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Abstract

The Randomized Response (RR) algorithm [96] is a classical technique to improve
robustness in survey aggregation, and has been widely adopted in applications
with differential privacy guarantees. We propose a novel algorithm, Randomized
Response with Prior (RRWithPrior), which can provide more accurate results
while maintaining the same level of privacy guaranteed by RR. We then apply
RRWithPrior to learn neural networks with label differential privacy (Labe�DP),
and show that when only the label needs to be protected, the model performance can
be significantly improved over the previous state-of-the-art private baselines. More-
over, we study different ways to obtain priors, which when used with RRWithPrior
can additionally improve the model performance, further reducing the accuracy
gap between private and non-private models. We complement the empirical results
with theoretical analysis showing that Labe�DP is provably easier than protecting
both the inputs and labels.

1 Introduction

The widespread adoption of machine learning in recent years has increased the concerns about the
privacy of individuals whose data is used during the model training. Differential privacy (DP) [34, 33]
has emerged as a popular privacy notion that has been the basis of several practical deployments in
industry [35, 82, 43, 9, 29] and the U.S. Census [3].

A classical algorithm—that predates DP and was initially designed to eliminate evasive answer biases
in survey aggregation—is Randomized Response (RR) [96]: when the input is an element from a finite
alphabet, the output is equal to the input with a certain probability, and is a uniform random other
element from the alphabet with the remaining probability. This simple algorithm is shown to satisfy
the strong notion of local DP [38, 58], whereby the response of each user is protected, in contrast
with the so-called central DP setting where a curator has access to the raw user data, and only the
output of the curator is required to be DP. We note that schemes building on RR have been studied in
several previous works on DP estimation (e.g., [30, 57]), and have been deployed in practice [82].

Meanwhile, the large error incurred by RR (e.g., [17]) has stimulated significant research aiming to
improve its accuracy, mostly by relaxing to weaker privacy models (e.g., [36, 24, 4]). In this work,
we use a different approach and seek to improve RR by leveraging available prior information. (A
recent work of Liu et al. [63] also used priors to improve accuracy, but in the context of the DP
multiplicative weights algorithm, which applies in the central DP setting.) The prior information
can consist of domain-specific knowledge, (models trained on) publicly available data, or historical
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runs of a training algorithm. Our algorithm is presented in Section 3 (Algorithm 2). At a high level,
given a prior distribution p on the alphabet, the algorithm uses p to prune the alphabet. If the prior
is reliable and even if the alphabet is only minimally pruned, the probability that the output equals
the input is larger than when RR is applied to the entire alphabet. On the other hand, if the prior is
uniform over the entire alphabet, then our algorithm recovers the classical RR. To implement the
above recipe, one needs to specify how to effect the pruning using p. It turns out that the magnitude
of pruning can itself vary depending on p, but we can obtain a closed-form formula for determining
this. Interestingly, by studying a suitable linear program, we show that the resulting RRWithPrior
strategy is optimal in that among all "-DP algorithms, it maximizes the probability that the output
equals the input when the latter is sampled from p (Theorem 3).

1.1 Applications to Learning with Label Differential Privacy

There have been a great number of papers over the last decade that developed DP machine learning
algorithms (e.g., [19, 102, 88, 83–85, 78]). In the case of deep learning, the seminal work of Abadi
et al. [2] introduced a DP training framework (DP-SGD) that was integrated into TensorFlow [80] and
PyTorch [92]. Despite numerous followup works, including, e.g., [75–77, 67, 98, 71, 20, 93], and
extensive efforts, the accuracy of models trained with DP-SGD remains significantly lower than that
of models trained without DP constraints. Notably, for the widely considered CIFAR-10 dataset,
the highest reported accuracy for DP models is 69.3% [93], which strikingly relies on handcrafted
visual features despite that in non-private scenarios learned features long been shown to be superior.
Even using pre-training with external (CIFAR-100) data, the best reported DP accuracy, 73%2, is
still far below the non-private baselines (> 95%). The performance gap becomes a roadblocker for
many real-world applications to adopt DP. In this paper, we focus on a more restricted, but important,
special case where the DP guarantee is only required to hold with respect to the labels, as described
next.

