
Scaling Up Exact Neural Network Compression by ReLU
Stability

Supplementary Material

A1 Description of MILP formulation for a ReLU activation

The formulation below is used to identify inputs for which a given output or activation pattern can
be achieved. The decision variables include (i) the vector x0 associated with the input of the neural
network; (ii) the vector yl associated with the preactivation output of each hidden layer of the neural
network; (iii) the vector xl associated with the output of each hidden layer of the neural network; (iv)
the vector χl associated with the complementary output of each hidden layer of the neural network;
and (v) the binary vector zl defining which neurons are active or not in each hidden layer of the
neural network. The vector of weights wl

i and the bias bli associated with each neuron as well as the
constants M l

i and µli are coefficients of the formulation. The constraints are as follows:

wl
i · xl−1 + bli = yli (13)

yli = xli − χli (14)

xli ≤M l
iz
l
i (15)

χli ≤ µli(1− zli) (16)

xli ≥ 0 (17)

χli ≥ 0 (18)

zli ∈ {0, 1} (19)

Constraint (13) matches the layer input xl−1 with the neuron preactivation output yli. We then
use the binary variable zli to match yli with the neuron output with either xli or 0. When zli = 1,
constraints (16) and (18) imply that χli = 0, and thus xli = yli due to constraint (14). That only
happens if yli ≥ 0 due to constraint (17). When zli = 0, constraints (15) and (17) imply that xli = 0,
and thus χli = −yli. That only happens if yli ≤ 0 due to constraint (18).

A2 On dropping constraint (12)

We avoid explicitly enforcing that variables pli and qli are binary by leveraging that zli is binary.
Constraint (10) implies that pli ∈ [0, 1] and pli 6= 0 only if zli = 1. In turn, if zli = 1, then we can
assume pli = 1 by optimality since the objective function (7) maximizes the sum of those variables
and no other constraint limits its value. Likewise, constraint (11) implies that qli ∈ [0, 1] and qli 6= 0
only if zli = 0. In turn, if zli = 0, then likewise we can assume qli = 1 by optimality since the objective
function (7) maximizes the sum of those variables and no other constraint limits its value. Reducing
the number of binary variables is widely regarded as a good practice to make MILP formulations
easier to solve.

A3 Proofs from Section 5.1

Proposition 1. If C(P ,Q) = 0, then every neuron i ∈ Pl is stably inactive and every neuron i ∈ Ql
is stably active.

Proof. Constraint (10) is the only upper bound on pli besides constraint (12). Hence, if there is any
solution (x̄, z̄, p̄, q̄) of (9)–(12) in which z̄li = 1 for some i ∈ Pli, l ∈ L, then either p̄li = 1 or there is
another solution (¯̄x, ¯̄z, ¯̄p, ¯̄q) in which ¯̄pli = 1 and all other variables have the same value.

Likewise, constraint (10) is the only upper bound on qli besides constraint (12). Hence, if there is any
solution (x̄, z̄, p̄, q̄) of (9)–(12) in which z̄li = 0 for some i ∈ Pli, l ∈ L, then either q̄li = 1 or there is
another solution (¯̄x, ¯̄z, ¯̄p, ¯̄q) in which ¯̄qli = 1 and all other variables have the same value.

14

If C(P ,Q) = 0, then for every solution (x̄, z̄, p̄, q̄) it follows that p̄li = 0 ∀i ∈ Pl, l ∈ L and
q̄li = 0 ∀i ∈ Ql, l ∈ L, and consequently z̄li = 0 ∀i ∈ Pl, l ∈ L and z̄li = 1 ∀i ∈ Ql, l ∈ L. Thus, the
neurons in Pl are always inactive and the neurons in Ql are always active for any valid input.

Corollary 2. The stability of all neurons of a neural network can be determined by solving formula-
tion (7)–(12) at most N + 1 times, where N :=

∑
l∈L

nl.

Proof. Let us initially consider a formulation in which Pl = Ql = {1, . . . , nl} ∀l ∈ L and then
respectively remove from those sets each neuron i for which pli = 1 and qli = 1 in any solution
obtained. When the formulation is first solved, we remove each neuron from either Pl or Ql, and
therefore N states remain unobserved. In subsequent steps, either (i) C(P ,Q) > 0 and the number
of unobserved states decreases; or (ii) C(P ,Q) = 0, and thus any neuron i ∈ Pl is stably inactive
and any neuron i ∈ Ql is stably active.

A4 On lazy constraint callbacks

Lazy constraint callbacks are generally used when the total number of constraints of an MILP
formulation is prohibitively large. One such example is the most commonly used formulation for the
traveling salesperson problem due to the subtour elimination constraints [20]. The callback allows us
to handle such cases more efficiently by formulating the problem with fewer constraints and then
adding the remaining ones only if they are necessary to rule out infeasible solutions. Every time that
a supposedly feasible solution is found, the MILP solver invokes the callback implemented by the
user for an opportunity to make such a solution infeasible by adding one of the missing constraints
that the supposedly feasible solution does not satisfy. If none is provided by the callback, the MILP
solver accepts the solution as feasible.

In our case, we use a lazy constraint callback for a slightly different purpose. Namely, we implement
the callback to (i) inspect every feasible solution that is obtained; and (ii) mimic the updates that
would have been made to P andQ between consecutive calls to the solver by adding constraints that
set the value of either pli or qli to zero once a solution is found in which such variable has a positive
value. In other words, the callback adds constraints to ignore the effect of pli or qli on the objective
function if we know that the i-th neuron of layer l is active or inactive for some input, respectively.
Therefore, the MILP solver will eventually produce an optimal solution of value zero once the set of
solutions inspected by the callback covers all the possible states for the neurons and the remaining
states are deemed unattainable after an exhaustive search.

A5 A revised algorithm for compressing the neural network

Algorithm 2, which we denote as LEO++ (Lossless Expressiveness Optimization, as in [79]), leverages
neuron stability for exactly compressing neural networks. We describe next each form of compression
contained in the algorithm. For ease of explanation, they are in reverse order of appearance. These
compression operations are the same as in [79], but performed once per layer instead of once per
neuron. In comparison to the original algorithm LEO, the order of the operations is such that (i)
neurons are not removed or merged if the entire layer is going to be folded; and (ii) special cases such
as a neuron with weight vector wl

i = 0 do not need to be considered apart. For the most elaborate
operations, we prove their correctness when applied to the entire layer.

Removal of stably inactive neurons This operation is performed in line 25. Since the output
of stably inactive neurons is always 0, we remove those neurons without affecting subsequent
computations. The case in which an entire layer is stably inactive is considered separately.

Merging of stably active neurons This operation is performed between lines 12 and 24. We use
the following results to show how stably active neurons can be merged.

Proposition 3. Let S be a set of stably active neurons in layer l. If r := rank(W l
S) < |S| and let

T ⊂ S be a subset of those neurons for which rank(W l
T) = r, then the output of the neurons in S \ T

is an affine function on the output of the neurons in T.

