP}}\left(I^{\mathrm{EZ}, n}\left(\phi_{m}\right), I^{\mathrm{EZ}, n^{\prime}}\left(\phi_{m}\right)\right)=\delta_{n, n^{\prime}}$, so that

$$
\begin{equation*}
\mathbb{E}_{\mathrm{DPP}} I^{\mathrm{EZ}, n}\left(\phi_{m}\right) I^{\mathrm{EZ}, n^{\prime}}\left(\phi_{m}\right)=\delta_{n, n^{\prime}} \tag{51}
\end{equation*}
$$

and

$$
\begin{align*}
\mathbb{E}_{\mathrm{DPP}} \boldsymbol{\epsilon}^{\mathrm{\top}} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\top}} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}} & =\sum_{n \in[N]} \sum_{n^{\prime} \in[N]} \epsilon_{n} \tilde{\epsilon}_{n^{\prime}} \mathbb{E}_{\mathrm{DPP}} I^{\mathrm{EZ}, n}\left(\phi_{m}\right) I^{\mathrm{EZ}, n^{\prime}}\left(\phi_{m}\right) \\
& =\sum_{n \in[N]} \sum_{n^{\prime} \in[N]} \epsilon_{n} \tilde{\epsilon}_{n^{\prime}} \delta_{n, n^{\prime}} \\
& =\sum_{n \in[N]} \epsilon_{n} \tilde{\epsilon}_{n} \tag{52}
\end{align*}
$$

Now, for $\boldsymbol{\epsilon} \in \mathbb{R}^{N}$ and $m \in \mathbb{N}^{*}$ define $Y_{\epsilon, m}$ by

$$
\begin{equation*}
Y_{\boldsymbol{\epsilon}, m}=\sigma_{m} \boldsymbol{\epsilon}^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\top}} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1} \boldsymbol{\epsilon} \tag{53}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mathbb{E}_{\mathrm{DPP}} Y_{\epsilon, m}=\sigma_{m} \sum_{n \in[N]} \epsilon_{n}^{2} \tag{54}
\end{equation*}
$$

and the $Y_{\epsilon, m}$ are non-negative since

$$
\begin{equation*}
Y_{\boldsymbol{\epsilon}, m}=\sigma_{m}\left(\boldsymbol{\epsilon}^{\boldsymbol{\top}} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\top}} \phi_{m}(\boldsymbol{x})\right)^{2} \geq 0 \tag{55}
\end{equation*}
$$

moreover,

$$
\begin{equation*}
\sum_{m=N+1}^{+\infty} \mathbb{E}_{\mathrm{DPP}} Y_{\epsilon, m}<+\infty \tag{56}
\end{equation*}
$$

Therefore, by Beppo Levi's lemma

$$
\begin{align*}
\mathbb{E}_{\mathrm{DPP}} \sum_{m=N+1}^{+\infty} Y_{\epsilon, m} & =\sum_{m=N+1}^{+\infty} \mathbb{E}_{\mathrm{DPP}} Y_{\epsilon, m} \\
& =\sum_{n \in[N]} \epsilon_{n}^{2} \sum_{m=N+1}^{+\infty} \sigma_{m} . \tag{57}
\end{align*}
$$

Now, in general for $m \in \mathbb{N}^{*}$ such that $m \geq N+1$, we have

$$
\begin{equation*}
\sigma_{m} \boldsymbol{\epsilon}^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\top}} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}} \leq \frac{1}{2}\left(Y_{\boldsymbol{\epsilon}, m}+Y_{\tilde{\boldsymbol{\epsilon}}, m}\right) \tag{58}
\end{equation*}
$$

so that for $M \geq N+1$, we have

$$
\begin{equation*}
\sum_{m=N+1}^{M} \sigma_{m} \boldsymbol{\epsilon}^{\top} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\top}} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top} \mathbf{\Phi}_{N}(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}} \leq \frac{1}{2}\left(\sum_{m=N+1}^{+\infty} Y_{\boldsymbol{\epsilon}, m}+\sum_{m=N+1}^{+\infty} Y_{\tilde{\boldsymbol{\epsilon}}, m}\right) \tag{59}
\end{equation*}
$$

Therefore, by dominated convergence theorem we conclude that

$$
\begin{equation*}
\mathbb{E}_{\mathrm{DPP}} \sum_{m=N+1}^{+\infty} \sigma_{m} \boldsymbol{\epsilon}^{\boldsymbol{\top}} \mathbf{\Phi}_{N}(\boldsymbol{x})^{-1^{\top}} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\top} \mathbf{\Phi}_{N}(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}}=\sum_{m=N+1}^{+\infty} \sigma_{m} \sum_{n \in[N]} \epsilon_{n} \tilde{\epsilon}_{n} \tag{60}
\end{equation*}
$$