In the label differential privacy (Labe�DP) setting, the labels are considered sensitive, and their privacy
needs to be protected, while the input points are not sensitive. This notion has been studied in the
PAC setting [18, 13] and for the particular case of sparse linear regression [94], and it captures several
practical scenarios. Examples include: (i) computational advertising where the impressions are
known to the Ad Tech3, and thus considered non-sensitive, while the conversions reveal user interest
and are thus private (see, e.g., Nalpas and Dutton [70] and [8]), (ii) recommendation systems where
the choices are known, e.g., to the streaming service provider, but the user ratings are considered
sensitive, and (iii) user surveys and analytics where demographic information (e.g., age, gender)
is non-sensitive but income is sensitive—in fact, this was the motivating reason for Warner [96] to
propose RR many decades ago! We present a novel multi-stage algorithm (LP-MST) for training deep
neural networks with Labe�DP that builds on top of RRWithPrior (see Section 3 and Algorithm 3), and
we benchmark its empirical performance (Section 5) on multiple datasets, domains, and architectures,
including the following.

• On CIFAR-10, we show that it achieves 20% higher accuracy than DP-SGD4.
• On the more challenging CIFAR-100, we present the first non-trivial DP learning results.
• On MovieLens, which consists of user ratings of movies, we show improvements via LP-MST.

In some applications, domain specific algorithms can be used to obtain priors directly without going
through multi-stage training. For image classification problems, we demonstrate how priors computed
from a (non-private) self-supervised learning [22, 23, 44, 53, 16] phase on the input images can be
used to achieve higher accuracy with a Labe�DP guarantee with extremely small privacy budgets
("  0.1, see Section 5.2 for details).

We note that due to the requirement of DP-SGD to compute and clip per-instance gradient, it remains
technically challenging to scale to larger models or mini-batch sizes, despite numerous attempts to
minigate this problem [42, 5, 26, 90]. On the other hand, our formulation allows us to use state-of-

2For DP parameters of " = 8 and � = 10�5, cited from Abadi et al. [2, Figure 6]. For a formal definition of
DP, we refer the reader to Definition 2.1.

3Ad tech (abbreviating Advertising Technology) comprises the tools that help agencies and brands target, de-
liver, and analyze their digital advertising efforts; see, e.g., b�og.hubspot.com/marketing/what-is-ad-tech.

4We remark that the notion of "-DP in [2, 76, 75] is not directly comparable to "-Label DP in our work in
that they use the addition/removal notion whereas we use the substitution one. Please see the Supplementary
Material for more discussion on this.
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the-art deep learning architectures such as ResNet [51]. We also stress that our LP-MST algorithm
goes beyond deep learning methods that are robust to label noise. (See [87] for a survey of the latter.)

Our empirical results suggest that protecting the privacy of labels can be significantly easier than
protecting the privacy of both inputs and labels. We find further evidence to this by showing that
for the special case of stochastic convex optimization (SCO), the sample complexity of algorithms
privatizing the labels is much smaller than that of algorithms privatizing both labels and inputs;
specifically, we achieve dimension-independent bounds for Labe�DP (Section 6). We also show that a
good prior can ensure smaller population error for non-convex loss. (Details are in the Supplementary
Material.)

2 Preliminaries

For any positive integer K, let [K] := {1, . . . ,K}. Randomized response (RR) [96] is the following:
let " � 0 be a parameter and let y 2 [K] be the true value known to RR". When an observer queries
the value of y, RR" responds with a random draw ỹ from the following probability distribution:

Pr[ỹ = ŷ] =

(
e"

e"+K�1 for ŷ = y,

1
e"+K�1 otherwise.