15

Algorithm 2 LEO++ performs exact compression of a neural network with a single operation per
layer

1: Input: neural network
(
L,
{

(nl,W
l, bl)

}
l∈L

)
and stable neurons

({
(Pl,Ql)

}
l∈L

)
2: for l← 1 to L do . Loops over all hidden layers
3: if |Pl| = nl then . Entire layer is stably inactive
4: find output xL for an arbitrary input x0 ∈ X
5: remove all layers except L, which becomes 1
6: W 1 ← 0 and bL ← xL

7: break . All hidden layers were collapsed
8: else if |Pl|+ |Ql| = nl and l < L then . Entire layer is stable, but not inactive
9: W l+1 ←W l+1Inl

(Ql)W l and bl+1 ←W l+1Inl
(Ql)bl + bl+1

10: remove layer l . Hidden layer was folded
11: else if l < L then
12: r ← rank

(
W l

Ql

)
13: if r < |Ql| and l < L then
14: find Q ⊂ Ql such that r = |Q| = rank

(
W l

Q

)
15: for every i ∈ Ql \Q do
16: find {αij}j∈Q such that wl

i =
∑
j∈Q α

i
jw

l
j

17: end for
18: for k ← 1 to nl+1 do
19: for every j ∈ Q do
20: wl+1

kj ← wl+1
kj +

∑
i∈Ql\Q α

i
jw

l+1
ki

21: end for
22: bl+1

k ← bl+1
k +

∑
i∈Ql\Q w

l+1
ki

(
bli −

∑
j∈Q α

i
jb
l
j

)
23: end for
24: remove from layer l every neuron i ∈ Ql \Q
25: remove from layer l every neuron i ∈ Pl
26: end if
27: end if
28: end for

Proof. For every i ∈ S \ T, there is a vector αi ∈ Rr such that wl
i =

∑
j∈T α

i
jw

l
j . Since

xli = wl
i ·xl−1 + bli for every i ∈ S because all neurons in S are stably active, then for every i ∈ S\T

it follows that xli =
∑
j∈T α

i
jw

l
j · xl−1 + bli =

∑
j∈T α

i
j

(
wl
j · xl−1 + blj

)
+
(
bli −

∑
j∈T α

i
jb
l
j

)
=∑

j∈T α
i
jx
l
j +

(
bli −

∑
j∈T α

i
jb
l
j

)
.

Corollary 4. If S, T, and l are such as in Proposition 3, then the pre-activation output of the neurons
in layer l + 1 is an affine function on the outputs of all neurons from layer l with exception of the
neurons in T.

Proof. Let U := {1, . . . , nl} \ S. The pre-activation output of every neuron i in layer l + 1 is given

by yl+1
i =

∑
j∈U∪S

wl+1
ij xlj + bl+1

i =
∑

j∈U∪T
wl+1
ij xlj +

∑
j∈S\T

wl+1
ij

(∑
k∈T

αjkx
l
k +

(
blj −

∑
k∈T

αjkb
l
k

))
+

bl+1
i =

∑
j∈U

wl+1
ij xlj+

∑
j∈T

(
wl+1
ij +

∑
k∈S\T

αkjw
l+1
i k

)
xlj+

(
bl+1
i +

∑
j∈S\T

wl+1
ij

(
blj −

∑
k∈T

αjkb
l
k

))
.

In Algorithm 2, we use relationships implied by the proof of Corollary 4 with S = Ql and T = Q to
merge stably active neurons. By adjusting the biases of the neurons in the next layer as well as the
weights connecting every neuron in Q with the neurons in the next layer, we assign a weight of 0 to

16

the connections between every neuron in Ql \Q and the neurons in the next layer. Hence, we simply
remove all neurons in Ql \Q after adjusting those network parameters.

The case in which an entire layer is stably active—either before any compression is applied or once
stably inactive neurons are removed—is also considered separately.

Folding of stable layers This operation is performed between lines 8 and 10. We use the following
results to show that stable layers can be folded in a single step.
Proposition 5. If all the neurons of layer l ∈ L\{L} are stably active, then the pre-activation output
of layer l + 1 is an affine function on the inputs of layer l.

Proof. Since xl = W lxl−1 + bl, then yl+1 = W l+1xl + bl+1 = W l+1W lxl−1 +(
W l+1bl + bl+1

)
.

Corollary 6. If all neurons of layer l ∈ L \ {L} are stable, then the pre-activation output of layer
l + 1 is an affine function on the inputs of layer l.

Proof. Let S be the set of stably active neurons in layer l. If |S| < nl, the identity xl = W lxl−1 +bl

still holds if the bias and the weights of all the connections of the neurons not in S with the neurons in
the next layer are 0. More generally, we can thus obtain an equivalent neural network ifW l and bl are
both premultiplied by Inl

(S) since that only would change the weights and biases associated with the
neurons not in S to 0. Hence, the identity xl = Inl

(S)
(
W lxl−1 + bl

)
always holds if all neurons in

layer l are stable, which implies that yl+1 = W l+1Inl
(S)W lxl−1 +

(
W l+1Inl

(S)bl + bl+1
)
.

In Algorithm 2, we use relationships implied by the proof of Corollary 6 with S = Ql to fold stable
layers. By adjusting the biases and the weights of layer l+ 1, that layer directly uses the outputs from
layer l − 1.

Although the steps above would apply if a layer is stably inactive, that case deserves separate
consideration.

Collapse of a network with stably inactive layers This operation is performed between lines 3
and 7. If layer l ∈ L are stably inactive, then xl = 0 for any input x0 ∈ X and thus the value of
xL is constant. Hence, we collapse layers 1 to L− 1 by making the output of the remaining layer
constant and equal to such value of xL.

A5.1 On the complexity of the new algorithm

While LEO++ requires solving fewer optimization problems than LEO [79], the dependence on solving
a single NP-hard problem—such as MILP formulations in general—implies an exponential worst-case
complexity. Nevertheless, the progress of MILP in the past decades makes it possible to solve consid-
erably large problems with state-of-art MILP solvers. In that context, the computational experiments
are a more appropriate indicator of performance improvements than complexity considerations.

17

A6 Implementation details

We now provide additional experimental results evaluating our proposed method and the baseline.

Architecture and Loss We implemented the fully connected architectures in PyTorch [70]. All the
networks have ReLU activations but have varying number of layers and width. For the classifiers, we
pass the output through a softmax layer and use negative log-likelihood loss as the loss function. For
the autoencoders, we use MSE loss as the loss function.

Datasets and Splits We keep the output units at 10 and 784 for the MNIST dataset [53] classifiers
and autoencoders, respectively. We keep the output units at 10 and 100 for the CIFAR-10 and the
CIFAR-100 dataset [48] classifiers, respectively. We use the standard train-validation data splits of
each of the datasets available in PyTorch.

Data Augmentation We do not do any data augmentation of training images of the MNIST dataset
as in [79] for a fair comparison. We carry out the standard data augmentation of training images of
the CIFAR-10 and CIFAR-100 datasets: horizontal flipping with probability 0.5, random rotation in
the range between (−10o, 10o), random scaling in the range (0.8, 1.2), random shear parallel to the
x axis in the range (−10, 10), and scaling the brightness, contrast, saturation and hue by a random
factor in the range (0.8, 1.2).

Optimization Training proceeds from scratch for 120 epochs and starts with learning rate of 0.01,
which is decayed by a factor of 0.1 after every 50 epochs as in [79]. We use SGD with momentum
optimizer, with a momentum of 0.9 and batch size 128 as in [79]. Unless stated otherwise, we use `1
regularization. We keep the weight decay at 0 unless otherwise stated. We consider the model saved
in the last epoch as our final model.

MILP Solver We solve the MILP formulations using Gurobi 9.1.0 through gurobipy [32]. We
calculate the value of the positive constants M l

i and µli for each neuron with an upper bound of on
the values of xli and χli through interval arithmetic by taking element-wise maxima [17].