A. 5 Proof of Theorem 3

Let $g \in \mathcal{E}_{N}$, and denote $\boldsymbol{\epsilon}=\sum_{n \in[N]}\left\langle g, \phi_{n}\right\rangle_{\omega} \boldsymbol{e}_{n}$. Combining Theorem 6 and Theorem 7, we obtain

$$
\begin{equation*}
\mathbb{E}_{\mathrm{DPP}}\left\|\mu_{g}-\sum_{i \in[N]} \hat{w}_{i}^{\mathrm{EZ}, g} k\left(x_{i}, .\right)\right\|_{\mathcal{F}}^{2}=\sum_{m \geq N+1} \sigma_{m} \sum_{n \in[N]} \epsilon_{n}^{2} \tag{61}
\end{equation*}
$$

Now let $g \in \mathcal{L}_{2}(\omega)$, we have

$$
\begin{align*}
\left\|\mu_{g}-\sum_{i \in[N]} \hat{w}_{i}^{\mathrm{EZ}, g} k\left(x_{i}, .\right)\right\|_{\mathcal{F}}^{2} & =\left\|\mu_{g}-\mu_{g_{N}}+\mu_{g_{N}}-\sum_{i \in[N]} \hat{w}_{i}^{\mathrm{EZ}, g} k\left(x_{i}, .\right)\right\|_{\mathcal{F}}^{2} \tag{62}\\
& \leq 2\left(\left\|\mu_{g}-\mu_{g_{N}}\right\|_{\mathcal{F}}^{2}+\left\|\mu_{g_{N}}-\sum_{i \in[N]} \hat{w}_{i}^{\mathrm{EZ}, g} k\left(x_{i}, .\right)\right\|_{\mathcal{F}}^{2}\right) \tag{63}
\end{align*}
$$

where $g_{N}=\sum_{n \in[N]}\left\langle g, \phi_{n}\right\rangle_{\omega} \phi_{n} \in \mathcal{E}_{N}$.
Now, observe that

$$
\begin{equation*}
\mu_{g}^{\gamma, N}=\mu_{g_{N}}^{\gamma, N} \tag{64}
\end{equation*}
$$

so that

$$
\begin{equation*}
\hat{\boldsymbol{w}}^{\mathrm{EZ}, g}=\hat{\boldsymbol{w}}^{\mathrm{EZ}, g_{N}} \tag{65}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left\|\mu_{g}-\sum_{i \in[N]} \hat{w}_{i}^{\mathrm{EZ}, g} k\left(x_{i}, .\right)\right\|_{\mathcal{F}}^{2} \leq 2\left(\left\|\mu_{g}-\mu_{g_{N}}\right\|_{\mathcal{F}}^{2}+\left\|\mu_{g_{N}}-\sum_{i \in[N]} \hat{w}_{i}^{\mathrm{EZ}, g_{N}} k\left(x_{i}, .\right)\right\|_{\mathcal{F}}^{2}\right) \tag{66}
\end{equation*}
$$

Now, we have

$$
\begin{align*}
\left\|\mu_{g}-\mu_{g_{N}}\right\|_{\mathcal{F}}^{2} & =\sum_{m \geq N+1} \sigma_{m}\left\langle g, \phi_{m}\right\rangle_{\omega}^{2} \\
& \leq \sigma_{N+1} \sum_{m \geq N+1}\left\langle g, \phi_{m}\right\rangle_{\omega}^{2} \\
& \leq r_{N+1}\|g\|_{\omega}^{2} \tag{67}
\end{align*}
$$

Moreover, by (26) we have

$$
\begin{align*}
\mathbb{E}_{\mathrm{DPP}}\left\|\mu_{g_{N}}-\sum_{i \in[N]} \hat{w}_{i}^{\mathrm{EZ}, g_{N}} k\left(x_{i}, .\right)\right\|_{\mathcal{F}}^{2} & =\sum_{n \in[N]}\left\langle g, \phi_{n}\right\rangle_{\omega}^{2} r_{N+1} \\
& \leq\|g\|_{\omega}^{2} r_{N+1} \tag{68}
\end{align*}
$$

Combining (66), (67) and (68), we obtain

$$
\begin{equation*}
\left\|\mu_{g}-\sum_{i \in[N]} \hat{w}_{i}^{\mathrm{EZ}, g} k\left(x_{i}, .\right)\right\|_{\mathcal{F}}^{2} \leq 4\|g\|_{\omega}^{2} r_{N+1} \tag{69}
\end{equation*}
$$

References

[1] G. Gautier, R. Bardenet, and M. Valko. On two ways to use determinantal point processes for monte carlo integration. In Advances in Neural Information Processing Systems, volume 32, 2019.