(1)

In this paper, we focus on the application of learning with label differential privacy. We recall the
definition of differential privacy (DP), which is applicable to any notion of neighboring datasets. For
a textbook reference, we refer the reader to Dwork and Roth [32].
Definition 2.1 (Differential Privacy (DP) [33, 34]). Let ", � 2 R�0. A randomized algorithm A taking
as input a dataset is said to be (", �)-differentially private ((", �)-DP) if for any two neighboring
datasets D and D0, and for any subset S of outputs of A, it is the case that Pr[A(D) 2 S] 
e
" · Pr[A(D0

) 2 S] + �. If � = 0, then A is said to be "-differentially private ("-DP).

When applied to machine learning methods in general and deep learning in particular, DP is usually
enforced on the weights of the trained model [see, e.g., 19, 59, 2]. In this work, we focus on the
notion of label differential privacy.
Definition 2.2 (Label Differential Privacy). Let ", � 2 R�0. A randomized training algorithm A
taking as input a dataset is said to be (", �)-label differentially private ((", �)-Labe�DP) if for any two
training datasets D and D0 that differ in the label of a single example, and for any subset S of outputs
of A, it is the case that Pr[A(D) 2 S]  e

" · Pr[A(D0
) 2 S] + �. If � = 0, then A is said to be "-label

differentially private ("-Labe�DP).

All proofs skipped in the main body are given in the Supplementary Material.

3 Randomized Response with Prior

In many real world applications, a prior distribution about the labels could be publicly obtained from
domain knowledge and help the learning process. In particular, we consider a setting where for each
(private) label y in the training set, there is an associated prior p = (p1, . . . , pK). The goal is to
output a randomized label ỹ that maximizes the probability that the output is correct (or equivalently
maximizes the signal-to-noise ratio), i.e., Pr[y = ỹ]. The privacy constraint here is that the algorithm
should be "-DP with respect to y. (It need not be private with respect to the prior p.)

We first describe our algorithm RRWithPrior by assuming access to such priors.

3.1 Algorithm: RRWithPrior

We build our RRWithPrior algorithm with a subroutine called RRTop-k, as shown in Algorithm 1,
which is a modification of randomized response where we only consider the set of k labels i with
largest pi. Then, if the input label y belongs to this set, we use standard randomized response on this
set. Otherwise, we output a label from this set uniformly at random.

The main idea behind RRWithPrior is to dynamically estimate an optimal k⇤ based on the prior p,
and run RRTop-k with k

⇤. Specifically, we choose k
⇤ by maximizing Pr[RRTop-k(y) = y]. It is not
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Algorithm 1 RRTop-k

Input: A label y 2 [K]

Parameters: k 2 [K], prior p = (p1, . . . , pK)

1. Let Yk be the set of k labels with maximum prior probability (with ties broken arbritrarily).
2. If y 2 Yk, then output y with probability e"

e"+k�1 and output y0 2 Yk \ {y} with probability
1

e"+k�1 .
3. If y 62 Yk, output an element from Yk uniformly at random.

hard to see that this expression is exactly equal to e"

e"+k�1 ·
⇣P

ỹ2Yk
pỹ

⌘
if y ⇠ p. RRWithPrior is

presented in Algorithm 2.

Algorithm 2 RRWithPrior

Input: A label y 2 [K]

Parameters: prior p = (p1, . . . , pK)

1. For k 2 [K]:
(a) Compute wk :=

e"

e"+k�1 ·
⇣P

ỹ2Yk
pỹ

⌘
, where Yk is the set of k labels with maximum

prior probability (ties broken arbritrarily).
2. Let k⇤ = argmaxk2[K] wk.
3. Return an output of RRTop-k (y) with k = k

⇤.

3.1.1 Privacy Analysis

It is not hard to show that RRTop-k is "-DP.
Lemma 1. RRTop-k is "-DP.