Initialization We initialize the weights of the network with the Kaiming initialization [40] and the
biases to zero with different random seeds for each training. We train every setting 5 times, and get
the stably active and inactive neurons with the proposed approach to prune the network for each run.
We omit from the summaries the runs which resulted in a time out. We keep the timeout to 3 hours.

Hardware We ran the classifier experiments on a machine with Intel Core i7-4790 CPU @ 3.60
GHz processor, 32 GB of RAM, and one 4 GB Nvidia GeForce GTX 970 GPU. The autoencoder
experiments were run on a machine with 40 Intel Xeon E5-2640 CPU @ 2.40 GHz processors, 126
GB of RAM, and one 12 GB Nvidia Titan Xp GPU.

18

A7 Additional experiments and results

A7.1 MNIST Classifiers

Relationship between Runtime and Regularization Tab. 1 and Tab. 2 show the runtime achieved
by the proposed method at different `1 regularization on MNIST classifiers.

Table 1: MNIST Classifiers: Compression results with fixed width and varying depth.

COMPRESSION % REMOVED TIMED
ARCH. `1 ACCURACY (%) RUNTIME (S) NEURONS CONNECTIONS OUT

2 × 100 0 97.92 ± 0.09 3.4 ± 0.3 0 ± 0 0 ± 0 0
2 × 100 0.000025 97.93 ± 0.02 3.2 ± 0.1 0 ± 0 0 ± 0 0
2 × 100 0.00005 98.06 ± 0.09 3.5 ± 0.3 0.1 ± 0.2 0.2 ± 0.4 0
2 × 100 0.000075 98.13 ± 0.09 3.2 ± 0.2 1.1 ± 0.4 2 ± 0.8 0
2 × 100 0.0001 98.12 ± 0.09 3.5 ± 0.1 3.4 ± 0.7 6 ± 1 0
2 × 100 0.000125 98.01 ± 0.09 3.5 ± 0.3 9.2 ± 0.6 17 ± 1 0
2 × 100 0.00015 97.9 ± 0.1 3.4 ± 0.3 12 ± 2 21 ± 4 0
2 × 100 0.000175 97.88 ± 0.05 3.4 ± 0.3 15 ± 3 26 ± 4 0
2 × 100 0.0002 97.91 ± 0.1 3.5 ± 0.4 18 ± 2 31 ± 3 0
2 × 100 0.000225 97.8 ± 0.1 4.2 ± 0.9 18 ± 3 31 ± 5 0
2 × 100 0.00025 97.65 ± 0.09 4 ± 0.5 20 ± 2 34 ± 4 0
2 × 100 0.000275 97.69 ± 0.09 4 ± 1 22 ± 2 38 ± 3 0
2 × 100 0.0003 97.64 ± 0.06 3.8 ± 0.4 24 ± 2 40 ± 4 0
2 × 100 0.000325 97.52 ± 0.08 3.5 ± 0.3 24 ± 3 41 ± 4 0
2 × 100 0.00035 97.42 ± 0.04 4 ± 1 23 ± 3 39 ± 4 0
2 × 100 0.000375 97.3 ± 0.2 3.4 ± 0.3 24 ± 3 40 ± 5 0
2 × 100 0.0004 97.28 ± 0.03 4.1 ± 0.7 23 ± 2 38 ± 3 0

3 × 100 0 97.86 ± 0.06 3.9 ± 0.1 0 ± 0 0 ± 0 0
3 × 100 0.000025 98.03 ± 0.08 10 ± 10 0 ± 0 0 ± 0 0
3 × 100 0.00005 98.1 ± 0.1 20 ± 10 0.1 ± 0.3 0.2 ± 0.4 0
3 × 100 0.000075 98.12 ± 0.07 20 ± 20 1.3 ± 0.7 1.8 ± 1 0
3 × 100 0.0001 98.11 ± 0.09 8 ± 8 2.7 ± 0.9 4 ± 1 0
3 × 100 0.000125 98.09 ± 0.1 2000 ± 4000 6 ± 1 11 ± 3 0
3 × 100 0.00015 98.1 ± 0.1 100 ± 100 11 ± 2 20 ± 3 0
3 × 100 0.000175 98.1 ± 0.1 70 ± 60 12 ± 2 20 ± 2 0
3 × 100 0.0002 98 ± 0.1 20 ± 20 18 ± 2 30 ± 3 0

4 × 100 0 97.93 ± 0.07 4.2 ± 0.2 0 ± 0 0 ± 0 0
4 × 100 0.000025 98 ± 0.1 200 ± 200 0 ± 0 0 ± 0 0
4 × 100 0.00005 98.23 ± 0.08 1000 ± 3000 0.1 ± 0.1 0.1 ± 0.2 1
4 × 100 0.000075 98.17 ± 0.09 1000 ± 1000 1.2 ± 0.4 1.5 ± 0.5 2
4 × 100 0.0001 98.1 ± 0.06 3000 ± 3000 2.8 ± 0.9 4 ± 1 2
4 × 100 0.00015 98.1 ± 0.2 2000 ± 1000 11 ± 2 20 ± 4 2
4 × 100 0.000175 98.1 ± 0.1 1000 ± 2000 14 ± 1 24 ± 3 0
4 × 100 0.0002 98.09 ± 0.07 1000 ± 1000 17 ± 2 30 ± 3 1

5 × 100 0 98.06 ± 0.03 2000 ± 3000 0 ± 0 0 ± 0 1
5 × 100 0.000025 98.2 ± 0.1 1000 ± 100 0 ± 0 0 ± 0 3
5 × 100 0.000175 98.1 ± 0.2 4000 ± 4000 15.1 ± 0.7 27 ± 2 3
5 × 100 0.0002 98.1 ± 0.1 3000 ± 2000 18 ± 1 32 ± 2 1

Runtime Comparison with SoTA Fig. 4 shows the comparison of runtimes with the proposed
method and the baseline with the strength of `1 regularization on the MNIST classifiers. We observe
that the new method presents a median gain of 81 times in speedup.

19

Table 2: MNIST Classifiers: Compression results with fixed height and varying width.

COMPRESSION % REMOVED TIMED
ARCHITECTURE `1 ACCURACY (%) RUNTIME (S) NEURONS CONNECTIONS OUT

2 × 100 0 97.92 ± 0.09 3.4 ± 0.3 0 ± 0 0 ± 0 0
2 × 100 0.000025 97.93 ± 0.02 3.2 ± 0.1 0 ± 0 0 ± 0 0
2 × 100 0.00005 98.06 ± 0.09 3.5 ± 0.3 0.1 ± 0.2 0.2 ± 0.4 0
2 × 100 0.000075 98.13 ± 0.09 3.2 ± 0.2 1.1 ± 0.4 2 ± 0.8 0
2 × 100 0.0001 98.12 ± 0.09 3.5 ± 0.1 3.4 ± 0.7 6 ± 1 0
2 × 100 0.000125 98.01 ± 0.09 3.5 ± 0.3 9.2 ± 0.6 17 ± 1 0
2 × 100 0.00015 97.9 ± 0.1 3.4 ± 0.3 12 ± 2 21 ± 4 0
2 × 100 0.000175 97.88 ± 0.05 3.4 ± 0.3 15 ± 3 26 ± 4 0
2 × 100 0.0002 97.91 ± 0.1 3.5 ± 0.4 18 ± 2 31 ± 3 0
2 × 100 0.000225 97.8 ± 0.1 4.2 ± 0.9 18 ± 3 31 ± 5 0
2 × 100 0.00025 97.65 ± 0.09 4 ± 0.5 20 ± 2 34 ± 4 0
2 × 100 0.000275 97.69 ± 0.09 4 ± 1 22 ± 2 38 ± 3 0
2 × 100 0.0003 97.64 ± 0.06 3.8 ± 0.4 24 ± 2 40 ± 4 0
2 × 100 0.000325 97.52 ± 0.08 3.5 ± 0.3 24 ± 3 41 ± 4 0
2 × 100 0.00035 97.42 ± 0.04 4 ± 1 23 ± 3 39 ± 4 0
2 × 100 0.000375 97.3 ± 0.2 3.4 ± 0.3 24 ± 3 40 ± 5 0
2 × 100 0.0004 97.28 ± 0.03 4.1 ± 0.7 23 ± 2 38 ± 3 0

2 × 200 0 98.03 ± 0.05 6.9 ± 0.7 0 ± 0 0 ± 0 0
2 × 200 0.000025 98.2 ± 0.05 7.1 ± 0.7 0 ± 0 0 ± 0 0
2 × 200 0.00005 98.15 ± 0.04 7.2 ± 0.4 0.1 ± 0.1 0.2 ± 0.3 0
2 × 200 0.000075 98.18 ± 0.09 12 ± 9 3 ± 1 6 ± 2 0
2 × 200 0.0001 98.16 ± 0.07 8.8 ± 0.7 11 ± 1 20 ± 2 0
2 × 200 0.000125 98.1 ± 0.09 14 ± 10 15 ± 2 26 ± 3 0
2 × 200 0.00015 98 ± 0.02 10 ± 3 18 ± 2 32 ± 3 0
2 × 200 0.000175 97.9 ± 0.1 9 ± 2 20 ± 2 35 ± 3 0
2 × 200 0.0002 97.95 ± 0.08 8 ± 2 20.8 ± 0.6 36.6 ± 1 0

2 × 400 0 98.1 ± 0.1 14.8 ± 0.4 0 ± 0 0 ± 0 0
2 × 400 0.000025 98.25 ± 0.09 14.5 ± 0.5 0 ± 0 0 ± 0 0
2 × 400 0.00005 98.25 ± 0.07 20 ± 2 0 ± 0 0 ± 0 0
2 × 400 0.000075 98.23 ± 0.07 180 ± 80 8 ± 1 16 ± 2 0
2 × 400 0.0001 98.1 ± 0.09 200 ± 100 14 ± 1 26 ± 2 0
2 × 400 0.000125 98.05 ± 0.08 50 ± 20 18 ± 1 32 ± 2 0
2 × 400 0.00015 98.03 ± 0.05 29 ± 10 19 ± 2 34 ± 3 0
2 × 400 0.000175 97.9 ± 0.1 100 ± 100 17.7 ± 0.8 32 ± 1 0
2 × 400 0.0002 97.87 ± 0.1 1000 ± 1000 18 ± 1 33 ± 2 0

2 × 800 0 98.21 ± 0.05 37.6 ± 0.3 0 ± 0 0 ± 0 0
2 × 800 0.000025 98.26 ± 0.05 38.2 ± 0.4 0 ± 0 0 ± 0 0
2 × 800 0.000075 98.23 ± 0.03 1300 ± 800 12 ± 0.7 22 ± 1 0
2 × 800 0.0001 98 ± 0.1 1000 ± 1000 15.9 ± 0.9 29 ± 1 0
2 × 800 0.000125 98.01 ± 0.07 100 ± 100 16.8 ± 0.8 31 ± 1 0
2 × 800 0.00015 98.07 ± 0.06 90 ± 30 17.3 ± 0.6 31 ± 1 0
2 × 800 0.000175 97.91 ± 0.07 50 ± 20 16.5 ± 0.9 30 ± 2 0
2 × 800 0.0002 97.78 ± 0.06 80 ± 30 16.7 ± 0.6 31 ± 1 0

20

0 0.5 1 1.5 2
·10−4

101

102

103

104

105

`1

R
un

tim
e

(s
)

2× 100
2× 200
2× 400
2× 800

(a) With width

0 0.5 1 1.5 2
·10−4

101

102

103

104

105

`1

R
un

tim
e

(s
)

2× 100
3× 100
4× 100

(b) With depth

Figure 4: MNIST Classifiers: Comparison of runtimes for proposed method (solid) and baseline
(dashed) with the strength of regularization to identify stable neurons: (a) with increasing width (b)
with increasing depth. We report the average and the standard deviation of the runtime of models
with five different initialization for each regularization. Note that the y-axis is in the log scale. The
median speedup is 81 times.

140 150 160 170 180 190 200

97

97.5

98

Neurons left

A
cc

ur
ac

y
(%

)

No compression
Compressible

Compressible regression
0

1

2

3

4
·10−4

` 1

Figure 5: Relationship between size of compressed neural network and accuracy on 2 × 100
MNIST classifiers. The coefficient of determination (R2) for the linear regression obtained for
accuracy based on neurons left for compressible networks is 69%.

21

A7.2 MNIST Autoencoders

For the autoencoders, we use the notation n1 | n2 | n3 for the architecture of 3 hidden layers with
n1, n2, and n3 neurons. The output layer has the same size as the input, 784, and uses ReLU
activation. Starting with the architecture 100 | 10 | 100, we evaluated changes to the bottleneck width
n2 as well as to the width of the other two layers. First, we changed the bottleneck width to n2 = 25
and n2 = 50. Second, we changed the width of the other layers to n1, n3 = 50, n1, n3 = 200,
and n1, n3 = 400 while keeping n2 = 10. For each architecture, we trained and evaluated neural
networks with 5 different random initialization seeds using `1 = 0, `1 = 0.00002, and `1 = 0.0002.

Relationship between Runtime and Regularization Tab. 3 reports the runtime to identify stable
neurons and the proportion of neurons—as well as the corresponding connections—that can be
removed due to stability in each case on MNIST Autoencoders.

With the largest amount of regularization, we notice that the runtimes are considerably smaller and
most of the network can be removed while the loss during training only doubles in comparison to
using zero or a moderate amount of regularization. In fact, the only neurons that are not stable in
such case are in the first layer, whereas between 3 and 4 out of the 5 neural networks trained for
each architecture have all hidden layers completely stable. By also evaluating the stability of the
output layer, we identified a few cases in which the output layer is entirely stable. While we have not
explicitly explored that possibility in the proposed algorithm, the implication for such case is that the
neural network can be reduced to a linear function on the domain of interest. With autoencoders, we
observed that this can happen when the regularization during training no more than doubles the loss,
and that we can evaluate if that happens within seconds: the runtime when the stability of the output
layer is tested is 1 seconds on average and never more than 25 seconds.

Runtime Comparison with SoTA Fig. 6 shows the difference in runtimes between our approach
and the baseline [79] for higher regularization, fixed n2 = 10, and varying but equal values for n1
and n3 on the MNIST Autoencoders. We observe that the new method presents a median gain of
159 times in running time, which increases with the width of the non-bottleneck layers.

Table 3: MNIST Autoencoders: Compression results with varying architectures and levels of
regularization.