The privacy guarantee of RRWithPrior follows immediately from that of RRTop-k (Lemma 1) since
our choice of k does not depend on the label y:
Corollary 2. RRWithPrior is "-DP.

For learning with a Labe�DP guarantee, we first use RRWithPrior to query a randomized label for
each example of the training set, and then apply a general learning algorithm that is robust to random
label noise to this dataset. Note that unlike DP-SGD [2] that makes new queries on the gradients in
every training epoch, we query the randomized label once and reuse it in all the training epochs.

3.2 Optimality of RRWithPrior

In this section we will prove the optimality of RRWithPrior. For this, we will need additional notation.
For any algorithm R that takes as input a label y and outputs a randomized label ỹ, we let Objp(R)
denote the probability that the output label is equal to the input label y when y is distributed as p; i.e.,
Objp(R) = Pry⇠p[R(y) = y], where the distribution of y ⇠ p is Pr[y = i] = pi for all i 2 [K].

The main result of this section is that, among all "-DP algorithms, RRWithPrior maximizes Objp(R),
as stated more formally next.
Theorem 3. Let p be any probability distribution on [K] and R be any "-DP algorithm that random-
izes the input label given the prior p . We have that

Objp(RRWithPrior) � Objp(R).

Before we proceed to the proof, we remark that our proof employs a linear program (LP) to character-
ize the optimal mechanisms; a generic form of such LPs has been used before in [48, 41]. However,
these works focus on different problems (linear queries) and their results do not apply here.

Proof of Theorem 3. Consider any "-DP algorithm R, and let qỹ|y denote Pr[R(y) = ỹ]. Observe that
Objp(R) =

P
y2[k] py · qy|y .
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Since q·|y is a probability distribution, we must have that
X

ỹ2[K]

qỹ|y = 1, 8y 2 [K], and qỹ|y � 0, 8ỹ, y 2 [K].

Finally, the "-DP guarantee of R implies that

qỹ|y  e
" · qỹ|y0 8ỹ, y, y0 2 [K].

Combining the above, Objp(R) is upper-bounded by the optimum of the following linear program
(LP), which we refer to as LP1:

max

X

y2[k]

py · qy|y

s.t. qỹ|y  e
" · qỹ|y0 8ỹ, y, y0 2 [K], (2)

X

ỹ2[K]

qỹ|y = 1 8y 2 [K], (3)

qỹ|y � 0 8ỹ, y 2 [K].

Notice that constraints (2) and (3) together imply that:

qy|y + e
�" ·

X

ỹ2[K]\{y}

qỹ|ỹ  1 8y 2 [K].

In other words, the optimum of LP1 is at most the optimum of the following LP that we call LP2:

max

X

y2[k]

py · qy|y

s.t. qy|y + e
�" ·

X

ỹ2[K]\{y}

qỹ|ỹ  1 8y 2 [K], (4)

qy|y � 0 8y 2 [K]. (5)

An optimal solution to LP2 must be a vertex (aka extreme point) of the polytope defined by (4)
and (5). Recall that an extreme point of a K-dimensional polytope must satisfy K independent
constraints with equality. In our case, this means that one of the following occurs:

• Inequality (5) is satisfied with equality for all y 2 [K] resulting in the all-zero solution
(whose objective is zero), or,

• For some non-empty subset Y ✓ [K], inequality (4) is satisfied with equality for all y 2 Y ,
and inequality (5) is satisfied with equality for all y 2 [K] \ Y . This results in

qy|y =

(
e"

e"+|Y |�1 if y 2 Y,

0 if y /2 Y.

This yields an objective value of e"

e"+|Y |�1 ·
P

y2Y py .

In conclusion, we have that

Objp(R)  max
;6=Y✓[K]

e
"

e" + |Y |� 1
·
X

y2Y

py

= max
k2[K]

e
"

e" + k � 1
· max
Y✓[K],|Y |=k

X

y2Y

py

= max
k2[K]

e
"

e" + k � 1
·
X

y2Yk

py = max
k2[K]

wk,

where the last two equalities follow from our definitions of Yk and wk. Notice that
Objp(RRWithPrior) = maxk2[K] wk. Thus, we get that Objp(RRWithPrior) � Objp(R) as de-
sired.
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4 Application of RRWithPrior: Multi-Stage Training

Our RRWithPrior algorithm requires publicly available priors, which could usually be obtained from
domain specific knowledge. In this section, we describe a training framework that bootstraps from a
uniform prior, and progressively learns refined priors via multi-stage training. This general framework
can be applied to arbitrary domains even when no public prior distributions are available.

Specifically, we assume that we have a training algorithm A that outputs a probabilistic classifier
which, on a given unlabeled sample x, can assign a probability py to each class y 2 [K]. We partition
our dataset into subsets S(1)

, . . . , S
(T ), and we start with a trivial model M (0) that outputs equal

probabilities for all classes. At each stage t 2 [T ], we use the most recent model M (t�1) to assign the
probabilities (p1, . . . , pK) for each sample xi from S

(t). Applying RRWithPrior with this prior on
the true label yi, we get a randomized label ỹi for xi. We then use all the samples with randomized
labels obtained so far to train the model M (t).

The full description of our LP-MST (Label Privacy Multi-Stage Training) method is presented in
Algorithm 3. We remark here that the partition S

(1)
, . . . , S

(T ) can be arbitrarily chosen, as long as it
does not depend on the labels y1, . . . , yn. We also stress that the training algorithm A need not be
private. We use LP-1ST to denote our algorithm with one stage, LP-2ST to denote our algorithm with
two stages, and so on. We also note that LP-1ST is equivalent to using vanilla RR. The tth stage of a
multi-stage algorithm is denoted stage-t.

Algorithm 3 Mu�ti-Stage Training (LP-MST)
Input: Dataset S = {(x1, y1), . . . , (xn, yn)}
Parameters: Number T of stages, training algorithm A

1. Partition S into S
(1)

, . . . , S
(T )

2. Let M (0) be the trivial model that always assigns equal probability to each class.
3. For t = 1 to T :

(a) Let S̃(t) = ;.
(b) For each (xi, yi) 2 S

(t):
i. Let p = (p1, . . . , pK) be the probabilities predicted by M

(t) on xi.
ii. Let ỹi = RRWithPriorp(yi).

iii. Add (xi, ỹi) to S̃
(t).

(c) Let M (t) be the model resulting from training on S̃
(1) [ · · · [ S̃

(t) using A.
4. Output M (T ).

The privacy guarantee of LP-MST is given by the following:
Observation 4. For any " > 0, if RRWithPrior is "-DP, then LP-MST is "-Labe�DP.

Proof. We will in fact prove a stronger statement that the algorithm is "-DP even when we output all
the T models M (1)

, . . . ,M
(T ) together with all the randomized labels ỹ1, . . . , ỹn. For any possible

output models m(1)
, . . . ,m

(T ) and output labels z1, . . . , zn, we have

Pr[M
(1)

= m
(1)

, . . . ,M
(T )

= m
(T )

, ỹ1 = z1, . . . , ỹn = zn]

=

TY

t=1

0

@Pr

2

4M (t)
= m

(t)

������

^

i2S(1)[···[S(t)

ỹi = zi

3

5 ·
Y

i2S(t)

Pr

h
ỹi = zi

���M (t�1)
= m

(t�1)
i
1

A .

Consider any two datasets D,D0 that differ on a single user’s label; suppose this user is j and that the
user belongs to partition ` 2 [T ]. Then, the above expression for D and that for D0 are the same in all
but one term: Pr

⇥
ỹj = zj

��M (`�1)
= m

(`�1)
⇤
, which is the probability that RRWithPriorm(`�1)(xi)

outputs zi. Since RRWithPrior is "-DP, we can conclude that the ratio between the two probabilities
is at most e" as desired.