COMPRESSION % REMOVED TIMED OUT
ARCHITECTURE `1 LOSS RUNTIME (S) NEURONS CONNECTIONS

100 | 10 | 100 0 0.045 ± 0.001 130 ± 30 0.1 ± 0.1 0.05 ± 0.06 0
100 | 10 | 100 0.00002 0.047 ± 0.0009 120 ± 30 12.7 ± 0.6 7.2 ± 0.9 0
100 | 10 | 100 0.0002 0.077 ± 0.002 2.73 ± 0.05 95 ± 6 90 ± 10 0

100 | 25 | 100 0 0.035 ± 0.001 500 ± 300 0 ± 0 0 ± 0 0
100 | 25 | 100 0.00002 0.047 ± 0.001 800 ± 200 14 ± 1 10 ± 2 0
100 | 25 | 100 0.0002 0.076 ± 0.001 2.88 ± 0.08 90 ± 7 80 ± 20 0

100 | 50 | 100 0 0.0311 ± 0.0009 230 ± 20 0 ± 0 0 ± 0 0
100 | 50 | 100 0.00002 0.0478 ± 0.0009 600 ± 200 17.4 ± 0.9 13 ± 1 0
100 | 50 | 100 0.0002 0.081 ± 0.003 2.96 ± 0.04 90 ± 7 80 ± 20 0

50 | 10 | 50 0 0.047 ± 0.002 33 ± 4 0 ± 0 0 ± 0 0
50 | 10 | 50 0.00002 0.051 ± 0.002 50 ± 20 14 ± 3 13 ± 2 0
50 | 10 | 50 0.0002 0.081 ± 0.002 1.42 ± 0.02 89 ± 8 88 ± 8 0

100 | 10 | 100 0 0.045 ± 0.001 130 ± 30 0.1 ± 0.1 0.05 ± 0.06 0
100 | 10 | 100 0.00002 0.047 ± 0.0009 120 ± 30 12.7 ± 0.6 7.2 ± 0.9 0
100 | 10 | 100 0.0002 0.077 ± 0.002 2.73 ± 0.05 95 ± 6 90 ± 10 0

200 | 10 | 200 0 0.041 ± 0.002 1000 ± 1000 0.4 ± 0.4 0.4 ± 0.4 1
200 | 10 | 200 0.00002 0.043 ± 0.002 700 ± 400 14 ± 0.7 7 ± 1 0
200 | 10 | 200 0.0002 0.076 ± 0.002 5.41 ± 0.03 95 ± 6 80 ± 20 0

400 | 10 | 400 0 0.04 2704 0 0 4
400 | 10 | 400 0.00002 0.0395 ± 0.001 1300 ± 100 15 ± 1 6 ± 0.7 0
400 | 10 | 400 0.0002 0.073 ± 0.001 10.5 ± 0.2 89.1 ± 7.5 13.6 ± 59.3 0

22

Figure 6: MNIST Autoencoders: Comparison of runtimes (in seconds) to identify stable neurons
between the proposed approach vs. the baseline from [79] with high regularization (`1 = 0.0002).
Note that the y-axis is in the log scale. The median speedup is 159 times.

23

A7.3 CIFAR-10 Classifiers

Relationship between Runtime and Regularization Tab. 4 and Tab. 5 show the runtime achieved
by the proposed method at different `1 regularization on the CIFAR-10 classifiers.

Table 4: CIFAR10 Classifiers: Compression results with fixed width and varying depth.

COMPRESSION % REMOVED TIMED
ARCH. `1 ACCURACY (%) RUNTIME (S) NEURONS CONNECTIONS OUT

2 × 100 0 54.3 ± 0.2 13.4 ± 0.6 0 ± 0 0 ± 0 0
2 × 100 0.000025 53.8 ± 0.9 14 ± 2 0 ± 0 0 ± 0 0
2 × 100 0.00005 53.6 ± 0.5 13 ± 3 31 ± 1 56 ± 2 0
2 × 100 0.000075 52.7 ± 0.6 10.9 ± 0.8 34 ± 2 61 ± 4 0
2 × 100 0.0001 52.3 ± 0.3 11 ± 2 36 ± 2 64 ± 2 0
2 × 100 0.000125 51.6 ± 0.5 10.4 ± 0.3 39 ± 3 66 ± 4 0
2 × 100 0.00015 51 ± 0.4 11 ± 2 40 ± 2 68 ± 3 0
2 × 100 0.000175 50.4 ± 0.4 10.3 ± 0.1 42 ± 3 69 ± 3 0
2 × 100 0.0002 50.1 ± 0.6 12 ± 2 45 ± 3 71 ± 3 0
2 × 100 0.000225 49.6 ± 0.4 11 ± 1 45 ± 2 72 ± 1 0
2 × 100 0.00025 48.5 ± 0.3 10.8 ± 0.7 46 ± 1 73 ± 2 0
2 × 100 0.000275 48 ± 0.4 10.3 ± 0.2 47 ± 3 75 ± 3 0
2 × 100 0.0003 47.8 ± 0.6 10.7 ± 0.6 51 ± 2 78 ± 2 0
2 × 100 0.000325 47.2 ± 0.2 10.4 ± 0.2 51 ± 3 77 ± 2 0
2 × 100 0.00035 47.2 ± 0.3 10.5 ± 0.5 53 ± 3 79 ± 3 0
2 × 100 0.000375 46.8 ± 0.4 10.7 ± 0.5 54 ± 3 80 ± 2 0
2 × 100 0.0004 46.3 ± 0.3 10.9 ± 0.4 56 ± 2 81 ± 2 0

3 × 100 0 53.7 ± 0.7 13 ± 1 0 ± 0 0 ± 0 0
3 × 100 0.000025 54.5 ± 0.4 20 ± 10 0 ± 0 0 ± 0 0
3 × 100 0.00005 53.8 ± 0.4 13 ± 2 22.3 ± 0.8 32 ± 1 0
3 × 100 0.000075 53.3 ± 0.6 11.6 ± 0.9 23 ± 2 34 ± 4 0
3 × 100 0.0001 53.2 ± 0.6 20 ± 10 25 ± 2 36 ± 3 0
3 × 100 0.000125 52.5 ± 0.6 14 ± 5 26 ± 2 38 ± 3 0
3 × 100 0.00015 51.98 ± 0.05 16 ± 6 29 ± 1 43 ± 1 0
3 × 100 0.000175 50.8 ± 0.6 12 ± 1 32 ± 2 47 ± 2 0
3 × 100 0.0002 50.3 ± 0.4 15 ± 7 35 ± 2 52 ± 3 0

4 × 100 0 53.6 ± 0.6 20 ± 10 0 ± 0 0 ± 0 0
4 × 100 0.000025 53.9 ± 0.6 20 ± 20 0 ± 0 0 ± 0 0
4 × 100 0.00005 53.9 ± 0.2 17 ± 8 15.9 ± 0.6 20.5 ± 0.8 0
4 × 100 0.000075 53.7 ± 0.3 13 ± 1 17 ± 1 22 ± 1 0
4 × 100 0.0001 52.7 ± 0.3 60 ± 90 19.3 ± 1 25 ± 1 0
4 × 100 0.000125 52.4 ± 0.6 15 ± 5 21 ± 2 29 ± 2 0
4 × 100 0.00015 51.6 ± 0.2 600 ± 800 25 ± 1 34 ± 2 0
4 × 100 0.000175 50.7 ± 0.3 700 ± 800 28.5 ± 0.9 40 ± 1 1
4 × 100 0.0002 50.3 ± 0.4 400 ± 400 33.7 ± 0.9 49 ± 1 0

5 × 100 0 53 ± 0.5 14.4 ± 0.4 0 ± 0 0 ± 0 0
5 × 100 0.000025 53.3 ± 0.8 18 ± 5 0 ± 0 0 ± 0 0
5 × 100 0.00005 54 ± 0.1 30 ± 20 12.9 ± 0.6 15.7 ± 0.7 0
5 × 100 0.000075 53.5 ± 0.4 100 ± 200 14 ± 0.5 17.1 ± 0.6 0
5 × 100 0.0001 53.3 ± 0.3 11.8 ± 0.4 16 ± 1 20 ± 1 2
5 × 100 0.000125 51.9 ± 0.4 3000 ± 4000 14 ± 8 20 ± 10 2
5 × 100 0.00015 51.4 1000 20 27 4
5 × 100 0.000175 51.3 ± 0.4 2000 ± 2000 27.4 ± 0.8 39 ± 1 3
5 × 100 0.0002 50.2 ± 0.1 3000 ± 2000 31 ± 2 45 ± 3 1

Runtime Comparison with SoTA Fig. 7 shows the comparison of runtime of the proposed method
and the baseline with the strength of `1 regularization on the CIFAR-10 classifiers. We observe that
the new method presents a median gain of 183 times in running time.

24

Table 5: CIFAR10 Classifiers: Compression results with fixed height and varying width.

COMPRESSION % REMOVED TIMED
ARCHITECTURE `1 ACCURACY (%) RUNTIME (S) NEURONS CONNECTIONS OUT

2 × 100 0 54.3 ± 0.2 13.4 ± 0.6 0 ± 0 0 ± 0 0
2 × 100 0.000025 53.8 ± 0.9 14 ± 2 0 ± 0 0 ± 0 0
2 × 100 0.00005 53.6 ± 0.5 13 ± 3 31 ± 1 56 ± 2 0
2 × 100 0.000075 52.7 ± 0.6 10.9 ± 0.8 34 ± 2 61 ± 4 0
2 × 100 0.0001 52.3 ± 0.3 11 ± 2 36 ± 2 64 ± 2 0
2 × 100 0.000125 51.6 ± 0.5 10.4 ± 0.3 39 ± 3 66 ± 4 0
2 × 100 0.00015 51 ± 0.4 11 ± 2 40 ± 2 68 ± 3 0
2 × 100 0.000175 50.4 ± 0.4 10.3 ± 0.1 42 ± 3 69 ± 3 0
2 × 100 0.0002 50.1 ± 0.6 12 ± 2 45 ± 3 71 ± 3 0
2 × 100 0.000225 49.6 ± 0.4 11 ± 1 45 ± 2 72 ± 1 0
2 × 100 0.00025 48.5 ± 0.3 10.8 ± 0.7 46 ± 1 73 ± 2 0
2 × 100 0.000275 48 ± 0.4 10.3 ± 0.2 47 ± 3 75 ± 3 0
2 × 100 0.0003 47.8 ± 0.6 10.7 ± 0.6 51 ± 2 78 ± 2 0
2 × 100 0.000325 47.2 ± 0.2 10.4 ± 0.2 51 ± 3 77 ± 2 0
2 × 100 0.00035 47.2 ± 0.3 10.5 ± 0.5 53 ± 3 79 ± 3 0
2 × 100 0.000375 46.8 ± 0.4 10.7 ± 0.5 54 ± 3 80 ± 2 0
2 × 100 0.0004 46.3 ± 0.3 10.9 ± 0.4 56 ± 2 81 ± 2 0

2 × 200 0 56.8 ± 0.2 23 ± 2 0 ± 0 0 ± 0 0
2 × 200 0.000025 56.8 ± 0.6 28 ± 1 0 ± 0 0 ± 0 0
2 × 200 0.00005 56.3 ± 0.4 30 ± 10 28 ± 2 54 ± 3 0
2 × 200 0.000075 55.5 ± 0.3 40 ± 20 32 ± 2 61 ± 3 0
2 × 200 0.0001 54.3 ± 0.4 24 ± 6 37 ± 2 68 ± 3 0
2 × 200 0.000125 53.3 ± 0.3 1000 ± 2000 42 ± 1 72 ± 2 0
2 × 200 0.00015 51.9 ± 0.7 24 ± 4 45 ± 2 75 ± 2 0
2 × 200 0.000175 51.2 ± 0.4 21.6 ± 0.8 49 ± 2 78 ± 2 0
2 × 200 0.0002 50.4 ± 0.1 23 ± 3 52 ± 2 80 ± 1 0

2 × 400 0 58.7 ± 0.1 48 ± 2 0 ± 0 0 ± 0 0
2 × 400 0.000025 59.2 ± 0.4 55 ± 9 0 ± 0 0 ± 0 0
2 × 400 0.00005 58.2 ± 0.1 60 ± 30 28 ± 1 54 ± 2 0
2 × 400 0.000075 56.1 ± 0.2 51 ± 3 37 ± 1 68 ± 2 0
2 × 400 0.0001 55 ± 0.3 48 ± 4 45 ± 2 75 ± 2 0
2 × 400 0.000125 53.5 ± 0.2 45 ± 3 48.3 ± 0.8 77.5 ± 0.6 0
2 × 400 0.00015 51.9 ± 0.3 50 ± 10 52 ± 1 80 ± 2 0
2 × 400 0.000175 50.9 ± 0.5 43 ± 3 56 ± 2 83 ± 1 0
2 × 400 0.0002 50.3 ± 0.3 45 ± 3 58 ± 3 83 ± 2 0

2 × 800 0 60.3 ± 0.2 125 ± 7 0 ± 0 0 ± 0 0
2 × 800 0.000025 60.3 ± 0.2 190 ± 80 0 ± 0 0 ± 0 0
2 × 800 0.00005 58.3 ± 0.2 240 ± 90 23 ± 6 50 ± 10 0
2 × 800 0.000075 56.3 ± 0.3 150 ± 50 37 ± 9 60 ± 10 0
2 × 800 0.0001 54.6 ± 0.2 108 ± 9 40 ± 10 70 ± 10 0
2 × 800 0.000125 53.2 ± 0.5 130 ± 30 50 ± 2 76 ± 2 0
2 × 800 0.00015 51.8 ± 0.3 110 ± 10 52.5 ± 0.8 78.2 ± 0.7 0
2 × 800 0.000175 50.6 ± 0.4 99 ± 6 53 ± 1 78.7 ± 1 0
2 × 800 0.0002 50.3 ± 0.2 98 ± 6 54 ± 1 79 ± 1 0

25

0 0.5 1 1.5 2
·10−4

101

102

103

104

105

`1

R
un

tim
e

(s
)

2× 100
2× 200
2× 400
2× 800

(a) With width

0 0.5 1 1.5 2
·10−4

101

102

103

104

105

`1

R
un

tim
e

(s
)

2× 100
3× 100

(b) With depth

Figure 7: CIFAR-10 Classifiers: Comparison of runtimes for proposed method (solid) and baseline
(dashed) with the strength of regularization to identify stable neurons: (a) with increasing width (b)
with increasing depth. We report the average and the standard deviation of the runtime of models
with five different initialization for each regularization. Note that the y-axis is in the log scale. The
median speedup is 183 times.

80 100 120 140 160 180 200

46

48

50

52

54

Neurons left

A
cc

ur
ac

y
(%

)

No compression
Compressible

Compressible regression
0

1

2

3

4
·10−4

` 1

Figure 8: Relationship between size of compressed neural network and accuracy on 2 × 100
CIFAR-10 classifiers. The coefficient of determination (R2) for the linear regression obtained for
accuracy based on neurons left for compressible networks is 91%.

26

A7.4 CIFAR-100 Classifiers

Relationship between Runtime and Regularization Tab. 6 and Tab. 7 show the runtime achieved
by the proposed method at different `1 regularization on the CIFAR-100 classifiers.

Table 6: CIFAR100 Classifiers: Compression results with fixed width and varying depth.