We stress that this observation holds because each sensitive label yi is only used once in Line 3(b)ii of
Algorithm 3, as the dataset S is partitioned at the beginning of the algorithm. As a result, since each
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Table 1: Test accuracy (%) on CIFAR-10. The baseline performances taken from previously published
results correspond to (", �)-DP with � = 10

�5. The star? indicates the use of CIFAR-100 pre-trained
representations.

Algorithm " = 1 " = 2 " = 3 " = 4 " = 6 " = 8 " = 1
DP-SGD w/ pre-train? [2] 67 70 73 80
DP-SGD [77] 61.6("=7.53) 76.6
Tempered Sigmoid [77] 66.2("=7.53)
Yu et al. [98] 44.3("=6.78)
Nasr et al. [71] 55
Chen and Lee [20] 53
ScatterNet+CNN [93] 69.3

LP-1ST 59.96 82.38 89.89 92.58 93.58 94.70 94.96
LP-2ST 63.67 86.05 92.19 93.37 94.26 94.52 -

LP-1ST w/ pre-train? 67.64 83.99 90.24 92.83 94.02 94.96 95.25
LP-2ST w/ pre-train? 70.16 87.22 92.12 93.53 94.41 94.59 -

Table 2: Experiments on CIFAR-100. The non-private baseline (" = 1) is 76.38% test accuracy.

Algorithm " = 3 " = 4 " = 5 " = 6 " = 8

LP-1ST 20.96 46.28 61.38 68.34 73.59
LP-2ST 28.74 50.15 63.51 70.58 74.14

stage is "-Labe�DP, the entire algorithm is also "-Labe�DP. This is known as (an adaptive version of
a) parallel composition [68].

Finally, we point out that the running time of our RRWithPrior algorithm is quasi-linear in K (the
time needed to sort the prior). This is essentially optimal within multistage training, since O(K) time
will be required to write down the prior after each stage. Moreover, for reasonable values of K, the
running time will be dominated by back-propagation for gradient estimation. Moreover, the focus of
the current work is on small to modest label spaces (i.e., values of K).

5 Empirical Evaluation

We evaluate RRWithPrior on standard benchmark datasets that have been widely used in previous
works on private machine learning. Specifically, in the first part, we study our general multi-stage
training algorithm that boostraps from a uniform prior. We evaluate it on image classification and
collaborative filtering tasks. In the second part, we focus on image classification only and use domain-
specific techniques to obtain priors for RRWithPrior. We use modern neural network architectures
(e.g., ResNets [51]) and the mixup [101] regularization for learning with noisy labels. Please see the
Supplementary Material for full details on the datasets and the experimental setup.

5.1 Evaluation with Multi-Stage Training

CIFAR-10 [60] is a 10-class image classification benchmark dataset. We evaluate our algorithm
and compare it to previously reported DP baselines in Table 1. Due to scalability issues, previous
DP algorithms could only use simplified architectures with non-private accuracy significantly below
the state-of-the-art. Moreover, even when compared to those weaker non-private baselines, a large
performance drop is observed in the private models. In contrast, we use ResNet18 with 95% non-
private accuracy. Overall, our algorithms improve the previous state-of-the-art by a margin of 20%
across all "’s. Abadi et al. [2] treated CIFAR-100 as public data and use it to pre-train a representation
to boost the performance of DP-SGD. We also observe performance improvements with CIFAR-100
pre-training (Table 1, bottom 2 rows). But even without pre-training, our results are significantly
better than DP-SGD even with pre-training.
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Table 3: Experiments on MovieLens-1M. The numbers show the test RMSE.