COMPRESSION % REMOVED TIMED
ARCH. `1 ACCURACY (%) RUNTIME (S) NEURONS CONNECTIONS OUT

2 × 100 0 25.2 ± 0.2 13 ± 1 0 ± 0 0 ± 0 0
2 × 100 0.000025 24.8 ± 0.4 13 ± 2 0 ± 0 0 ± 0 1
2 × 100 0.00005 24 ± 0.7 11.4 ± 0.4 36 ± 4 36 ± 4 1
2 × 100 0.000075 23.7 10.4 42 42 4
2 × 100 0.0001 23.4 ± 0.6 10.3 ± 0.1 42 ± 1 43 ± 1 1
2 × 100 0.000125 22 ± 2 10.453 ± 0.004 48 ± 1 48 ± 2 3
2 × 100 0.00015 22.4 ± 0.6 10.8 ± 1 48 ± 3 48 ± 3 1
2 × 100 0.000175 21.5 ± 0.5 10.8 ± 0.3 47.9 ± 0.2 48.7 ± 0.4 1
2 × 100 0.0002 21 ± 1 10.6 ± 0.3 51 ± 2 52 ± 2 0
2 × 100 0.000225 21.2 ± 0.4 11 ± 0.7 51 ± 2 52 ± 2 0
2 × 100 0.00025 21 ± 2 10.6 ± 0.5 50 ± 3 52 ± 4 0
2 × 100 0.000275 20.7 ± 0.8 10.4 ± 0.1 52 ± 2 54 ± 2 0
2 × 100 0.0003 19 ± 1 10.6 ± 0.2 53 ± 2 55 ± 2 0
2 × 100 0.000325 19 ± 1 10.7 ± 0.7 53 ± 4 55 ± 4 0
2 × 100 0.00035 19.2 ± 0.9 11 ± 1 53 ± 2 55 ± 1 0
2 × 100 0.000375 19.4 ± 0.5 10.5 ± 0.4 54 ± 2 56 ± 2 0
2 × 100 0.0004 19 ± 0.5 10.5 ± 0.3 53 ± 3 56 ± 3 0

3 × 100 0 24.9 ± 0.4 16 ± 3 0 ± 0 0 ± 0 0
3 × 100 0.000025 25.1 ± 0.4 17 ± 2 0 ± 0 0 ± 0 2
3 × 100 0.00005 25.4 ± 0.6 20 ± 10 22 ± 2 22 ± 2 2
3 × 100 0.000075 24 ± 1 13 ± 3 28 ± 2 28 ± 2 1
3 × 100 0.0001 24 ± 1 11.3 ± 0.4 30 ± 0.9 30.4 ± 1 1
3 × 100 0.000125 24 ± 1 12 ± 1 31 ± 1 32.4 ± 0.9 1
3 × 100 0.00015 23.1 ± 0.5 50 ± 80 34 ± 1 37 ± 1 0
3 × 100 0.000175 22 ± 1 10.7 ± 0.4 36 ± 2 38 ± 3 0
3 × 100 0.0002 22.4 ± 0.6 12 ± 1 39 ± 2 44 ± 3 0

4 × 100 0 24.7 ± 0.5 30 ± 20 0 ± 0 0 ± 0 0
4 × 100 0.000025 25 ± 0.7 16 ± 4 0 ± 0 0 ± 0 1
4 × 100 0.00005 24.8 ± 0.8 2000 ± 3000 18 ± 1 18 ± 1 1
4 × 100 0.000075 25.1 ± 0.5 12 ± 1 20 ± 1 20 ± 1 1
4 × 100 0.0001 24.8 ± 0.2 12 ± 2 22 ± 2 22 ± 2 2
4 × 100 0.000125 23.9 ± 0.4 11.8 ± 0.5 23.9 ± 0.4 25 ± 0.7 2
4 × 100 0.00015 23 ± 1 50 ± 70 28 ± 2 31 ± 3 1
4 × 100 0.000175 22 ± 2 50 ± 60 31 ± 3 36 ± 4 0
4 × 100 0.0002 22 ± 1 100 ± 200 34 ± 2 41 ± 2 0

5 × 100 0 24.2 ± 0.5 18 ± 4 0 ± 0 0 ± 0 0
5 × 100 0.000025 24.6 ± 0.4 100 ± 200 0 ± 0 0 ± 0 0
5 × 100 0.00005 25.4 ± 0.1 40 ± 30 12.9 ± 0.7 12.9 ± 0.7 3
5 × 100 0.000075 24.6 ± 0.2 14.1 ± 0.4 16.4 ± 0.3 16.6 ± 0.3 2
5 × 100 0.0001 24 ± 1 1000 ± 2000 18 ± 1 19 ± 2 1
5 × 100 0.000125 24.3 ± 0.2 200 ± 300 19 ± 1 20 ± 1 2
5 × 100 0.00015 23.6 ± 0.5 30 ± 20 22.2 ± 1 26 ± 2 0
5 × 100 0.000175 22 ± 1 1000 ± 1000 26.5 ± 0.5 32.4 ± 0.7 0
5 × 100 0.0002 22 ± 1 1000 ± 2000 31 ± 1 39 ± 1 1

Runtime Comparison with SoTA Fig. 9 shows the comparison of runtime of the proposed method
and the baseline with the strength of `1 regularization on the CIFAR-100 classifiers. We observe that
the new method presents a median gain of 137 times in performance.

27

Table 7: CIFAR100 Classifiers: Compression results with fixed height and varying width.

COMPRESSION % REMOVED TIMED
ARCHITECTURE `1 ACCURACY (%) RUNTIME (S) NEURONS CONNECTIONS OUT

2 × 100 0 25.2 ± 0.2 13 ± 1 0 ± 0 0 ± 0 0
2 × 100 0.000025 24.8 ± 0.4 13 ± 2 0 ± 0 0 ± 0 1
2 × 100 0.00005 24 ± 0.7 11.4 ± 0.4 36 ± 4 36 ± 4 1
2 × 100 0.000075 23.7 10.4 42 42 4
2 × 100 0.0001 23.4 ± 0.6 10.3 ± 0.1 42 ± 1 43 ± 1 1
2 × 100 0.000125 22 ± 2 10.453 ± 0.004 48 ± 1 48 ± 2 3
2 × 100 0.00015 22.4 ± 0.6 10.8 ± 1 48 ± 3 48 ± 3 1
2 × 100 0.000175 21.5 ± 0.5 10.8 ± 0.3 47.9 ± 0.2 48.7 ± 0.4 1
2 × 100 0.0002 21 ± 1 10.6 ± 0.3 51 ± 2 52 ± 2 0
2 × 100 0.000225 21.2 ± 0.4 11 ± 0.7 51 ± 2 52 ± 2 0
2 × 100 0.00025 21 ± 2 10.6 ± 0.5 50 ± 3 52 ± 4 0
2 × 100 0.000275 20.7 ± 0.8 10.4 ± 0.1 52 ± 2 54 ± 2 0
2 × 100 0.0003 19 ± 1 10.6 ± 0.2 53 ± 2 55 ± 2 0
2 × 100 0.000325 19 ± 1 10.7 ± 0.7 53 ± 4 55 ± 4 0
2 × 100 0.00035 19.2 ± 0.9 11 ± 1 53 ± 2 55 ± 1 0
2 × 100 0.000375 19.4 ± 0.5 10.5 ± 0.4 54 ± 2 56 ± 2 0
2 × 100 0.0004 19 ± 0.5 10.5 ± 0.3 53 ± 3 56 ± 3 0

2 × 200 0 28.2 ± 0.3 25 ± 3 0 ± 0 0 ± 0 0
2 × 200 0.000025 28.5 29.4 0 0 4
2 × 200 0.00005 28.1 ± 0.4 27 ± 7 31 ± 2 42 ± 3 0
2 × 200 0.000075 27.6 ± 0.3 40 ± 10 36 ± 1 48 ± 1 0
2 × 200 0.0001 26.9 ± 0.3 27 ± 9 40 ± 1 52 ± 1 0
2 × 200 0.000125 26.1 ± 0.3 20.8 ± 0.5 44 ± 2 57 ± 2 0
2 × 200 0.00015 25.7 ± 0.2 21 ± 1 46 ± 2 58 ± 2 0
2 × 200 0.000175 25 ± 0.3 21.1 ± 0.8 48 ± 2 60 ± 2 0
2 × 200 0.0002 24.2 ± 0.4 21.2 ± 0.6 49.1 ± 0.9 61.6 ± 0.9 1

2 × 400 0 30.2 ± 0.2 46.2 ± 0.8 0 ± 0 0 ± 0 1
2 × 400 0.000025 30.71 ± 0.04 51 ± 7 0 ± 0 0 ± 0 2
2 × 400 0.00005 30.2 ± 0.3 60 ± 10 26.5 ± 0.8 42 ± 1 1
2 × 400 0.000075 29.13 ± 0.09 49 ± 5 33 ± 2 51 ± 3 2
2 × 400 0.0001 28 ± 0.4 51 ± 7 38.3 ± 0.7 56.8 ± 0.9 1
2 × 400 0.000125 26.8 ± 0.4 44 ± 1 43 ± 1 62 ± 2 1
2 × 400 0.00015 25.9 ± 0.3 47 ± 3 45 ± 2 64 ± 2 1
2 × 400 0.000175 25 ± 0.2 44 ± 3 47 ± 1 66 ± 2 0
2 × 400 0.0002 24.2 ± 0.1 44 ± 2 48 ± 2 66 ± 2 0

2 × 800 0 31.32 ± 0.09 100 ± 20 0 ± 0 0 ± 0 2
2 × 800 0.00005 30.9 ± 0.3 300 ± 100 21.4 ± 0.8 38 ± 1 0
2 × 800 0.000075 29.4 ± 0.2 200 ± 100 32.5 ± 0.5 52.2 ± 0.8 0
2 × 800 0.0001 27.8 ± 0.3 97 ± 5 39.1 ± 0.7 60 ± 0.8 0
2 × 800 0.000125 26.7 ± 0.2 2000 ± 4000 41 ± 1 62 ± 1 0
2 × 800 0.00015 25.8 ± 0.2 98 ± 5 42 ± 1 64 ± 2 0
2 × 800 0.000175 24.6 ± 0.2 200 ± 100 44 ± 2 65 ± 2 0
2 × 800 0.0002 23.6 ± 0.5 110 ± 10 44.4 ± 1 66 ± 1 0

28

0 0.5 1 1.5 2
·10−4

101

102

103

104

105

`1

R
un

tim
e

(s
)

2× 100
2× 200
2× 400
2× 800

(a) With width

0 0.5 1 1.5 2
·10−4

101

102

103

104

105

`1

R
un

tim
e

(s
)

2× 100
3× 100

(b) With depth

Figure 9: CIFAR-100 Classifiers: Comparison of runtimes for proposed method (solid) and
baseline (dashed) with the strength of regularization to identify stable neurons: (a) with increasing
width (b) with increasing depth. We report the average and the standard deviation of the runtime of
models with five different initialization for each regularization. Note that the y-axis is in the log scale.
The median speedup is 137 times.

100 120 140 160 180 200

18

20

22

24

26

Neurons left

A
cc

ur
ac

y
(%

)

No compression
Compressible

Compressible regression
0

1

2

3

4
·10−4

` 1

Figure 10: Relationship between size of compressed neural network and accuracy on 2 × 100
CIFAR-100 classifiers. The coefficient of determination (R2) for the linear regression obtained for
accuracy based on neurons left for compressible networks is 61%.

29

A7.5 Extensions to CNNs: CIFAR-10 LeNet Classifiers

We also test our approach with the LeNet [53] architecture on CIFAR-10 using the preprocessing step
as a predictor of neuron stability to make it more scalable. We note that in this case we would only
use our method as a sparsification technique to mask stably inactive zeros due to parameter sharing.

When no regularization is used and the test accuracy on CIFAR-10 is around 68.7% before pruning,
we find that an average of 10.98% of the stably inactive neurons can be masked as 0. With an `1
regularization of 0.000175, test accuracy on CIFAR-10 is around 70.02% before pruning while an
average of 11.86% of the stably inactive neurons can be masked as 0. In comparison to the case of
MLPs, we observe more variability on the number of stable neurons across networks trained with
the same amount of regularization, which we believe is due to weight sharing. Similar to the case
of MLPs, the proportion of neurons that are stable in the training set but not stable in the test set is
relatively small: 1.06% on average. Moreover, we observe that pruning those extra neurons has a
zero net effect on accuracy for regularization values in the interval [0, 0.0003].

On a final note, we emphasize that masking 10% of the neurons is more strict than masking 10%
of the parameters as done for lossy compression. Furthermore, masking 10% of the neurons does
not prevent someone from sparsifying the CNN even further: our method merely identifies a set of
neurons—and corresponding parameters—that can be ignored for not being relevant. We believe
that our method could be used in conjunction with conventional sparsification techniques in order to
decompose the pruning operations of those into a lossless and a lossy component.

A8 Extensions to Data and Batch Normalization

Normalization layers, specially Batch Normalization [45], are present in almost every modern neural
network [40]. We now show how to extend our approach to these layers.

Data Normalization Data normalization transforms the input x as

Norm(x) =
x− µ
σ

, (20)

where (µ, σ) correspond to the mean and standard deviation of the data, respectively.

Since, we assume the image pixels to lie in the range [0, 1], the data normalization layer brings the
image pixels in the range

[
−µσ ,

1−µ
σ

]
. Thus, we incorporate data normalization in our approach by

adjusting the input bounds using the mean and standard deviation parameters. Hence, we replace the
constraint x ∈ [0, 1] with the new constraint x ∈

[
−µσ ,

1−µ
σ

]
.

Batch Normalization Batch Normalization (BN) [45] corresponds to applying the affine transfor-
mation to the input x as

BN(x) = γ

(
x− µB√
σ2
B + ε

)
+ β, (21)

where (µB, σ
2
B) are the mean and variance (the mini-batch statistics) of the data, (γ, β) are the

trainable parameters, and ε is a small constant to avoid division by zero.

For lossless compression, we run the MILP solver after the training of the neural network completes.
Thus, BN mini-batch statistics are frozen (do not update) while running MILP, and BN only serves to
scale the layer input. If the layer input before the BN layer is in the range [hmin, hmax], the BN layer

brings these input in the range

[
γ

(
hmin − µB√

σ2
B + ε

)
+ β, γ

(
hmax − µB√

σ2
B + ε

)
+ β

]
. Thus, BN does not

introduce any extra constraint for the MILP formulation.

We end this discussion on a final note. Although BN in inference does an affine transform of the input,
BN in inference is different from the fully connected layer. BN in inference transforms the inputs
individually without taking contributions from other inputs into account. On the other hand, a fully
connected layer does an affine transform while taking the contributions of all inputs into account.

30