Algorithm " = 1 " = 2 " = 3 " = 4 " = 8 " = 1
LP-1ST 1.122 0.981 0.902 0.877 0.867 0.868
LP-2ST 1.034 0.928 0.891 0.874 0.865
Gaussian DP [15] 0.915 (" � 10)

In Table 2 we also show results on CIFAR-100, which is a more challenging variant with 10⇥ more
classes. To the best of our knowledge, these are the first non-trivial reported results on CIFAR-100
for DP learning. For " = 8, our algorithm is only 2% below the non-private baseline.

In addition, we also evaluate on MovieLens-1M [49], which contains 1 million anonymous ratings of
approximately 3, 900 movies, made by 6,040 MovieLens users. Following [15], we randomly split
the data into 80% train and 20% test, and show the test Root Mean Square Error (RMSE) in Table 3.

Results on MNIST [61], Fashion MNIST [97], and KMNIST [25], and comparison to more baselines
can be found in the Supplementary Material. In all the datasets we evaluated, our algorithms not only
significantly outperform the previous methods, but also greatly shrink the performance gap between
private and non-private models. The latter is critical for applications of deep learning systems in
real-world tasks with privacy concerns.

Beyond Two Stages. In Figure 1(a), we report results on LP-MST with T > 2. For the cases we tried,
we consistently observe 1–2% improvements on test accuracy when going from LP-2ST to LP-3ST.
In our preliminary experiments, going beyond T > 4 stages leads to diminishing returns on some
datasets.

5.2 Evaluation with Domain-Specific Priors

The multi-stage training framework evaluated in the previous section is a general domain-agnostic
algorithm that bootstraps itself from uniform priors. In some cases, domain-specific priors can be
obtained to further improve the learning performance. In this section, we focus on image classification
applications, where new advances in self-supervised learning (SSL) [22, 23, 44, 53, 16] show that
high-quality image representations could be learned on large image datasets without using the class
labels. In the setting of Labe�DP, the unlabeled images are considered public data, so we design an
algorithm to use SSL to obtain priors, which is then fed to RRWithPrior for discriminative learning.

Specifically, we partition the training examples into groups by clustering using their representations
extracted from SSL models. We then query a histogram of labels for each group via discrete Laplace
mechanism (aka Geometric Mechanism) [41]. If the groups are largely homogeneous, consisting of
mostly examples from the same class, then we can make the histogram queries with minimum privacy
budget. The queried histograms are used as label priors for all the points in the group. Figure 1(b)
shows the results on two different SSL representations: BYOL [44], trained on unlabeled CIFAR-10
images and DINO [16], trained on ImageNet [27] images. Comparing to the baseline, the SSL-based
priors significantly improves the model performance with small privacy budgets. Note that since
the SSL priors are not true priors, with large privacy budget (" = 8), it actually underperforms the
uniform prior. But in most real world applications, small "’s are generally more useful.

6 Theoretical Analysis

Previous works have shown that Labe�DP can be provably easier than DP in certain settings; specif-
ically, in the PAC learning setting, Beimel et al. [13] proved that finite VC dimension implies
learnability by Labe�DP algorithms, whereas it is known that this is not sufficient for DP algo-
rithms [7].

We extend the theoretical understanding of this phenomenon to the stochastic convex optimization
(SCO) setting. Specifically, we show that, by applying RR on the labels and running SGD on top of
the resulting noisy dataset with an appropriate debiasing of the noise, one can arrive at the following
dimension-independent excess population loss.

8



(a) (b)

Figure 1: (a) Test accuracy (%) on various datasets with LP-MST for T > 2. The curve “CIFAR-10 w/
pre-train” is using CIFAR-100 as public data to pre-train the model. (b) RRWithPrior with priors
obtained from histogram query based on clustering in various SSL representations. We also plot
recent results (ClusterRR) from Esfandiari et al. [37], which is a clustering based Labe�DP algorithm.

Theorem 5 (Informal). For any " 2 (0, 1), there is an "-Labe�DP algorithm for stochastic convex
optimization with excess population loss Õ

⇣
DL · K

"
p
n

⌘
where D denotes the diameter of the

parameter space and L denotes the Lipschitz constant of the loss function.

The above excess population loss can be compared to that of Bassily et al. [12], who gave an (", �)-
DP algorithm with excess population loss OD,L

⇣
1p
n
+

p
p

"n

⌘
, where p denote the dimension of the

parameter space; this bound is also known to be tight in the standard DP setting. The main advantage
of our guarantee in Theorem 5 is that it is independent of the dimension p. Furthermore, we show
that our bound is tight up to polylogarithmic factors and the dependency on the number of classes K.

The above result provides theoretical evidence that running RR on the labels and then training on this
noisy dataset can be effective. We can further extend this to the setting where, instead of running
RR, we run RRTop-k before running the aforementioned (debiased) SGD, although—perhaps as
expected—our bound on the population loss now depends on the quality of the priors.
Corollary 6 (Informal). Suppose that we are given a prior px for every x and let Y x

k denote the
set of top-k labels with respect to px. Then, for any " 2 (0, 1), there is an "-Labe�DP algorithm for
stochastic convex optimization with excess population loss Õ

⇣
DL ·

⇣
k

"
p
n
+ Pr(x,y)⇠D[y /2 Y

x
k ]

⌘⌘

where D,L are as defined in Theorem 5 and D is the data distribution.

When our top-k set is perfect (i.e., y always belongs to Y
x
k ), the bound reduces to that of Theorem 5,

but with the smaller k instead of K. Moreover, the second term is, in some sense, a penalty we pay in
the excess population loss for the inaccuracy of the top-k prior. We defer the formal treatment and
the proofs to the Supplementary Material, in which we also present additional generalization results
for non-convex settings.

Note that Corollary 6 is not in the exact setup we run in experiments, where we dynamically calculate
an optimal k for each x given generic priors (via RRWithPrior), and for which the utility is much
more complicated to analyze mathematically. Nonetheless, the above corollary corroborates the
intuition that a good prior helps with training.

7 Conclusions and Future Directions

In this work, we introduced a novel algorithm RRWithPrior (which can be used to improve on the
traditional RR mechanism), and applied it to Labe�DP problems. We showed that prior information can
be incorporated to the randomized label querying framework while maintaining privacy constraints.
We demonstrated two frameworks to apply RRWithPrior: (i) a general multi-stage training algorithm
LP-MST that bootstraps from uniform priors and (ii) an algorithm that build priors from clustering with
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SSL-based representations. The former is general purpose and can be applied to tasks even when no
domain-specific priors are available, while the latter uses a domain-specific algorithm to extract priors
and performs well even with very small privacy budget. As summarized by the figure on the right, in
both cases, by focusing on Labe�DP, our RRWithPrior significantly improved the model performance
of previous state-of-the-art DP models that aimed to protect both the inputs and outputs. We note that,
following up on our work, additional results on deep learning with Labe�DP were obtained [66, 100].
The narrowed performance gap between private and non-private models is vital for adding DP to real
world deep learning models. We nevertheless stress that our algorithms only protect the labels but not
the input points, which might not constitute a sufficient privacy protection in all settings.

Our work opens up several interesting ques-
tions. Firstly, note that our multi-stage train-
ing procedure uses very different ingredients
than those of Abadi et al. [2] (which employ
DP-SGD, privacy amplification by subsampling,
and Renyi accounting); can these tools be used
to further improve Labe�DP? Secondly, while
our procedure can be implemented in the most
stringent local DP setting5 [58], can it be im-
proved in the weaker central (aka trusted cura-
tor) DP model, assuming the curator knows the
prior? Thirdly, while our algorithm achieves
pure DP (i.e., � = 0), is higher accuracy possi-
ble for approximate DP (i.e., � > 0)?
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